Constraining BSM Higgs sectors at the LHC

Henning Bahl

DESY, Hamburg

PRC pre-meeting

7.4.2020, DESY Hamburg

Intro	MSSM Higgs sector	Higgs \mathcal{CP}	
000			

Introduction

Specific model: constraining the MSSM Higgs sector

Effective model: constraining the Higgs \mathcal{CP} properties

Conclusions

Intro	MSSM Higgs sector	
000		

Introduction

Specific model: constraining the MSSM Higgs sector

Effective model: constraining the Higgs \mathcal{CP} properties

Conclusions

Motivation

Current situation:

- no direct evidence for BSM physics at LHC yet,
- most known particles studied intensively confirming SM predictions.

Where to look for new physics? Obvious candidate: the Higgs boson

- ▶ Higgs boson properties still leave room for deviations from SM.
- Higgs boson can be coupled easily to BSM particles,
- Why should there be only one scalar particle? → Searches for additional Higgs bosons.

How much do we know already about the discovered Higgs boson? How tightly constraint are extended Higgs sectors already?

Intro	MSSM Higgs sector	$Higgs \ \mathcal{CP}$	
000			

Higgs measurements: examples

Higgs mass: [Aad et al., 1503.07589]

$$\mathcal{M}_h^{\mathsf{exp}} = 125.08 \pm 0.21 \; \mathsf{(stat.)} \pm 0.11 \; \mathsf{(sys.)} \; \mathsf{GeV}$$

Coupling measurements:

[1909.02845,ATLAS]

[2001.07763,CMS]

 \rightarrow Interpret constraints in **specific** or **effective** model.

MSSM Higgs sector	Higgs \mathcal{CP}	
•0000000		

Introduction

Specific model: constraining the MSSM Higgs sector

Effective model: constraining the Higgs \mathcal{CP} properties

Conclusions

Interpretation in specific model: MSSM

Reminder

2 Higgs doublets $\rightarrow CP$ -even h, H; CP-odd A; charged H^{\pm} .

For constraining the model, we need not only

precise experimental measurements,

but also

- precise theoretical predictions.
- \rightarrow discuss SM-like Higgs mass as example.

Prediction of SM-like Higgs mass

Special feature of the MSSM

Mass of SM-like Higgs, M_h , is calculable in terms of model parameters \Rightarrow can be used as a precision observable.

For the calculation of higher-order corrections, three approaches are used:

- \blacktriangleright Fixed-order approach (up to N^3LO) \rightarrow precise for low SUSY scales,
- \blacktriangleright EFT approach (up to N^3LL) \rightarrow precise for high SUSY scales,
- ▶ hybrid approach: combine fixed-order and EFT approaches → precise for low and high SUSY scales.

(all approaches implemented into public code FeynHiggs)

Comparison of approaches [HB,Heinemeyer,Hollik,Weiglein,1912.04199]

Single-scale scenario with all non-SM particles at M_{SUSY}

"Rule of thumb"

Remaining theoretical uncertainties (for $\overline{\text{DR}}$ stop input parameter): $X_t/M_{\text{SUSY}} = 0 \rightarrow \Delta M_h \sim 0.5 \text{ GeV},$ $X_t/M_{\text{SUSY}} = \sqrt{6} \rightarrow \Delta M_h \sim 1 \text{ GeV}$

Slightly higher for OS stop input parameters.

What happens in non-degenerate scenarios?

Large hierarchy between SUSY particles \rightarrow EFT tower needed.

Available EFTs (NNLL accuracy):

- SM (+ EWinos, + gluino),
- THDM (+ EWinos, + gluino)
- \rightarrow EFT tower with up to four EFTs (all matched at the 2-loop level)

For most phenomenological interesting scenarios, all large logs are resummed \Rightarrow theoretical uncertainty under control.

One exception: gluinos are heavier than stops

Increasingly relevant due to tightening LHC gluino limits.

Large uncertainty due to terms enhanced by gluino mass, M_3 , appearing at the two-loop level in EFT calculation. Needed EFT, MSSM without gluino, complicated...

Solution: Absorb power-enhanced terms into renormalization scheme [HB,Sobolev,Weiglein,1912.10002]

Use $\overline{\text{MDR}}$ instead of $\overline{\text{DR}}$ in EFT,

$$\begin{pmatrix} m_{\tilde{t}L,R}^{\overline{\text{MDR}}} \end{pmatrix}^2 = \left(m_{\tilde{t}L,R}^{\overline{\text{DR}}} \right)^2 \left[1 + \frac{\alpha_s}{\pi} C_F \frac{|M_3|^2}{m_{\tilde{t}L,R}^2} \left(1 + \ln \frac{Q^2}{|M_3|^2} \right) \right]$$
$$x_t^{\overline{\text{MDR}}}(Q) = x_t^{\overline{\text{DR}}}(Q) - \frac{\alpha_s}{\pi} C_F M_3 \left(1 + \ln \frac{Q^2}{|M_3|^2} \right) ,$$

resums all $\mathcal{O}(\alpha_s^n M_3^{2n}, \alpha_s^n M_3^n)$ terms.

 \downarrow Drastically reduced uncertainty.

Combine all constraints: Higgs benchmark scenarios

[Bagnaschi, HB, Fuchs, Hahn, Heinemeyer, Liebler, Patel, Slavich, Stefaniak, Wagner, Weiglein, 1808.07542], heinemeyer, Stefaniak, Stefaniak, Wagner, Stefaniak, Stefaniak, Stefaniak, Wagner, Weiglein, 1808.07542], heinemeyer, Stefaniak, Stefaniak, Wagner, Stefaniak, Stefaniak, Stefaniak, Wagner, Weiglein, 1808.07542], heinemeyer, Stefaniak, S

[HB,Liebler,Stefaniak,1901.05933],[HB,Bechtle,Liebler,Heinemeyer,Stefaniak,Weiglein,to appear]

Consider combined MSSM Higgs sector constraints from

- searches for BSM Higgs bosons,
- measurements of SM-like Higgs boson,

₩

interpret them in benchmark scenarios with only two free parameters:

- Typically presented in M_A -tan β plane,
- use Higgs mass constraint to fix stop mass scale such that SM-like 125 GeV Higgs exist,
- choose scenarios with different LHC phenomenology.

Tools used: FeynHiggs, SusHi, HiggsBounds, HiggsSignals

Example scenario: M_h^{125} scenario

► all SUSY particles at the TeV scale → similar to type-II THDM with SUSY inspired Higgs couplings

Blue: Excluded by direct searches for heavy Higgs bosons,
 hashed: Excluded by SM-like Higgs signal strengths / mass.

Example scenario: M_h^{125} scenario

 \blacktriangleright all SUSY particles at the TeV scale \rightarrow similar to type-II THDM with SUSY inspired Higgs couplings

Blue: Excluded by direct searches for heavy Higgs bosons,

hashed: Excluded by SM-like Higgs signal strengths / mass.

MSSM Higgs sector	Higgs $C P$	
	00000	

Introduction

Specific model: constraining the MSSM Higgs sector

Effective model: constraining the Higgs \mathcal{CP} properties

Conclusions

What do we know about Higgs CP properties so far?

Joint project with DESY ATLAS group, [HB,Bechtle,Heinemeyer,Katzy,Klingl,Peters,Saimpert,Stefaniak,Weiglein,to appear]

- Focus on top Yukawa coupling,
- global fit to all Higgs measurements using HiggsSignals (including uncertainty correlations),
- also include kinematic information,
- interpret measurements in effective model,

$$\mathcal{L}_{\mathsf{yuk}} = -y_t^{\mathsf{SM}} \overline{t} \left(c_t + i \gamma_5 \widetilde{c}_t \right) t H,$$

► can allow for additionally free c_V (rescaling HVV couplings), κ_g (rescaling $gg \to H$), κ_γ (rescaling $H \to \gamma\gamma$).

Consider three models:

- 1. (c_t, \tilde{c}_t) free,
- 2. (c_t, \tilde{c}_t, c_V) free,
- 3. $(c_t, \tilde{c}_t, c_V, \kappa_g, \kappa_\gamma)$ free

MSSM Higgs sector	Higgs CP	
	00000	

Relevant processes

ttH and tH production

MSSM Higgs sector	Higgs $C\mathcal{P}$	
	00000	

Relevant processes

ZH production

ttH and tH production

MSSM Higgs sector	Higgs $C\mathcal{P}$	
	00000	

Relevant processes

ttH and tH production

MSSM Higgs sector	Higgs $C\mathcal{P}$	
	000000	

- Best fit-point very close to SM,
- ▶ most general model still leaves room for sizeable CP-odd coupling,
- how can we constrain this model further?

 \rightarrow Disentangling tH and ttH is promising future direction.

$\mathsf{MSSM}:$ $\mathcal{CP}\text{-}\mathsf{odd}$ component of the SM-like Higgs boson

[HB,Murphy,Rzehak,to appear]

Predictions based on complex THDM EFT of the MSSM combined with 2L fixed-order calculation.

- Large $\mathcal{CP}\text{-}\mathsf{odd}$ component requires
 - Large mixing with CP-odd A boson
 - imaginary parts of couplings have to be large
 - $\tan \beta$ and $M_{H^{\pm}}$ must be small
 - large SUSY scale required to ensure M_h ~ 125 GeV
 → CP-mixing decouples

Potential discovery of $\mathcal{CP}\text{-}\mathsf{odd}$ component at the LHC hard to explain within the MSSM.

MSSM Higgs sector	Higgs \mathcal{CP}	Conclusions
		0

Introduction

Specific model: constraining the MSSM Higgs sector

Effective model: constraining the Higgs \mathcal{CP} properties

Conclusions

MSSM Higgs sector	$Higgs\; \mathcal{CP}$	Conclusions
		00

Conclusions

LHC Higgs measurements can be interpreted in

- specific models: MSSM
 - SM-like Higgs mass as precision observable,
 - combining fixed-order and EFT calculations \rightarrow theoretical uncertainty ~ 1 GeV,
 - combined with Higgs searches and coupling measurements in Higgs benchmark scenarios.

• effective models: \mathcal{CP} properties of the top-Yukawa coupling

- Strong constraints from $gg \rightarrow H$ and $H \rightarrow \gamma \gamma$,
- sizeable \mathcal{CP} -odd coupling allowed if κ_g and κ_γ are varied freely,
- future disentanglement of ttH and tH could further constraint \mathcal{CP} -odd coupling.

MSSM Higgs sector	$Higgs\; \mathcal{CP}$	Conclusions
		00

Conclusions

LHC Higgs measurements can be interpreted in

- specific models: MSSM
 - SM-like Higgs mass as precision observable,
 - combining fixed-order and EFT calculations \rightarrow theoretical uncertainty ~ 1 GeV,
 - combined with Higgs searches and coupling measurements in Higgs benchmark scenarios.

• effective models: CP properties of the top-Yukawa coupling

- Strong constraints from $gg \rightarrow H$ and $H \rightarrow \gamma \gamma$,
- sizeable \mathcal{CP} -odd coupling allowed if κ_g and κ_γ are varied freely,
- future disentanglement of ttH and tH could further constraint \mathcal{CP} -odd coupling.

Thanks for your attention!

Fixed-order techniques

$$M_{h}^{2} = m_{h}^{2} + \frac{6y_{t}^{4}}{(4\pi)^{2}}v^{2}\left[\ln\frac{M_{\tilde{t}}^{2}}{M_{t}^{2}} + \left(\frac{X_{t}}{M_{\tilde{t}}}\right)^{2} - \frac{1}{12}\left(\frac{X_{t}}{M_{\tilde{t}}}\right)^{4}\right] + \dots$$

• Stop mass scale
$$M_{ ilde{t}} = \sqrt{M_{ ilde{t}_1} M_{ ilde{t}_2}}$$
,

► status:
$$\mathcal{O}(\text{full } 1L, \alpha_s(\alpha_b + \alpha_t), (\alpha_b + \alpha_t)^2, \alpha_s^2\alpha_t).$$

[1708.05720,1802.09886,1901.03651,1910.02094...]

Advantages and disadvantages:

- + Precise for low SUSY scales,
- but for high scales $\ln(M_{\tilde{t}}^2/M_t^2)$ terms spoil convergence of perturbative expansion.

EFT calculation (simplest framework)

- \blacktriangleright Integrate out all SUSY particles \rightarrow SM as EFT,
- Higgs self-coupling fixed at matching scale

$$\lambda(M_{\rm SUSY}) = \frac{1}{4}(g^2 + g_y^2) + \frac{6y_t^4}{(4\pi)^2} \left[\left(\frac{X_t}{M_{\rm SUSY}}\right)^2 - \frac{1}{12} \left(\frac{X_t}{M_{\rm SUSY}}\right)^4 \right],$$

- run Higgs self-coupling down to electroweak scale,
- calculate Higgs mass: $M_h^2 = \lambda(M_t)v^2 + \dots$,
- status: full LL+NLL, O(α_s, α_t, α_b) NNLL, partial N³LL. [1703.08166,1807.03509,1807.03509,1908.01670,...]

Advantages and disadvantages:

- + Precise for high SUSY scales (logs resummed),
- but for low scales $O(M_t/M_{SUSY})$ terms are missed if higher-dimensional operators are not included.

How to deal with intermediary SUSY scales?

For sparticles in the LHC range, both logs and suppressed terms might be relevant. We could try to improve

- \blacktriangleright fixed-order calculation \rightarrow need to calculate more three- and two-loop corrections,
- \blacktriangleright EFT calculation \rightarrow need to include higher-dimensional operators into calculation.

or ...

Hybrid approach

Combine both approaches to get precise results for both regimes

Such an approach is implemented e.g. in FeynHiggs [HB,Hahn,Heinemeyer,Hollik,PaBehr,Rzehak,Weiglein;1312.4937,1608.01880,1706.0034,1812.06452] other approaches: 1609.00371,1703.03267,1710.03760,1910.03595; other codes: FlexibleEFTHiggs, SARAH/SPheno

Procedure in FeynHiggs

- 1. Calculation of diagrammatic fixed-order self-energies $\hat{\Sigma}_{\textit{hh}}$
- 2. Calculation of EFT prediction $\lambda(M_t)v^2$
- 3. Add non-logarithmic terms contained in fixed-order result and the logarithms contained in EFT result

$$\hat{\Sigma}_{hh}(m_h^2) \longrightarrow [\hat{\Sigma}_{hh}(m_h^2)]_{
m nolog} - [v^2 \lambda(M_t)]_{
m log}$$

In practice, this is achieved by using subtraction terms.

Additional complication:

FH by default uses OS scheme, for EFT calculation however $\overline{\text{DR}}$ parameters needed (i.e. $X_t^{\overline{\text{DR}}}$) \rightarrow 1L log only conversion of X_t sufficient

Remaining uncertainties – individual sources

Uncertainty estimate dominated by:

- Uncertainty from higher order threshold corrections:
 - vary matching scale between SM and MSSM,
 - reexpress treshold correction in terms of h_t^{MSSM} instead of y_t^{SM} .
- Uncertainty of SM input couplings:
 - $y_t(M_t)$ extracted at the 2- or 3-loop level out of OS top mass.

M_h^{125} scenario – ILC projections

