${\cal CP}$ -properties of the top-Yukawa coupling at the LHC: a global perspective

Henning Bahl

 $% \left[{{\rm{Bechtle}}_{\rm{F}}} \right] = {\rm{Bechtle}}_{\rm{F}}$ S. Heinemeyer, J. Katzy, T. Klingl, K. Peters,

M. Saimpert, T. Stefaniak, G. Weiglein

DESY, Hamburg

Quantum Universe Day 2/2020

28.4.2020, DESY Hamburg

Intro		
0000		

Effective model

Relevant processes

Global fit

Intro				
● 000	00	0000	00000	00

Effective model

Relevant processes

Global fit

Intro 0●00		Global fit 00000	

Motivation

Current situation:

- no direct evidence for BSM physics at LHC yet,
- most known particles studied intensively confirming SM predictions.

Where to look for new physics? Obvious candidate: the Higgs boson

- ▶ Higgs boson properties still leave room for deviations from SM.
- Deviations could be connected to open problems e.g. baryon asymmetry of the universe

How much do we know already about the discovered Higgs boson?

Intro			
0000	00	0000	00

Higgs measurements: examples

Higgs mass: [Aad et al., 1503.07589]

```
M_h^{
m exp} = 125.08 \pm 0.21 \; ({
m stat.}) \pm 0.11 \; ({
m sys.}) \; {
m GeV}
```


[CMS-PAS-HIG-19-005]

Kinematic distributions:

[ATLAS-CONF-2020-006]

Intro		
0000		

Higgs \mathcal{CP} properties

- ▶ Pure *CP*-odd Higgs excluded,
- ▶ but Higgs could still be *CP*-admixture,

$$H = \cos \alpha \cdot H_{\mathcal{CP}-\text{even}} + \sin \alpha \cdot H_{\mathcal{CP}-\text{odd}}.$$

- ► Most Higgs-CP measurements focus on Higgs vector-boson couplings,
- but typical BSM models predict largest CP-odd component in the top-Yukawa coupling.
- \rightarrow Study $\mathcal{CP}\text{-properties}$ of top-Yukawa coupling in effective model.

	Model			
0000	•0	0000	00000	00

Effective model

Relevant processes

Global fit

Model O●	Global fit 00000	

Effective model

• Top-Yukawa Lagrangian (generated by $1/\Lambda^2(\Phi^{\dagger}\Phi)Q_L\tilde{\Phi}t_R$ operator),

$$\mathcal{L}_{\mathsf{yuk}} = -y_t^{\mathsf{SM}} \overline{t} \left(\mathbf{c}_t + i \gamma_5 \widetilde{\mathbf{c}}_t \right) t H.$$

 c_t : *CP*-even coupling; \tilde{c}_t : *CP*-odd coupling

- Can allow for additionally free
 - $c_V \rightarrow$ rescaling HVV couplings,
 - $\kappa_g \rightarrow$ rescaling $gg \rightarrow H$,
 - $\kappa_{\gamma} \rightarrow \text{rescaling } H \rightarrow \gamma \gamma$.

		Relevant processes		
0000	00	0000	00000	00

Effective model

Relevant processes

Global fit

	Relevant processes ○●○○	Global fit 00000	
Dala			

Relevant processes: $gg \rightarrow H \& H \rightarrow \gamma \gamma$

- top-Yukawa influences
 - $gg \rightarrow H$ signal strength

$$\kappa_g^2 \equiv \frac{\sigma_{gg \to H}}{\sigma_{gg \to H}^{SM}} \bigg|_{M_t \to \infty} = c_t^2 + \frac{9}{4} \tilde{c}_t^2 + \dots,$$

calculate κ_g either in terms of c_t and \tilde{c}_t or treat it as free parameter (\rightarrow undiscovered colored BSM particles),

- kinematic shapes not sensitive yet, (future potential: Δφ_{jj} in gg → H + 2j)
- similarly $H \rightarrow \gamma \gamma$.

	Relevant processes	
	0000	

Relevant processes: ZH production

Total rate:

- Experimental measurement: $pp \rightarrow ZH$,
- $\blacktriangleright \ \sigma^{\rm SM}_{q\bar{q}\to ZH} \approx 6\sigma^{\rm SM}_{gg\to ZH},$

q

 \bar{q}

• but $\sigma_{gg \rightarrow ZH}$ can be significantly enhanced.

	Relevant processes	
	0000	

Relevant processes: ZH production

Total rate:

- Experimental measurement: $pp \rightarrow ZH$,
- $\blacktriangleright \ \sigma^{\rm SM}_{q\bar{q}\to ZH} \approx 6\sigma^{\rm SM}_{gg\to ZH},$
- but $\sigma_{gg \rightarrow ZH}$ can be significantly enhanced.

Kinematic shapes:

- Z p_T-shape sensitive to Higgs CP-properties,
- use STXS bins as additional input.

Intro 0000	Model OO	Relevant processes ○○○●	Glo OC	bal fit 0000	Conclusions 00
Relevant	g www	$\begin{array}{c} ttH \text{ and } tH \\ \hline \\ -t \\ -H \\ -\overline{t} \end{array} q \qquad \qquad$	<i>production</i> <i>q</i> <i>t</i> <i>b</i>		
• $t\bar{t}H$ a \rightarrow cor • $\sigma_{t\bar{t}H}^{SM} \approx$ • but C_{t}^{SM} enhand	nd <i>tH</i> difficult to mbination of bo $\approx 7\sigma_{tH}^{SM}$, <i>P</i> -odd Yukawa of ce σ_{tH} .	to disentangle th measured, coupling can	$\begin{array}{c} 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \sqrt{5} \\ 0.0 \\ -0.5 \\ -1.0 \\ -1.5 \\ -2.0 \\ -2 \\ -2 \\ -1 \end{array}$		$\begin{array}{c} 6.4 \\ 5.6 \\ -4.8 \\ -4.0 \\ -3.2 \\ -2.4 \\ 1.6 \\ 0.8 \\ 0.0 \\ \end{array}$

- $t\bar{t}H$ and tH difficult to disentangle \rightarrow combination of both measured,
- $\blacktriangleright \ \sigma_{t\bar{t}H}^{\rm SM} \approx 7\sigma_{tH}^{\rm SM},$
- but CP-odd Yukawa coupling can enhance σ_{tH} .

Kinematic shape:

no measurements yet.

			Global fit	
0000	00	0000	0000	00

Effective model

Relevant processes

Global fit

	Global fit	
	0000	

Fit setup

Input:

- all relevant Higgs measurements (latest April results not yet included),
- if available, included all uncertainty correlations,
- consider three models:
 - 1. (c_t, \tilde{c}_t) free,
 - 2. (c_t, \tilde{c}_t, c_V) free,
 - 3. $(c_t, \tilde{c}_t, c_V, \kappa_g, \kappa_\gamma)$ free,
- random fit with $\mathcal{O}(10^7 10^8)$ points,
- fit performed using HiggsSignals.

All results preliminary!

			Global fit	
0000	00	0000	00000	00

Fit results

	Global fit	
	00000	

Fit results

 c_t

	Global fit	
	00000	

Influence of specific observables

	Global fit	
	00000	

Influence of specific observables

	Global fit	
	00000	

Influence of specific observables

			Global fit	
0000	00	0000	00000	00

How to tighten the constraints?

- Best fit-point very close to SM,
- ▶ most general model still leaves room for sizeable CP-odd coupling,
- how can we constrain this model further?
- \rightarrow Most promising candidate: improved *tH*, *ttH* measurements.

	Relevant processes	Global fit	Conclusions
0000 00	0000	00000	00

How to tighten the constraints?

- Best fit-point very close to SM,
- most general model still leaves room for sizeable CP-odd coupling,
- how can we constrain this model further?
- \rightarrow Most promising candidate: improved tH, ttH measurements.

 \rightarrow Combined measurement of tH and ttH has no discrimination power regarding $\tilde{c}_t.$

	Global fit	
	00000	

How to tighten the constraints?

- Best fit-point very close to SM,
- most general model still leaves room for sizeable CP-odd coupling,
- how can we constrain this model further?
- \rightarrow Most promising candidate: improved *tH*, *ttH* measurements.

 \rightarrow Need to disentangle *tH* and *ttH*!

				Conclusions
0000	00	0000	00000	•0

Effective model

Relevant processes

Global fit

				Conclusions
0000	00	0000	00000	00

Conclusions

Initial question

How much constrained is a $\mathcal{CP}\text{-}\mathsf{odd}$ component of the top-Yukawa coupling already?

- \rightarrow global fit to all relevant LHC data:
 - Used effective model with generalized top-Yukawa interaction,
 - included total and differential cross-section measurements,
 - fit results:
 - strong constraints from $gg \rightarrow H$ and $H \rightarrow \gamma \gamma$,
 - sizable $\mathcal{CP}\text{-}\mathrm{odd}$ coupling allowed if κ_g and κ_γ are varied independently,
 - ▶ future disentanglement of *ttH* and *tH* could further constraint CP-odd coupling.

				Conclusions
0000	00	0000	00000	00

Conclusions

Initial question

How much constrained is a $\mathcal{CP}\text{-}\mathsf{odd}$ component of the top-Yukawa coupling already?

- \rightarrow global fit to all relevant LHC data:
 - Used effective model with generalized top-Yukawa interaction,
 - included total and differential cross-section measurements,
 - fit results:
 - strong constraints from $gg \rightarrow H$ and $H \rightarrow \gamma \gamma$,
 - sizable $\mathcal{CP}\text{-}\mathrm{odd}$ coupling allowed if κ_g and κ_γ are varied independently,
 - ▶ future disentanglement of *ttH* and *tH* could further constraint CP-odd coupling.

Thanks for your attention!

tWH production

- interferes with ttH production,
- $\blacktriangleright \ \sigma_{t\bar{t}H}^{\rm SM} \approx 34 \sigma_{tWH}^{\rm SM},$
- ▶ but non-negligible contribution in *CP*-odd case: $\sigma_{t\bar{t}H}^{CP-odd} \approx 3.5 \sigma_{tWH}^{CP-odd}$,
- \rightarrow fully taken into account in numerical analysis.

CP constraints from dedicated $t\bar{t}H$, tH analyses

[2003.10866, CMS; 2004.04545, ATLAS]

- ▶ Targeted $t\bar{t}H$ and tH with $H \rightarrow \gamma\gamma$,
- exploited kinematic distributions,
- enhanced CP sensitivity using BDTs.

