Constraining the MSSM Higgs sector at the LHC and beyond

Henning Bahl

DESY, Hamburg

Theory seminar

7.12.2020, Bethe center for theoretical physics, Bonn

Intro				
000000	000000000	00000000	00000	00

Introduction

Higgs mass calculation

Higgs benchmark scenarios

HL-LHC and ILC projections

Conclusions

Intro				
000000	000000000	00000000	00000	00

Introduction

Higgs mass calculation

Higgs benchmark scenarios

HL-LHC and ILC projections

Conclusions

Motivation

Current situation:

- No direct evidence for BSM physics at LHC yet,
- most known particles studied intensively confirming SM predictions.

Where to look for new physics?

 \rightarrow One promising place: the Higgs sector

- ▶ Higgs boson properties still leave room for deviations from SM,
- ► Higgs boson can be coupled easily to BSM particles,
- ► why should there be only one scalar particle? → Searches for additional Higgs bosons.

How much can we learn from current Higgs measurements about extended Higgs sectors?

Higgs measurements: examples

Higgs mass: [Aad et al., 1503.07589]

 $M_h^{
m exp} = 125.08 \pm 0.21 \; ({
m stat.}) \pm 0.11 \; ({
m sys.}) \; {
m GeV}$

[1909.02845,ATLAS]

Additional Higgs bosons:

[2001.07763,CMS]

Complementarity of the constraints

- ► The different measurements can not be compared directly.
- Need specific BSM model to explore the complementarity between the different constraints!

This talk:

Use MSSM as a benchmark model with a focus on collider phenomenology.

In addition, Higgs physics can also be constrained by

- flavour measurements,
- EDM measurements,

The MSSM Higgs sector – potential

Two Higgs doublets

$$\Phi_i = \begin{pmatrix} \phi_i^+ \\ \frac{1}{\sqrt{2}} (v_i + \phi_i + i\chi_i) \end{pmatrix},$$

general THDM Higgs potential has 9 non-SM parameters

$$\begin{split} & \mathcal{V}_{\mathsf{THDM}}(\Phi_1, \Phi_2) = m_{11}^2 \, \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \, \Phi_2^{\dagger} \Phi_2 - \left(m_{12}^2 \Phi_1^{\dagger} \Phi_2 + \mathrm{h.c.}\right) \\ & + \frac{1}{2} \lambda_1 (\Phi_1^{\dagger} \Phi_1)^2 + \frac{1}{2} \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) \\ & + \left(\frac{1}{2} \lambda_5 (\Phi_1^{\dagger} \Phi_2)^2 + \lambda_6 (\Phi_1^{\dagger} \Phi_1) (\Phi_1^{\dagger} \Phi_2) + \lambda_7 (\Phi_2^{\dagger} \Phi_2) (\Phi_1^{\dagger} \Phi_2) + \mathrm{h.c.}\right), \end{split}$$

SUSY reduces these to 2

$$\lambda_1 = \lambda_2 = \frac{1}{4}(g^2 + g_y^2), \lambda_3 = \frac{1}{4}(g^2 - g_y^2), \lambda_4 = -\frac{1}{2}g^2, \lambda_{5,6,7} = 0$$

 $\rightarrow \text{ predictive model!}$

The MSSM Higgs sector – mass eigenstates

Diagonalizing the Higgs mass matrices yields mass eigenstates

$$\begin{pmatrix} h \\ H \end{pmatrix} = R(\alpha) \begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix}, \begin{pmatrix} A \\ G \end{pmatrix} = R(\beta) \begin{pmatrix} \chi_1 \\ \chi_2 \end{pmatrix}, \begin{pmatrix} H^{\pm} \\ G^{\pm} \end{pmatrix} = R(\beta) \begin{pmatrix} \phi_1^{\pm} \\ \phi_2^{\pm} \end{pmatrix}$$

 \rightarrow five physical Higgs states: h, H, A, H^{\pm}

Two non-SM input parameters: M_A and tan β = v₂/v₁,
 tree-level relations:

$$\begin{split} m_{h,H}^2 &= \frac{1}{2} \left(M_A^2 + M_Z^2 \mp \sqrt{(M_A^2 + M_Z^2)^2 - 4M_A^2 M_Z^2 \cos^2 2\beta} \right), \\ m_{H^{\pm}}^2 &= M_A^2 + M_W^2, \\ \tan 2\alpha &= \frac{M_A^2 + M_Z^2}{M_A^2 - M_Z^2} \tan 2\beta. \end{split}$$

The MSSM Higgs sector – decoupling limit

Decoupling limit, $M_A \gg M_Z$, implies:

masses:

$$egin{aligned} m_h^2 &
ightarrow M_Z^2\cos^2(2eta), \ m_H^2 &
ightarrow M_A^2 + M_Z^2\sin^2(2eta), \end{aligned}$$

 \Rightarrow all Higgses, apart from *h*, decouple.

couplings:

$$\alpha \to \beta - \pi/2$$

 \Rightarrow couplings of *h* boson SM-like

Yukawa sector: THDM type II

$$\begin{split} g_{Hbb}/g_{hbb} &\sim \tan\beta, \ g_{H\tau\tau}/g_{h\tau\tau} \sim \tan\beta, \ g_{Htt}/g_{htt} \sim 1/\tan\beta\\ g_{Abb}/g_{hbb} &\sim \tan\beta, \ g_{A\tau\tau}/g_{h\tau\tau} \sim \tan\beta, \ g_{Att}/g_{htt} \sim 1/\tan\beta \end{split}$$

	Higgs mass		
000000	•••••	00000000	

Introduction

Higgs mass calculation

Higgs benchmark scenarios

HL-LHC and ILC projections

Conclusions

Higgs mass calculation I

Special feature of MSSM

Mass of lightest CP-even Higgs, M_h , is calculable in terms of model parameters \Rightarrow can be used as a precision observable

- ▶ at tree-level $M_h^2 \simeq M_Z^2 \cos^2(2\beta) \le M_Z^2$,
- *M_h* is however heavily affected by loop corrections,
- directly sensitive to the SUSY scale.

To fully profit from experimental precision, higher order calculations are crucial!

- Many tools on the market: FeynHiggs, FlexibleSUSY, SARAH/SPheno, SOFTSUSY, ...
- In this talk, I will focus on FeynHiggs [HB,Hahn,Heinemeyer,Hollik,Paßehr,Rzehak,Sobolev,Weiglein].

Higgs mass calculation II

Three approaches are used:

- Fixed-order (FO) approach:
 - + Precise for low SUSY scales,
 - but for high scales $\ln(M_{\tilde{t}}^2/M_t^2)$ terms spoil convergence of perturbative expansion.
- effective field theory (EFT) approach:
 - + Precise for high SUSY scales (logs resummed),
 - but for low scales $\mathcal{O}(M_t/M_{SUSY})$ terms are missed if higher-dimensional operators are not included.

hybrid approach:

++ Precise for low and high SUSY scales.

Higgs mass calculation II

Three approaches are used:

- ► Fixed-order (FO) approach:
 - + Precise for low SUSY scales,
 - but for high scales $\ln(M_t^2/M_t^2)$ terms spoil convergence of perturbative expansion.
- effective field theory (EFT) approach:
 - + Precise for high SUSY scales (logs resummed),
 - but for low scales $\mathcal{O}(M_t/M_{SUSY})$ terms are missed if higher-dimensional operators are not included.

hybrid approach:

++ Precise for low and high SUSY scales.

EFT calculation (simplest framework)

- Integrate out all SUSY particles \rightarrow SM as EFT,
- Higgs self-coupling fixed at matching scale

$$\lambda(M_{\rm SUSY}) = \frac{1}{4}(g^2 + g_y^2) + \frac{6y_t^4}{(4\pi)^2} \left[\left(\frac{X_t}{M_{\rm SUSY}} \right)^2 - \frac{1}{12} \left(\frac{X_t}{M_{\rm SUSY}} \right)^4 \right] + \dots,$$

- run Higgs self-coupling down to electroweak scale,
- calculate Higgs mass: $M_h^2 = \lambda(M_t)v^2 + \dots$,
- recent progress:
 - NNLL resummation beyond the gaugeless limit [1908.01670, Bagnaschi, Degrassi, Slavich, Paßehr],
 - partial N³LL resummation [1910.03595, Harlander, Klappert, Voigt],
 - X_t resummation [2003.04639,Kwasnitza,Stöckinger,Voigt].

Comparison of approaches [HB,Heinemeyer,Hollik,Weiglein,1912.04199]

Single-scale scenario with all non-SM particles at M_{SUSY}

"Rule of thumb"

Remaining theoretical uncertainties (for $\overline{\text{DR}}$ stop input parameter): $X_t/M_{\text{SUSY}} = 0 \rightarrow \Delta M_h \sim 0.5 \text{ GeV},$ $X_t/M_{\text{SUSY}} = \sqrt{6} \rightarrow \Delta M_h \sim 1 \text{ GeV}$

Slightly higher for OS stop input parameters.

What happens in non-degenerate scenarios?

Large hierarchy between SUSY particles \rightarrow EFT tower needed.

EFTs implemented in FeynHiggs:

- SM (resums $\ln(M_{\tilde{t}}/M_t))$,
- SM+EWinos (resums $\ln(M_{\tilde{t}}/M_{\tilde{\chi}}))$,
- SM+Gluino (resums $\ln(M_{\tilde{t}}/M_{\tilde{g}})$ if $M_{\tilde{g}} < M_{\tilde{t}}$),

- SM+EWinos+Gluino,
- THDM (resums $\ln(M_{\tilde{t}}/M_A)$),
- THDM+EWinos,
- ► THDM+EWinos+Gluino.

Higgs mass 000000●000	Higgs benchmark scenarios	

THDM as EFT

- For low M_A , the EFT of the MSSM is not the THDM type-II, \rightarrow both Higgs doublets couple to e.g. top quarks,
- \blacktriangleright loop corrections induce non-zero (potentially complex) values for $\lambda_{5,6,7}$
- \Rightarrow Large number of EFT parameters complicating the calculation.

Recent progress:

- complex THDM as EFT [HB,Murphy,Rzehak,1909.00726,2010.04711],
- ► calculation of $\mathcal{O}(\alpha_t^2)$ threshold corrections [HB,Sobolev, 2010.01989].

Higgs mass		
0000000000		

Complex THDM as EFT

Including phase dependence fully in

- 2L RGEs,
- one-loop threshold corrections,
- $\mathcal{O}(\alpha_t \alpha_s) \lambda_i$ -threshold corrections.

Intermezzo: $\mathcal{CP}\text{-odd}$ component of

the SM-like Higgs boson

Sizeable CP-odd component requires

- Large mixing with CP-odd A boson
 - imaginary parts of couplings have to be large

$$(\phi_{A_t} = 2\pi/3, \phi_{M_3} = \pi/4)$$

- $\tan \beta$ and $M_{H^{\pm}}$ must be small
- ▶ large SUSY scale required to ensure M_h ~ 125 GeV
 → CP-mixing decouples

Potential discovery of $\mathcal{CP}\text{-}\mathsf{odd}$ component at the LHC would probably exclude the MSSM.

$\mathcal{O}(\alpha_t^2)$ threshold corrections to λ_i

- compared different calculation methods,
- easiest methods: calculate 2L four-point functions in the unbroken phase,
- calculation fully includes CP-violating phases.

		Higgs benchmark scenarios		
000000	000000000	●00000000	00000	00

Introduction

Higgs mass calculation

Higgs benchmark scenarios

HL-LHC and ILC projections

Conclusions

Higgs benchmark scenarios – why do we need them?

- MSSM has large number of free parameters,
- interpretation of Higgs properties and searches for additional Higgs bosons would require large parameter scans.

\Downarrow

Focus on benchmark scenarios with only two free parameters:

- ▶ Typically presented in M_A -tan β plane (or $M_{H^{\pm}}$ -tan β),
- \blacktriangleright fix stop mass scale and other parameters such that SM-like Higgs with mass of \sim 125 GeV exists,
- each scenario has a different phenomenology,
- provide interpretation frameworks for experiments.

 $[{\sf Bagnaschi}, {\sf HB}, {\sf Fuchs}, {\sf Hahn}, {\sf Heinemeyer}, {\sf Liebler}, {\sf Patel}, {\sf Slavich}, {\sf Stefaniak}, {\sf Wagner}, {\sf Weiglein}, 1808.07542]$

Defined using:

- ▶ FeynHiggs → Higgs masses and branching ratios,
- ▶ SusHi \rightarrow Higgs production cross-sections,
- ▶ HiggsBounds \rightarrow direct searches for extra Higgs bosons,
- ▶ HiggsSignals \rightarrow SM-like Higgs signal strengths.

Benchmark scenarios:

- ▶ M_h^{125} scenario → all SUSY particles at the TeV scale,
- $M_h^{125}(ilde{ au})$ scenario ightarrow light Stau, Bino and Winos,
- $M_h^{125}(\tilde{\chi})$ scenario \rightarrow light Bino, Winos and Higgsinos,
- $M_h^{125}(\text{alignment})$ scenario \rightarrow alignment without decoupling,
- ▶ M_{H}^{125} scenario → heavy CP-even Higgs is SM-like,
- ▶ $M_{h_1}^{125}(\text{CPV})$ scenario $\rightarrow C\mathcal{P}$ -violation in the Higgs sector.

Six scenarios with sfermion mass scale $M_{ m SUSY} \sim 1.5~ m TeV$

 $[{\sf Bagnaschi}, {\sf HB}, {\sf Fuchs}, {\sf Hahn}, {\sf Heinemeyer}, {\sf Liebler}, {\sf Patel}, {\sf Slavich}, {\sf Stefaniak}, {\sf Wagner}, {\sf Weiglein}, 1808.07542]$

Defined using:

- ▶ FeynHiggs → Higgs masses and branching ratios,
- ▶ SusHi \rightarrow Higgs production cross-sections,
- ▶ HiggsBounds \rightarrow direct searches for extra Higgs bosons,
- ▶ HiggsSignals \rightarrow SM-like Higgs signal strengths.

Benchmark scenarios:

- ▶ M_h^{125} scenario → all SUSY particles at the TeV scale,
- $M_h^{125}(ilde{ au})$ scenario \rightarrow light Stau, Bino and Winos,
- $M_h^{125}(\tilde{\chi})$ scenario \rightarrow light Bino, Winos and Higgsinos,
- $M_h^{125}(\text{alignment})$ scenario \rightarrow alignment without decoupling,
- ▶ M_{H}^{125} scenario → heavy CP-even Higgs is SM-like,
- ▶ $M_{h_1}^{125}(\text{CPV})$ scenario $\rightarrow C\mathcal{P}$ -violation in the Higgs sector.

 M_h^{125} and $M_h^{125}(\tilde{\chi})$ scenarios

$$M_{Q_3} = M_{U_3} = M_{D_3} = 1.5 \text{ TeV}, \quad M_{L_3} = M_{E_3} = 2 \text{ TeV}$$

 $M_3 = 2.5 \text{ TeV}, \quad X_t = 2.8 \text{ TeV}, \quad A_b = A_\tau = A_t.$

 $\mu = M_1 = M_2 = 1$ TeV

 $\mu = M_2 = 180 \text{ GeV}, M_1 = 160 \text{ GeV}$

Blue: excluded by direct searches for heavy Higgs bosons,

hashed: excluded by SM-like Higgs signal strengths / mass.

M_h^{125} and $M_h^{125}(\tilde{\chi})$ scenarios – experimental results

[ATLAS-CONF-2020-053]

Benchmark scenarios for the low $\tan \beta$ region

[HB,Liebler,Stefaniak,1901.05933]

In scenarios with $M_{\rm SUSY} \sim 1.5$ TeV, region of tan $\beta \lesssim 8$ excluded, since mass $M_h < 125 \pm 3$ GeV: $M_{h, {\rm tree}} \xrightarrow{t_{\beta} \to 1} 0 \Rightarrow$ need to raise $M_{\rm SUSY}$ to push M_h upwards.

Concept

Take existing scenarios and raise $M_{\rm SUSY}$ at every point such that $M_h \sim 125~{\rm GeV}$ (upper limit: $M_{\rm SUSY} \leq 10^{16}~{\rm GeV}$).

- \rightarrow large hierachy between $\mathit{M_{A}}$ and $\mathit{M_{SUSY}}$
- \rightarrow using THDM as EFT crucial.

Two low-tan β benchmark scenarios:

- $M_{h,\text{EFT}}^{125}$ scenario resembling M_h^{125} scenario,
- $M_{h,\text{EFT}}^{125}(\tilde{\chi})$ scenario resembling $M_h^{125}(\tilde{\chi})$ scenario.

Higgs mass 0000000000	Higgs benchmark scenarios 000000●00	

$M_{h,\text{EFT}}^{125}$ scenario

Similar to hMSSM scenario [1307.5205,1307.5205,...,Djouadi et al.]

- Gray: $M_h < 122$ GeV,
- blue: Excluded by direct searches for heavy Higgs bosons,
- hashed: Excluded by Higgs signal strengths.

Higgs mass	Higgs benchmark scenarios	
	000000000	

$M_{h,\text{EFT}}^{125}(\tilde{\chi})$ scenario

▶ Gray: *M_h* < 122 GeV,</p>

- blue: Excluded by direct searches for heavy Higgs bosons,
- hashed: Excluded by Higgs signal strengths.

2000

EWino production via heavy Higgs can exceed direct production,

• Interesting $H, A \rightarrow \tilde{\chi}_i \tilde{\chi}_i \rightarrow E_{T, \text{miss}} + W^{\pm}, Z, h \text{ signatures},$

H, A

 $\tilde{\chi}_2^{\pm,0}$

 $\tilde{\chi}_2^{\pm,0}$

1500

0.80

1000

 M_4 [GeV]

no experimental searches yet,

[Gori et al.,1811.11918;Wagner et al,2006.07389;...]

8

3 2

1

500

 $\tan \beta$

 $\tilde{\chi}_1^0$

 $\tilde{\chi}_1^0$

 W^{\pm}, Z

			HL-LHC and ILC projections	
000000	000000000	00000000	●0000	00

Introduction

Higgs mass calculation

Higgs benchmark scenarios

HL-LHC and ILC projections

Conclusions

HL-LHC projections – M_h^{125} and $M_{h,EFT}^{125}$ scenarios

[HB,Bechtle,Heinemeyer,Liebler,Stefaniak,Weiglein,2005.14536]

Assumption: discovered Higgs has SM-like couplings.

Higgs mass 000000000	Higgs benchmark scenarios 000000000	HL-LHC and ILC projections	

ILC projections – M_h^{125} scenario

Assumption: discovered Higgs has SM-like couplings.

 Intro
 Higgs mass
 Higgs benchmark scenarios
 HL-LHC and ILC projections
 Conclusions

 0000000
 000000000
 00000000
 000
 000
 00

HL-LHC projections – $M_{h,\text{EFT}}^{125}(\chi)$ scenario

Assumption: discovered Higgs has SM-like couplings.

	HL-LHC and ILC projections	
	00000	

What if $M_{h,\text{EFT}}^{125}(\tilde{\chi})$ scenario is realized?

Assumption: discovered Higgs has couplings as predicted for M_A = 1 TeV and tan β = 3.

				Conclusions
000000	000000000	00000000	00000	•0

Introduction

Higgs mass calculation

Higgs benchmark scenarios

HL-LHC and ILC projections

Conclusions

Conclusions

Higgs mass calculation:

- Unique observable directly sensitive to SUSY scale,
- \blacktriangleright theoretical uncertainty of $\lesssim 1$ GeV.

Higgs benchmark scenarios:

- Help to interpret LHC results,
- Higgs couplings \rightarrow lower bound on M_A ($M_A \gtrsim 600$ GeV),
- Higgs searches \rightarrow strong constraints for large tan β ,
- low $\tan \beta$ region challenging to probe at the LHC.

HL-LHC and ILC constraints:

- tightening constraints, $M_A \gtrsim 900$ GeV,
- ILC especially beneficial to pinpoint specific model in case of deviation.

Conclusions

Higgs mass calculation:

- Unique observable directly sensitive to SUSY scale,
- \blacktriangleright theoretical uncertainty of $\lesssim 1$ GeV.

Higgs benchmark scenarios:

- Help to interpret LHC results,
- Higgs couplings \rightarrow lower bound on M_A ($M_A \gtrsim 600$ GeV),
- Higgs searches \rightarrow strong constraints for large tan β ,
- low $\tan \beta$ region challenging to probe at the LHC.

HL-LHC and ILC constraints:

- tightening constraints, $M_A \gtrsim 900$ GeV,
- ILC especially beneficial to pinpoint specific model in case of deviation.

Thanks for your attention!

Fixed-order techniques

• Stop mass scale
$$M_{\tilde{t}} = \sqrt{M_{\tilde{t}_1} M_{\tilde{t}_2}}$$
,

► status:
$$\mathcal{O}(\text{full 1L}, \alpha_s(\alpha_b + \alpha_t), (\alpha_b + \alpha_t)^2, \alpha_s^2 \alpha_t).$$

 $[1708.05720, 1802.09886, 1901.03651, 1910.02094, \ldots]$

Advantages and disadvantages:

- + Precise for low SUSY scales,
- but for high scales $\ln(M_{\tilde{t}}^2/M_t^2)$ terms spoil convergence of perturbative expansion.

How to deal with intermediary SUSY scales?

For sparticles in the LHC range, both logs and suppressed terms might be relevant. We could try to improve

- \blacktriangleright fixed-order calculation \rightarrow need to calculate more three- and two-loop corrections,
- \blacktriangleright EFT calculation \rightarrow need to include higher-dimensional operators into calculation.

or ...

Hybrid approach

Combine both approaches to get precise results for both regimes

Such an approach is implemented e.g. in FeynHiggs [HB,Hahn,Heinemeyer,Hollik,PaBehr,Rzehak,Weiglein;1312.4937,1608.01880,1706.0034,1812.06452] other approaches: 1609.00371,1703.03267,1710.03760,1910.03595; other codes: FlexibleEFTHiggs, SARAH/SPheno

Procedure in FeynHiggs

- 1. Calculation of diagrammatic fixed-order self-energies $\hat{\Sigma}_{hh}$
- 2. Calculation of EFT prediction $\lambda(M_t)v^2$
- 3. Add non-logarithmic terms contained in fixed-order result and the logarithms contained in EFT result

$$\hat{\Sigma}_{hh}(m_h^2) \longrightarrow [\hat{\Sigma}_{hh}(m_h^2)]_{nolog} - [v^2 \lambda(M_t)]_{log}$$

In practice, this is achieved by using subtraction terms. Additional complication: FH by default uses OS scheme, for EFT calculation however $\overline{\text{DR}}$ parameters needed (i.e. $X_t^{\overline{\text{DR}}}$) \rightarrow 1L log only conversion of X_t sufficient

Comparison of approaches [HB, Heinemeyer, Hollik, Weiglein, 1912.04199]

Single-scale scenario with all non-SM particles at M_{SUSY}

"Rule of thumb"

Remaining theoretical uncertainties (for $\overline{\text{DR}}$ stop input parameter): $X_t/M_{\text{SUSY}} = 0 \rightarrow \Delta M_h \sim 0.5 \text{ GeV},$ $X_t/M_{\text{SUSY}} = \sqrt{6} \rightarrow \Delta M_h \sim 1 \text{ GeV}$

Slightly higher for OS stop input parameters.

Remaining uncertainties – individual sources

Uncertainty estimate dominated by:

- Uncertainty from higher order threshold corrections:
 - vary matching scale between SM and MSSM,
 - reexpress treshold correction in terms of h^{MSSM}_t instead of ySM_t.
- Uncertainty of SM input couplings:
 - $y_t(M_t)$ extracted at the 2- or 3-loop level out of OS top mass.

One exception: $M_{\tilde{g}} \gg M_{\tilde{t}}$

Increasingly relevant due to tightening LHC gluino limits.

Large uncertainty due to M_3 power-enhanced terms appearing at the two-loop level in $\overline{\text{DR}}$ EFT calculation (do not appear in OS scheme).

Needed EFT: MSSM without gluino

Expressions for unknown so far ...

Solution: Absorb power-enhanced terms into renormalization scheme [HB,Sobolev,Weiglein,1912.10002]

Use $\overline{\mathsf{MDR}}$ instead of $\overline{\mathsf{DR}}$ in EFT,

$$\begin{pmatrix} m_{\tilde{t}L,R}^{\overline{\text{MDR}}} \end{pmatrix}^2 = \begin{pmatrix} m_{\tilde{t}L,R}^{\overline{\text{DR}}} \end{pmatrix}^2 \begin{bmatrix} 1 + \frac{\alpha_s}{\pi} C_F \frac{|M_3|^2}{m_{\tilde{t}L,R}^2} \begin{pmatrix} 1 + \ln \frac{Q^2}{|M_3|^2} \end{pmatrix} \\ x_t^{\overline{\text{MDR}}}(Q) = x_t^{\overline{\text{DR}}}(Q) - \frac{\alpha_s}{\pi} C_F M_3 \left(1 + \ln \frac{Q^2}{|M_3|^2} \right),$$

resums all $\mathcal{O}(\alpha_s^n M_3^{2n}, \alpha_s^n M_3^n)$ terms.

↓ Drastically reduced uncertainty.

$M_h^{125}(ilde{ au})$ and $M_h^{125}({ m CPV})$ scenarios

M_h^{125} (alignment) and M_H^{125} scenarios

