Indirect CP probes of the Higgs-top-quark interaction: current LHC constraints and future opportunities

Henning Bahl

in collaboration with P. Bechtle, S. Heinemeyer, J. Katzy, T. Klingl, K. Peters,

M. Saimpert, T. Stefaniak, G. Weiglein

DESY, Hamburg

Chicago Higgs \mathcal{CP} meeting

22.2.2021, online

Intro		Measuring tH @ HL-LHC	
000	000000000	000	0

Introduction

Global fit

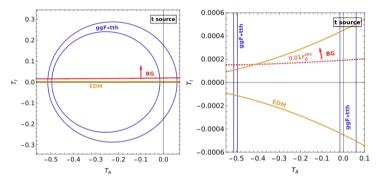
Future sensitivity to tH production

Conclusions

Constraining the \mathcal{CP} nature of the Higgs boson

Three different types of measurements: Measurements of

- ▶ pure *CP*-odd observables with low model dependence:
 - e.g. decay angle in $H \rightarrow au au$ [CMS-PAS-HIG-20-006].
- ▶ pure *CP*-odd observables with larger model dependence:
 - e.g. jet angular correlations in VBF with $H \rightarrow \tau \tau$,
 - assumes e.g. that HVV coupling is SM-like.
- mixed CP-odd and CP-even observables:
 - e.g. \mathcal{CP} violation in the top-Yukawa coupling [2003.10866,2004.04545],
 - deviations from SM need not be due to \mathcal{CP} violation
 - \rightarrow potentially high model dependence,
 - many precision measurements are indirectly sensitive,
 - would expect lower model dependence for more inclusive measurements.


Target of the present study

 $\mathcal{CP}\text{-violation}$ in the Higgs–top-quark interaction.

Intro		Measuring <i>tH</i> @ HL-LHC	
000	000000000	000	0

\mathcal{CP} violation in the top-Yukawa coupling — complementary constraints

[Fuchs,Losada,Nir,Viernik,2003.00099]

- \triangleright T_R and T_I are the real and imaginary deviations from the SM top-Yukawa coupling,
- EDM + baryogenesis strongly constraint parameter space,
- \blacktriangleright but, there could be cancellations in the EDMs and additional sources of \mathcal{CP} violation.
- \rightarrow Collider constraints are an important complementary probe.

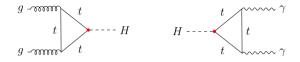
Intro			
000	000000000	000	

Effective model

• Top-Yukawa Lagrangian (generated by $1/\Lambda^2(\Phi^{\dagger}\Phi)Q_L\tilde{\Phi}t_R$ operator),

$$\mathcal{L}_{\mathsf{yuk}} = -y_t^{\mathsf{SM}} \overline{t} \left(\mathbf{c}_t + i \gamma_5 \widetilde{\mathbf{c}}_t \right) t H.$$

- modified top-Yukawa coupling affects:
 - top-associated Higgs production (ttH, tH, tWH) [tH≏tHjb excluding tWH]
 - Z-associated Higgs production,
 - gluon fusion,
 - $H \rightarrow \gamma \gamma$,
- additional free parameters
 - $c_V \rightarrow$ rescaling HVV couplings
 - $(tH \text{ and } tWH \text{ production depend on } c_V),$
 - $\kappa_g
 ightarrow$ rescaling gg
 ightarrow H ("removing" gluon fusion constraints),
 - $\kappa_{\gamma} \rightarrow$ rescaling $H \rightarrow \gamma \gamma$ ("removing" $H \rightarrow \gamma \gamma$ constraints),
- ▶ did not include *CP*-odd *HVV* operators,
- SM: $c_t = 1$, $\tilde{c}_t = 0$, $c_V = \kappa_g = \kappa_\gamma = 1$.
- \rightarrow Assessed constraints on this model by performing a global fit.


Global fit	Measuring <i>tH</i> @ HL-LHC	
000000000		

Fit setup

- **Experimental input:**
 - all relevant Higgs measurements (pre ICHEP 2020):
 - Higgs signal-strength measurements,
 - ZH STXS measurements (p_T shape),
 - did not include 2003.10866 by CMS, and 2004.04545 by ATLAS (more later),
 - if available, included all uncertainty correlations,
- theory input: derived fit formulas for all observables using MadGraph,
- considered four models:
 - 1. (c_t, \tilde{c}_t) free,
 - 2. (c_t, \tilde{c}_t, c_V) free,
 - 3. $(c_t, \tilde{c}_t, c_V, \kappa_\gamma)$ free,
 - 4. $(c_t, \tilde{c}_t, c_V, \kappa_\gamma, \kappa_g)$ free,
- random scan with $\mathcal{O}(10^7 10^8)$ points,
- ▶ χ^2 fit performed using HiggsSignals.

	Global fit		
000	000000000	000	0

Relevant processes: $gg \rightarrow H \& H \rightarrow \gamma \gamma$

- top-Yukawa influences
 - $gg \rightarrow H$ signal strength

$$\kappa_g^2 \equiv \frac{\sigma_{gg \to H}}{\sigma_{gg \to H}^{\rm SM}} \bigg|_{M_t \to \infty} = c_t^2 + \frac{9}{4} \tilde{c}_t^2 + \dots,$$

calculate κ_g either in terms of c_t and \tilde{c}_t or treat it as free parameter (\rightarrow undiscovered colored BSM particles),

kinematic shapes could be sensitive,

 $(\Delta \phi_{jj} ext{ in } gg
ightarrow H+2j, ext{ see [Atlas-conf-2020-055]})$

• similarly $H \rightarrow \gamma \gamma$.

	Global fit		
000	000000000	000	0

Relevant processes: ZH production

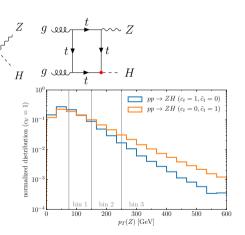
Total rate:

 $\sim Z$ g use $_{\rm T}$ g -0000 >~~~~~ - H g uu H $\mu_{gg \to ZH}$ 2.010.51.59.0 \blacktriangleright Experimental measurement: $pp \rightarrow ZH$, 1.0 7.5 $\blacktriangleright \sigma_{a\bar{a}\to ZH}^{\rm SM} \approx 6\sigma_{gg\to ZH}^{\rm SM},$ 0.56.0 but $\sigma_{gg \rightarrow ZH}$ can be significantly enhanced. 5 0.04.5-0.53.0 -1.01.5-1.5 -2.0_{-2}^{-2} 0.0 -10 1 2

 C_{t}

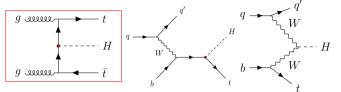
	Global fit		
000	000000000	000	0

g -

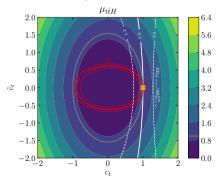

Relevant processes: ZH production

Total rate:

▶ Experimental measurement: $pp \rightarrow ZH$,

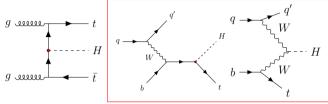

 \bar{q}

- $\blacktriangleright \ \sigma^{\rm SM}_{q\bar{q}\rightarrow ZH}\approx 6\sigma^{\rm SM}_{gg\rightarrow ZH},$
- ► but $\sigma_{gg \rightarrow ZH}$ can be significantly enhanced. Kinematic shapes:
 - ▶ $Z p_T$ -shape sensitive to Higgs CP-properties,
 - use STXS bins as additional input.



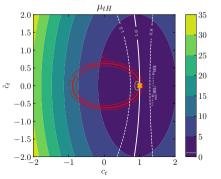
	Global fit 000●0000000	Measuring <i>tH</i> @ HL-LHC 000	
		1	

Relevant processes: *ttH* and *tH* production

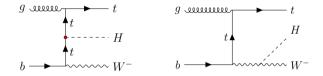


- $\blacktriangleright \ \sigma_{t\bar{t}H}^{\rm SM} \approx 7\sigma_{tH}^{\rm SM},$
- but \mathcal{CP} -odd top-Yukawa coupling can enhance σ_{tH} .

	Global fit	Measuring tH @ HL-LHC	
000	000000000		

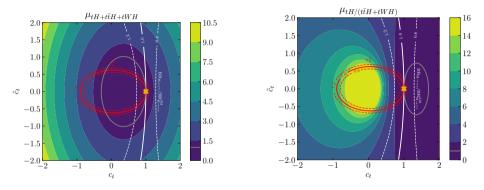

Relevant processes: *ttH* and *tH* production

- $\blacktriangleright \ \sigma^{\rm SM}_{t\bar{t}H}\approx 7\sigma^{\rm SM}_{tH},$
- but \mathcal{CP} -odd top-Yukawa coupling can enhance σ_{tH} .


Kinematic shape:

- ► Higgs p_T shape measured in STXS framework, [ATLAS-CONF-2020-026]
- applicability questionable.

	Global fit	Measuring tH @ HL-LHC	
000	000000000	000	0


Relevant processes: tWH production

- ▶ interferes with $t\bar{t}H$ production,
- $\blacktriangleright \ \sigma_{t\bar{t}H}^{\rm SM} \approx 34 \sigma_{tWH}^{\rm SM},$
- ▶ but non-negligible contribution in CP-odd case: $\sigma_{t\bar{t}H}^{CP-\text{odd}} \approx 3.5 \sigma_{tWH}^{CP-\text{odd}}$,
- \rightarrow fully taken into account in numerical analysis.

	Global fit		
000	000000000	000	0

Relevant processes: combined top-associated Higgs production

▶ $t\bar{t}H$ and tH difficult to disentangle \rightarrow normally combination of both measured, ▶ $\mu_{tH+t\bar{t}H+tWH} = \frac{\sigma(pp \rightarrow t\bar{t}H+tH+tWH)}{\sigma_{SM}(pp \rightarrow t\bar{t}H+tH+tWH)}, \ \mu_{tH/(t\bar{t}H+tWH)} = \frac{\sigma(pp \rightarrow tH)/\sigma(pp \rightarrow t\bar{t}H+tWH)}{\sigma_{SM}(pp \rightarrow t\bar{t}H+tWH)},$ ▶ plots for $c_V = 1$,

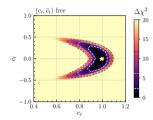
large variation of $\mu_{tH/(t\bar{t}H+tWH)}$ indicates that disentangling tH and $t\bar{t}H + tWH$ production could be promising.

Reasons for not including ATLAS and CMS \mathcal{CP} studies

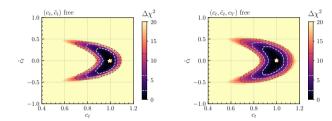
CMS study:

[2003.10866, "Measurements of $t\bar{t}H$ Production and the CP Structure of the Yukawa Interaction ..."]

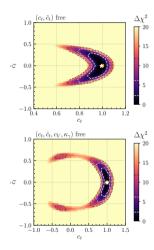
- all Higgs production modes (apart from top-associated Higgs production) are constrained to their SM predictions $\rightarrow c_V = \kappa_g = \kappa_\gamma = 1$.
- no two-dimensional likelihood given (now available in [CMS-PAS-HIG-19-009]).

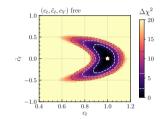

ATLAS study:

```
[2004.04545, "CP Properties of Higgs Boson Interactions with Top Quarks ..."]
```

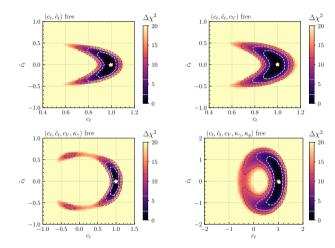

- two setups:
 - 1. κ_g constrained by other measurements (ggH) excluding $t\bar{t}H$ and tH,
 - but events generated at NLO
 - \rightarrow top-associated Higgs production and gluon fusion cannot be regarded as independent,
 - 2. κ_g and κ_γ calculated as function of c_t and \tilde{c}_t .

•
$$c_V = 1$$
.

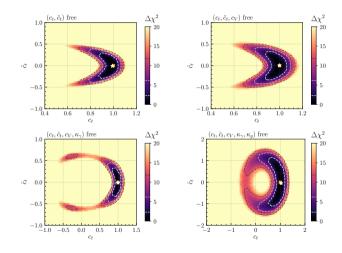

	Global fit	Measuring tH @ HL-LHC	
000	0000000000	000	0



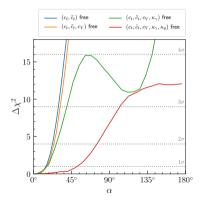
	Global fit	Measuring tH @ HL-LHC	
000	0000000000	000	0



	Global fit	Measuring tH @ HL-LHC	
000	0000000000	000	0



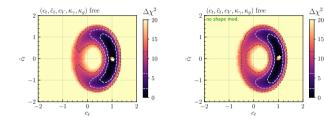
	Global fit	Measuring tH @ HL-LHC	
000	0000000000	000	0


	Global fit		
000	0000000000	000	0

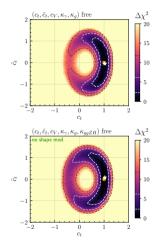
 \rightarrow still significant $\mathcal{CP}\text{-}\mathsf{odd}$ coupling allowed in 5D model.

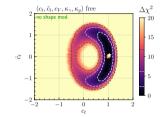
	Global fit	Measuring tH @ HL-LHC	
000	0000000000	000	0

Interpretation in terms of mixing angle

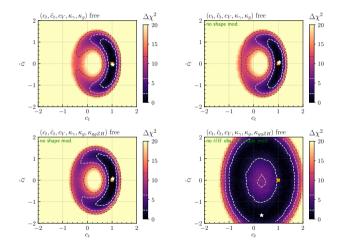


• tan
$$\alpha = rac{\tilde{c}_t}{c_t}$$
.

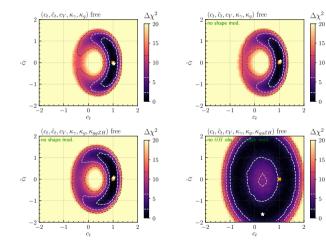

Assess influence of specific observables by successively excluding


- ZH STXS measurements ("no shape mod."),
- > ZH total rate measurements (" κ_{ggZH} free"),
- tt
 t H observables.

	Global fit	Measuring tH @ HL-LHC	
000	0000000000	000	0

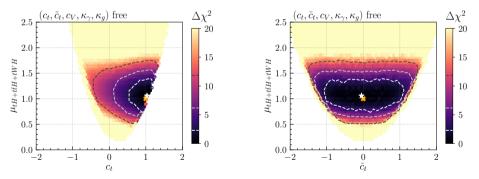


	Global fit	Measuring tH @ HL-LHC	
000	0000000000	000	0



	Global fit	Measuring tH @ HL-LHC	
000	0000000000	000	0

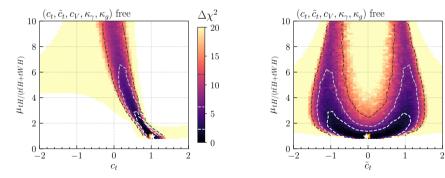
	Global fit	Measuring <i>tH</i> @ HL-LHC	
000	0000000000	000	0


- top-associated Higgs production most important,
- but also ZH production has a non-negligible impact.

How to tighten the constraints?

- \blacktriangleright Most general model still leaves room for sizeable $\mathcal{CP}\text{-}\mathsf{odd}$ coupling,
- ▶ how can we constrain the CP properties of the Higgs top-Yukawa coupling further using inclusive measurements?
- \rightarrow Most promising candidate: improved *tH*, $t\bar{t}H$ measurements.

How to tighten the constraints?


- ▶ Most general model still leaves room for sizeable CP-odd coupling,
- ▶ how can we constrain the CP properties of the Higgs top-Yukawa coupling further using inclusive measurements?
- ightarrow Most promising candidate: improved *tH*, *t* $\overline{t}H$ measurements.

 \rightarrow Measuring $tH + t\bar{t}H + tWH$ has low discrimination power regarding \tilde{c}_t .

How to tighten the constraints?

- ▶ Most general model still leaves room for sizeable CP-odd coupling,
- how can we constrain the CP properties of the Higgs top-Yukawa coupling further using inclusive measurements?
- \rightarrow Most promising candidate: improved *tH*, $t\bar{t}H$ measurements.

 $\label{eq:holestop} \rightarrow \mbox{ Need to disentangle } tH \mbox{ and } t\bar{t}H + tWH! \\ \mbox{ However, still no sensitivity to sign of } \tilde{c}_{t}...$

 $\Delta \chi^2$

20

15

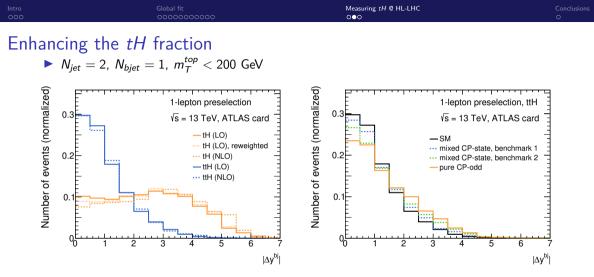
10

Measuring *tH* production with $H \rightarrow \gamma \gamma$

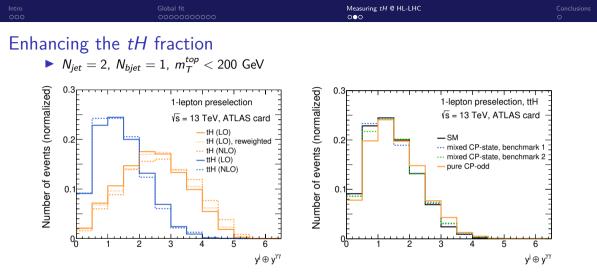
Goal

Measure tH cross section in a model-independent way (i.e. without assumption on Higgs CP character).

▶ Present study: focus on $H \rightarrow \gamma \gamma$ but other decay channels could also be included.


Strategy: Split events into

▶ 1-lepton category: ttH, tH, tWH contribute → optimize for high tH fraction,

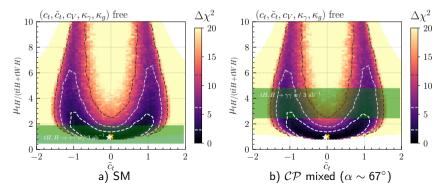

> 2-lepton category: $t\bar{t}H$, tWH contribute

 \rightarrow independent measurement of $t\bar{t}H + tWH$ production.

Event simulation using MadGraph + Pythia + Delphes (LO + N_{jet} -reweighting).

▶ jet-rapidity difference |∆y^{bj}| > 2
 → variation of tt
 t H selection efficiency by ~ 40% in 1-lepton category for different CP hypotheses. X

▶ new observable $y^j \oplus y^{\gamma\gamma} = \sqrt{(y^j)^2 + (y^{\gamma\gamma})^2} > 2$ → variation of $t\bar{t}H$ selection efficiency by $\leq 2\%$ in 1-lepton category for different CP hypotheses. \checkmark


	Measuring tH @ HL-LHC	
	000	

HL-LHC projection

Expected upper limit

With 3 ab $^{-1}$, $\mu_{tH} < 2.21$ at 95% CL assuming SM data.

- 5x stronger than current strongest limit, [2004.04545]
- also stronger than most optimistic projected HL-LHC limit. [1902.00134,10.23731/CYRM-2019-007]

			Conclusions
000	000000000	000	•

Conclusions

Initial question

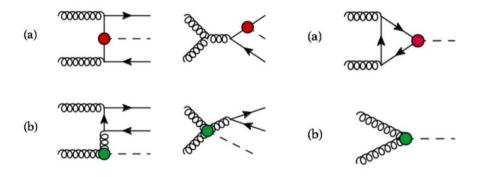
How well can one constrain a \mathcal{CP} -odd component of the top-Yukawa coupling using current measurements?

- \rightarrow Global fit to all relevant LHC data:
 - used effective Lagrangian with generalized top-Yukawa interaction,
 - included total and differential cross-section measurements,
 - fit results:
 - strong constraints from $gg \rightarrow H$ and $H \rightarrow \gamma \gamma$,
 - sizable \mathcal{CP} -odd coupling allowed if κ_g and κ_γ are varied independently,
 - future disentanglement of ttH and tH could further constrain CP-odd coupling.

			Conclusions
000	000000000	000	•

Conclusions

Initial question


How well can one constrain a \mathcal{CP} -odd component of the top-Yukawa coupling using current measurements?

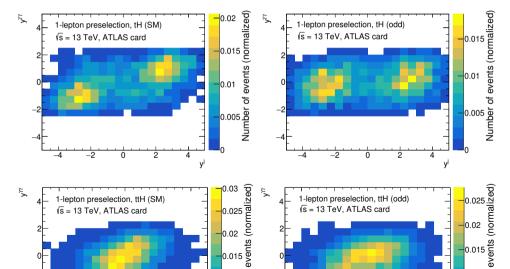
- \rightarrow Global fit to all relevant LHC data:
 - used effective Lagrangian with generalized top-Yukawa interaction,
 - included total and differential cross-section measurements,
 - fit results:
 - strong constraints from $gg \rightarrow H$ and $H \rightarrow \gamma \gamma$,
 - sizable $\mathcal{CP}\text{-}\mathsf{odd}$ coupling allowed if κ_g and κ_γ are varied independently,
 - future disentanglement of ttH and tH could further constrain CP-odd coupling.

Thanks for your attention!

Appendix 000

Correlation between ggH and $t\bar{t}H$ at NLO _{e.g. [1607.05330]}

SMEFT operators: $O_{t\varphi}$, $O_{\varphi G}$


Appendix 0●0

Cutflow

Observable / Selection	1-lepton selection	2-lepton selection
N_{γ}	≥ 2	
$m_{\gamma\gamma}$	$[105-160]~{\rm GeV}$	
$(p_{T,1}^\gamma, p_{T,2}^\gamma)$	$\geq (35, 25) { m GeV}$	
$(p_{T,1}^{\gamma}/m_{\gamma\gamma}, p_{T,2}^{\gamma}/m_{\gamma\gamma})$	$\geq (0.35, 0.25)$	
N_{bjet}	≥ 1	
p_T^{miss}	$\geq 25~{ m GeV}$	
N_{ℓ}	exactly 1	exactly 2 with opposite sign
$m_{\ell\ell}$	-	[80, 100] GeV vetoed if same flavou
N_{jet}	exactly 2	
N _{bjet}	exactly 1	-
m_T^{top}	$< 200 { m ~GeV}$	_
$y^{j} \oplus y^{\gamma\gamma}$	> 2	-

Motivation for $y^j \oplus y^{\gamma\gamma}$

 $y^j \oplus y^{\gamma\gamma} \simeq$ distance from origin in $(y^j, y^{\gamma\gamma})$ plane.

3/3