Indirect CP probes of the Higgs-top-quark interaction: current LHC constraints and future opportunities

Henning Bahl

in collaboration with P. Bechtle, S. Heinemeyer, J. Katzy, T. Klingl, K. Peters,

M. Saimpert, T. Stefaniak, G. Weiglein

DESY, Hamburg

EPS-HEP 2021

27.7.2021, online

Intro		tH @ HL-LHC	
•••	00000	000	0

Introduction

Global fit

Future sensitivity to tH production

Conclusions

Intro	tH @ HL-LHC	
•••		

Constraining the \mathcal{CP} nature of the Higgs boson — motivation

- ► New sources of CP violation are necessary to explain the baryon asymmetry of the Universe,
- one possibility: CP violation in the Higgs sector with Higgs boson being CP-admixed state,
- ► most BSM theories predict largest CP violation in Higgs-fermion-fermion couplings → focus on Higgs-top-quark coupling,
- $\blacktriangleright~\mathcal{CP}$ violation in the Higgs sector can be constrained by
 - demanding successful explanation of the baryon asymmetry,
 - electric dipole measurements,
 - collider constraints.

Intro	tH @ HL-LHC	
•••		

Constraining the \mathcal{CP} nature of the Higgs boson — motivation

- ► New sources of CP violation are necessary to explain the baryon asymmetry of the Universe,
- one possibility: CP violation in the Higgs sector with Higgs boson being CP-admixed state,
- ► most BSM theories predict largest CP violation in Higgs-fermion-fermion couplings → focus on Higgs-top-quark coupling,
- $\blacktriangleright~\mathcal{CP}$ violation in the Higgs sector can be constrained by
 - demanding successful explanation of the baryon asymmetry,
 - electric dipole measurements,
 - collider constraints.

Goal of present study

Assess LHC constraints on $\mathcal{CP}\text{-violating Higgs-top-quark}$ interaction and discuss future opportunities.

Intro	tH @ HL-LHC	
00		

Effective model

• Top-Yukawa Lagrangian (generated by $1/\Lambda^2(\Phi^{\dagger}\Phi)Q_L\tilde{\Phi}t_R$ operator),

$$\mathcal{L}_{\mathsf{yuk}} = -y_t^{\mathsf{SM}} \overline{t} \left(\mathbf{c_t} + i \gamma_5 \widetilde{\mathbf{c}_t} \right) t H.$$

- modified top-Yukawa coupling affects:
 - top-associated Higgs production ($t\bar{t}H$, tH, tWH)
 - Z-associated Higgs production,
 - gluon fusion,
 - $H
 ightarrow \gamma \gamma$,
- additional free parameters
 - $c_V \rightarrow$ rescaling HVV couplings (*tH* and *tWH* production depend on c_V),
 - $\kappa_g
 ightarrow$ rescaling gg
 ightarrow H ("removing" gluon fusion constraints),
 - $\kappa_{\gamma} \rightarrow$ rescaling $H \rightarrow \gamma \gamma$ ("removing" $H \rightarrow \gamma \gamma$ constraints),
- ▶ did not include CP-odd HVV operators,
- SM: $c_t = 1$, $\tilde{c}_t = 0$, $c_V = \kappa_g = \kappa_\gamma = 1$.
- \rightarrow Assessed constraints on this model by performing a global fit.

Global fit	tH @ HL-LHC	
●0000		

Fit setup

Experimental input:

- all relevant Higgs measurements:
 - Higgs signal-strength measurements,
 - ZH STXS measurements (p_T shape),
 - did not include dedicated experimental top-Yukawa CP analyses (difficult to reinterpret in other model),
- if available, included all uncertainty correlations,
- theory input: derived fit formulas for all observables using MadGraph,

considered four models:

- 1. (c_t, \tilde{c}_t) free $(\kappa_g, \kappa_\gamma \text{ calculated as function of } c_t \text{ and } \tilde{c}_t)$
- 2. (c_t, \tilde{c}_t, c_V) free,
- 3. $(c_t, \tilde{c}_t, c_V, \kappa_\gamma)$ free,
- 4. $(c_t, \tilde{c}_t, c_V, \kappa_\gamma, \kappa_g)$ free,
- ▶ χ^2 fit performed using HiggsSignals.

Global fit	tH @ HL-LHC	
00000		

Fit setup

Experimental input:

- all relevant Higgs measurements:
 - Higgs signal-strength measurements,
 - ZH STXS measurements (p_T shape),
 - did not include dedicated experimental top-Yukawa CP analyses (difficult to reinterpret in other model),
- if available, included all uncertainty correlations,
- theory input: derived fit formulas for all observables using MadGraph,

considered four models:

- 1. (c_t, \tilde{c}_t) free $(\kappa_g, \kappa_\gamma \text{ calculated as function of } c_t \text{ and } \tilde{c}_t)$
- 2. (c_t, \tilde{c}_t, c_V) free,
- 3. $(c_t, \tilde{c}_t, c_V, \kappa_\gamma)$ free,
- 4. $(c_t, \tilde{c}_t, c_V, \kappa_\gamma, \kappa_g)$ free,
- ▶ χ^2 fit performed using HiggsSignals.

Global fit	tH @ HL-LHC	
0000		

Theory input for top-associated Higgs production

$$\begin{split} \mu_{tH+t\bar{t}H+tWH} &= \sigma(t\bar{t}H+tH+tWH)/\sigma_{\text{SM}}(t\bar{t}H+tH+tWH),\\ c_V &= 1 \end{split}$$

- red: κ²_g,
 white: BR(H → γγ)/BR_{SM}(H → γγ),
 tt → tt → and tH difficult to disentangle.
- normally combination of both measured.

	Global fit	tH @ HL-LHC	
00	00000	000	0

Global fit	tH @ HL-LHC	
00000		

Global fit	tH @ HL-LHC	
00000		

 \rightarrow still significant $\mathcal{CP}\text{-}\mathsf{odd}$ coupling allowed in 5D model.

Global fit	tH @ HL-LHC	
00000		

How to improve constraints in the future?

- ► Include more kinematic information, see ATLAS and CMS studies [2003.10866,2004.04545] → uses all information but comparably high model dependence,
- construct CP-odd observables
 - \rightarrow easy to interpret but experimentally difficult for top-associated Higgs production,
- indirect constraints
 - \rightarrow comparably low model dep., but deviations could also be caused by other BSM physics.
- \Rightarrow Should pursue all approaches to exploit complementarity!

Global fit	tH @ HL-LHC	
00000		

How to improve constraints in the future?

- ▶ Include more kinematic information, see ATLAS and CMS studies [2003.10866,2004.04545] \rightarrow uses all information but comparably high model dependence,
- construct CP-odd observables
 - \rightarrow easy to interpret but experimentally difficult for top-associated Higgs production,
- indirect constraints
 - \rightarrow comparably low model dep., but deviations could also be caused by other BSM physics.
- \Rightarrow Should pursue all approaches to exploit complementarity!

Global fit	tH @ HL-LHC	
00000		

Future potential of inclusive measurements

▶ Most promising candidate: improved tH, $t\bar{t}H$ measurements.

 $[\mu_{tH/(t\bar{t}H+tWH)} = (\sigma(tH)/\sigma(t\bar{t}H+tWH))/(\sigma_{\rm SM}(tH)/\sigma_{\rm SM}(t\bar{t}H+tWH))]$

• Measuring $tH + t\bar{t}H + tWH$ has low discrimination power regarding \tilde{c}_t .

• Need to disentangle tH and $t\bar{t}H + tWH$!

However, still no sensitivity to sign of \tilde{c}_t ...

		tH @ HL-LHC	
00	00000	000	0

Measuring *tH* production with $H \rightarrow \gamma \gamma$

Goal

Measure tH cross section in a model-independent way (i.e. without assumption on Higgs \mathcal{CP} character).

▶ Present study: focus on $H \rightarrow \gamma \gamma$ but other decay channels could also be included.

Strategy: Split events into

▶ 1-lepton category: ttH, tH, tWH contribute → optimize for high tH fraction,

- ▶ 2-lepton category: $t\bar{t}H$, tWH contribute
 - \rightarrow independent measurement of $t\bar{t}H + tWH$ production.

Event simulation using MadGraph + Pythia + Delphes (LO + N_{jet} -reweighting).

▶ jet-rapidity difference |∆y^{bj}| > 2
 → variation of tt
 t H selection efficiency by ~ 40% in 1-lepton category for different CP hypotheses. X

Enhancing the tH fraction

▶ $N_{jet} = 2$, $N_{bjet} = 1$, $m_T^{top} < 200$ GeV

▶ new observable $y^j \oplus y^{\gamma\gamma} = \sqrt{(y^j)^2 + (y^{\gamma\gamma})^2} > 2$ → variation of $t\bar{t}H$ selection efficiency by $\leq 2\%$ in 1-lepton category for different CP hypotheses. ✓

		tH @ HL-LHC	
00	00000	000	0

HL-LHC projection

Expected upper limit

With $3ab^{-1}$, $\mu_{tH} < 2.21$ at 95% CL assuming SM data.

- 5x stronger than current strongest limit, [2004.04545]
- also stronger than most optimistic projected HL-LHC limit.

[1902.00134,10.23731/CYRM-2019-007]

		tH @ HL-LHC	Conclusions
00	00000	000	•

Conclusions

Initial question

How well can one constrain a \mathcal{CP} -odd component of the top-Yukawa coupling using current measurements?

- \rightarrow global fit to all relevant LHC data:
 - Used effective Lagrangian with generalized top-Yukawa interaction,
 - included total and differential cross-section measurements,
 - fit results:
 - strong constraints from gg
 ightarrow H and $H
 ightarrow \gamma\gamma$,
 - sizable \mathcal{CP} -odd coupling allowed if κ_g and κ_γ are varied independently,
 - ▶ future disentanglement of ttH and tH could further constrain a CP-odd coupling,
 - need to ensure that measurements do not rely on assumption on Higgs ${\cal CP}$ character.

		tH @ HL-LHC	Conclusions
00	00000	000	•

Conclusions

Initial question

How well can one constrain a \mathcal{CP} -odd component of the top-Yukawa coupling using current measurements?

- \rightarrow global fit to all relevant LHC data:
 - Used effective Lagrangian with generalized top-Yukawa interaction,
 - included total and differential cross-section measurements,
 - fit results:
 - strong constraints from gg
 ightarrow H and $H
 ightarrow \gamma\gamma$,
 - sizable \mathcal{CP} -odd coupling allowed if κ_g and κ_γ are varied independently,
 - ▶ future disentanglement of ttH and tH could further constrain a CP-odd coupling,
 - \blacktriangleright need to ensure that measurements do not rely on assumption on Higgs ${\cal CP}$ character.

Thanks for your attention!

Relevant processes: $gg \rightarrow H \& H \rightarrow \gamma \gamma$

- top-Yukawa influences
 - $gg \rightarrow H$ signal strength

$$\kappa_g^2 \equiv \left. \frac{\sigma_{gg \to H}}{\sigma_{gg \to H}^{\rm SM}} \right|_{M_t \to \infty} = c_t^2 + \frac{9}{4} \tilde{c}_t^2 + \dots,$$

calculate κ_g either in terms of c_t and \tilde{c}_t or treat it as free parameter (\rightarrow undiscovered colored BSM particles),

- kinematic shapes not sensitive yet, (future potential: $\Delta \phi_{jj}$ in $gg \rightarrow H + 2j$)
- similarly $H \rightarrow \gamma \gamma$.

Relevant processes: ZH production q

Z

Z

g - mm

 $g - \infty$

Total rate:

• Experimental measurement: $pp \rightarrow ZH$,

ā

- $\blacktriangleright \sigma_{a\bar{a}\to ZH}^{\rm SM} \approx 6\sigma_{gg\to ZH}^{\rm SM},$
- but $\sigma_{gg \rightarrow ZH}$ can be significantly enhanced.

Relevant processes: ZH production

g -....

Total rate:

▶ Experimental measurement: $pp \rightarrow ZH$,

 \bar{q}

- $\blacktriangleright \ \sigma^{\rm SM}_{q\bar{q}\to ZH} \approx 6\sigma^{\rm SM}_{gg\to ZH},$
- but $\sigma_{gg \rightarrow ZH}$ can be significantly enhanced. Kinematic shapes:
 - $Z p_T$ -shape sensitive to Higgs CP-properties,
 - use STXS bins as additional input.

Relevant processes: *ttH* and *tH* production

- $\blacktriangleright \ \sigma^{\rm SM}_{t\bar{t}H}\approx 7\sigma^{\rm SM}_{tH},$
- ▶ but CP-odd top-Yukawa coupling can enhance σ_{tH} .

Relevant processes: *ttH* and *tH* production

- $\blacktriangleright \ \sigma_{t\overline{t}H}^{\rm SM} \approx 7\sigma_{tH}^{\rm SM},$
- but \mathcal{CP} -odd top-Yukawa coupling can enhance σ_{tH} .

Kinematic shape:

- ► Higgs *p*_T shape measured in STXS framework, [ATLAS-CONF-2020-026]
- applicability questionable.

tWH production

- ▶ interferes with $t\bar{t}H$ production,
- $\blacktriangleright \ \sigma_{t\bar{t}H}^{\rm SM} \approx 34 \sigma_{tWH}^{\rm SM},$
- ▶ but non-negligible contribution in CP-odd case: $\sigma_{t\bar{t}H}^{CP-\text{odd}} \approx 3.5 \sigma_{tWH}^{CP-\text{odd}}$,
- \rightarrow fully taken into account in numerical analysis.

Reasons for not including ATLAS and CMS studies

Disclaimer

Sorry if we misunderstood anything!

CMS study:

[2003.10866, "Measurements of $t\bar{t}H$ Production and the CP Structure of the Yukawa Interaction ..."]

- all Higgs production modes (apart from top-associated Higgs production) are constrained to their SM predictions $\rightarrow c_V = \kappa_g = \kappa_\gamma = 1$.
- no two-dimensional likelihood given.
- ATLAS study:

[2004.04545, "CP Properties of Higgs Boson Interactions with Top Quarks ..."]

- two setups:
 - 1. κ_g constrained by other measurements (ggH) excluding $t\bar{t}H$ and tH, but events generated at NLO

 \rightarrow top-associated Higgs production and gluon fusion cannot be regarded as independent,

2. κ_g and κ_γ calculated as function of c_t and \tilde{c}_t .

•
$$c_V = 1$$
.

Appendix 00000000000

Correlation between ggH and $t\bar{t}H$ at NLO _{e.g. [1607.05330]}

SMEFT operators: $O_{t\varphi}$, $O_{\varphi G}$

Interpretation in terms of mixing angle

Influence of ZH observables

Assess influence of specific observables by successively excluding

- ZH STXS measurements ("no shape mod."),
- > ZH total rate measurements (" κ_{ggZH} free").

top-associated Higgs production most important,

but also ZH production has a non-negligible impact.

Appendix 00000000000

Cutflow

Observable / Selection	1-lepton selection	2-lepton selection
N_{γ}	≥ 2	
$m_{\gamma\gamma}$	$[105-160]~{\rm GeV}$	
$(p_{T,1}^{\gamma}, p_{T,2}^{\gamma})$	$\geq (35, 25) \text{ GeV}$	
$(p_{T,1}^{\gamma}/m_{\gamma\gamma}, p_{T,2}^{\gamma}/m_{\gamma\gamma})$	$\geq (0.35, 0.25)$	
N_{bjet}	≥ 1	
p_T^{miss}	$\geq 25~{ m GeV}$	
N_{ℓ}	exactly 1	exactly 2 with opposite sign
$m_{\ell\ell}$	-	[80, 100] GeV vetoed if same flavour
N_{jet}	exactly 2	
N_{bjet}	exactly 1	-
m_T^{top}	$< 200 { m ~GeV}$	
$y^{j} \oplus y^{\gamma\gamma}$	> 2	-

Motivation for $y^{j} \oplus y^{\gamma\gamma}$

 $y^{j} \oplus y^{\gamma\gamma} \simeq$ distance from origin in $(y^{j}, y^{\gamma\gamma})$ plane.

