Theoretical uncertainties in the MSSM Higgs boson mass calculation

[based on 1912.04199]

Henning Bahl

in collaboration with

S. Heinemeyer, W. Hollik, G. Weiglein

DESY, Hamburg

QU day

14.9.2021

Motivation

- \triangleright SM is not able to explain Dark Matter, hierarchy problem, ...,
- \triangleright the Minimal Supersymmetric Standard Model (MSSM) addresses (some of) these questions,
- \triangleright it does not only associate a superpartner to each SM degree of freedom, but also extends the Higgs sector by a second doublet.
- \rightarrow Use Higgs measurement/searches to constrain the MSSM.

The SM-like Higgs mass as a precision observable

Special feature of the MSSM

Mass of lightest \mathcal{CP} -even Higgs, M_h , is calculable in terms of model parameters \Rightarrow can be used as a precision observable

- **►** at tree-level $M_h^2 \simeq M_Z^2 \cos^2(2\beta) \leq M_Z^2$,
- M_h is, however, heavily affected by loop corrections,
- \blacktriangleright directly sensitive to the SUSY scale.

Experimentally measured mass: [Aad et al.,1503.07589]

$$
\rm \textit{M}_{\textit{h}}^{\textit{exp}}=125.08\pm0.21\,\text{(stat.)}\pm0.11\,\text{(sys.)}\,\text{GeV}
$$

To fully profit from experimental precision, higher order calculations are crucial!

Calculation of the SM-like Higgs mass

Three approaches are used:

- \blacktriangleright Fixed-order (FO) approach:
	- **+** Precise for low SUSY scales,
	- $-$ but for high scales $\ln(M_{\rm SUSY}^2/M_t^2)$ terms spoil convergence of perturbative expansion.
- \blacktriangleright effective field theory (EFT) approach:
	- **+** Precise for high SUSY scales (logs resummed),
	- **–** but for low scales $O(M_t/M_{SUSY})$ terms are missed if higher-dimensional operators are not included.
- \triangleright hybrid approach combining FO and EFT approaches:
	- **++** Precise for low and high SUSY scales.

Remaining theoretical uncertainty

Single-scale scenario with all non-SM particles at M_{SUSY} (SM as EFT)

"Rule of thumb"

Remaining theoretical uncertainties (for \overline{DR} stop input parameter): $X_t/M_{\text{SUSY}} = 0 \rightarrow \Delta M_h \sim 0.5 \text{ GeV},$ $X_t/M_{\mathsf{SUSY}} = \sqrt{6} \,\, \rightarrow \,\, \Delta M_h \sim \,\, 1 \,\, \mathsf{GeV}$

Slightly higher for OS stop input parameters.

Remaining uncertainties – individual sources

Uncertainty estimate dominated by:

- \blacktriangleright Uncertainty from higher order threshold corrections:
	- vary matching scale between SM and MSSM,
	- reexpress treshold correction in terms of h_t^{MSSM} instead of y_t^{SM} .
- \triangleright Uncertainty of SM input couplings:
	- $v_t(M_t)$ extracted at the 2- or 3-loop level out of OS top mass.

Conclusions

- \triangleright The SM-like Higgs mass is a unique observable in the MSSM directly sensitive to the SUSY scale,
- \triangleright to fully profit from experimental precision, the calculation of higher order corrections **and** an estimation of the remaining theoretical uncertainties is crucial,
- \triangleright combining fixed-order and EFT approaches allows for precise prediction for low and high SUSY scales,
- \triangleright remaining theoretical uncertainty: $\Delta M_h \sim 0.5 1$ GeV.

Conclusions

- \triangleright The SM-like Higgs mass is a unique observable in the MSSM directly sensitive to the SUSY scale,
- \triangleright to fully profit from experimental precision, the calculation of higher order corrections **and** an estimation of the remaining theoretical uncertainties is crucial,
- \triangleright combining fixed-order and EFT approaches allows for precise prediction for low and high SUSY scales,
- \triangleright remaining theoretical uncertainty: $\Delta M_h \sim 0.5 1$ GeV.

Thanks for your attention!