Constraining the \mathcal{CP} character of the Higgs–top-quark interaction

Henning Bahl

DESY THDM working group

11.11.2021, online

Talk based on

\blacktriangleright 2007.08542

in collaboration with P. Bechtle, S. Heinemeyer, J. Katzy, T. Klingl, K. Peters, M. Saimpert, T. Stefaniak, G. Weiglein,

\blacktriangleright 2110.10177

in collaboration with S. Brass,

\blacktriangleright work in progress

in collaboration with P. Bechtle, E. Fuchs, S. Heinemeyer, J. Katzy, M. Menen, K. Peters, M. Saimpert, G. Weiglein.

[Introduction](#page-2-0)

[Current LHC constraints](#page-7-0)

[Machine-learning-based inference](#page-22-0)

[Complementarity with EDM and baryogenesis constraints](#page-34-0)

[Conclusions](#page-38-0)

[Introduction](#page-2-0)

[Current LHC constraints](#page-7-0)

[Machine-learning-based inference](#page-22-0)

[Complementarity with EDM and baryogenesis constraints](#page-34-0)

[Conclusions](#page-38-0)

Constraining the \mathcal{CP} nature of the Higgs boson — motivation

- I New sources of \mathcal{CP} violation are necessary to explain the baryon asymmetry of the Universe,
- **In the most one possibility:** \mathcal{CP} violation in the Higgs sector with Higgs boson being \mathcal{CP} -admixed state,
- **In** most BSM theories predict largest \mathcal{CP} violation in Higgs–fermion–fermion couplings
- \triangleright CP violation in the Higgs sector can be constrained by
	- demanding successful explanation of the baryon asymmetry (BAU),
	- electric dipole measurements,
	- collider measurements

Focus of this talk

How well can we constrain \mathcal{CP} violation in the Higgs-top-quark interaction?

Establishing \mathcal{CP} violation — different types of observables

Three different types of measurements: Measurements of

ure \mathcal{CP} -odd observables:

- unambiguous markers for \mathcal{CP} violation:
	- \blacktriangleright LHC measurements:
		- e.g. decay angle in $H \to \tau\tau$ [CMS-PAS-HIG-20-006] or jet angular correlations in VBF with $H \to \tau\tau$,
	- \blacktriangleright FDM measurements.
- \triangleright CP-even observables:
	- many precision measurements are indirectly sensitive,
	- e.g. rate of Higgs production via gluon fusion,
	- deviations from SM need not be due to \mathcal{CP} violation
		- \rightarrow potentially high model dependence.

Effective model

 \blacktriangleright Yukawa Lagrangian (generated e.g. by 1/Λ²(Φ[†]Φ) Q_L $\tilde{\Phi}f_R$ operator in SMEFT),

$$
\mathcal{L}_{\text{yuk}} = -\frac{y_t^{\text{SM}}}{\sqrt{2}} \bar{t} \left(c_t + i \gamma_5 \tilde{c}_t \right) tH.
$$

 \triangleright optional: additional free parameters

• $c_V \rightarrow$ rescaling HVV couplings

(tH and tWH production depend on c_V),

- $\kappa_g \to$ rescaling $gg \to H$ ("removing" gluon fusion constraints),
- $\kappa_{\gamma} \rightarrow$ rescaling $H \rightarrow \gamma \gamma$ ("removing" $H \rightarrow \gamma \gamma$ constraints),
- \blacktriangleright did not include \mathcal{CP} -odd HVV operators.
- \triangleright SM: $c_t = 1$, $\tilde{c}_t = 0$, $c_V = 1$.

Considered four models:

- $1. (c_t, \tilde{c}_t)$ free,
- 2. (c_t, \tilde{c}_t, c_V) free,
- 3. $(c_t, \tilde{c}_t, c_V, \kappa_\gamma)$ free,
- 4. (*c*_t, *č*_t, *c*_V, *κ*_γ, *κ*_g) free.

[Introduction](#page-2-0)

[Current LHC constraints](#page-7-0)

[Machine-learning-based inference](#page-22-0)

[Complementarity with EDM and baryogenesis constraints](#page-34-0)

[Conclusions](#page-38-0)

LHC constraints — setup

[based on HB et al.,2007.08542]

\blacktriangleright Most relevant observables:

- Higgs production $(ggH, ZH, t\bar{t}H, tH, tWH)$
- Higgs decays $(H \rightarrow f\bar{f}, \gamma\gamma, gg)$,
- \blacktriangleright experimental input:
	- all relevant Higgs measurements:
		- \blacktriangleright Higgs signal-strength measurements,
		- \blacktriangleright ZH STXS measurements (p_{t} shape),
		- $►$ CMS $H \rightarrow \tau \tau$ CP analysis [2110.04836],
		- \triangleright did not include dedicated experimental top-Yukawa \mathcal{CP} analyses (difficult to reinterpret in other model),
	- if available, included all uncertainty correlations,
- **►** random scan with $\mathcal{O}(10^7 10^8)$ points,
- $\blacktriangleright \ \chi^2$ fit performed using HiggsSignals.

Relevant processes: gg → H & H → *γγ*

- \blacktriangleright top-Yukawa influences
	- $gg \rightarrow H$ signal strength

$$
\kappa_g^2 \equiv \frac{\sigma_{gg \to H}}{\sigma_{gg \to H}^{\text{SM}}} \bigg|_{M_t \to \infty} = c_t^2 + \frac{9}{4} \tilde{c}_t^2 + \dots,
$$

calculate κ_{g} either in terms of c_{t} and \tilde{c}_{t} or treat it as free parameter (\rightarrow undiscovered colored BSM particles),

• kinematic shapes could be sensitive,

 $(\Delta\phi_{ii}$ in $gg \to H + 2j$, see [ATLAS-CONF-2020-055])

Similarly $H \to \gamma \gamma$.

Relevant processes: ZH production

Total rate:

t

t

t

 g - $\gamma\gamma\gamma$

g

Relevant processes: ZH production

q

 \bar{q}

Z

Z

H

Total rate:

- Experimental measurement: $pp \rightarrow ZH$,
- \triangleright $\sigma_{q\bar{q}\rightarrow ZH}^{\text{SM}} \approx 6\sigma_{gg\rightarrow ZH}^{\text{SM}}$
- \triangleright but $\sigma_{\varrho\varrho\to ZH}$ can be significantly enhanced. Kinematic shapes:
	- \triangleright Z p_T-shape sensitive to Higgs CP-properties,
	- \triangleright use STXS bins as additional input.

Relevant processes: ttH and tH production

- \triangleright $\sigma_{t\bar{t}H}^{\text{SM}} \approx 7\sigma_{tH}^{\text{SM}}$,
- \triangleright but \mathcal{CP} -odd top-Yukawa coupling can enhance σ_{tH} .

Relevant processes: ttH and tH production

- \triangleright $\sigma_{t\bar{t}H}^{\text{SM}} \approx 7\sigma_{tH}^{\text{SM}}$,
- \triangleright but \mathcal{CP} -odd top-Yukawa coupling can enhance σ_{tH} .

Kinematic shape:

- \blacktriangleright Higgs p_T shape measured in STXS framework, [ATLAS-CONF-2020-026]
- applicability questionable.

Relevant processes: combined top-associated Higgs production

 \triangleright t $\bar{t}H$ and tH difficult to disentangle → normally combination of both measured,

 \blacktriangleright $\mu_{tH+t\bar{t}H+tWH} = \frac{\sigma(pp\to t\bar{t}H+tH+tWH)}{\sigma\varsigma_{ML}(pp\to t\bar{t}H+tH+tWH)}$ _σ(pp→ttH+tH+tWH)
σ_{SM}(pp→ttH+tH+tWH)' lots for $c_V = 1$.

 θ 5 -10 15 20

 \rightarrow still significant \mathcal{CP} -odd coupling allowed in 5D model.

How to improve constraints in the future?

- \triangleright Construct CD-odd observables
	- \rightarrow easy to interpret but experimentally difficult for top-associated Higgs production,
- \blacktriangleright indirect constraints
	- \rightarrow comparably low model dep., but deviations could also be caused by other BSM physics.
- Include more kinematic information, [see e.g. ATLAS and CMS studies: 2003.10866,2004.04545] \rightarrow dependence on HVV couplings?
- \Rightarrow Should pursue all approaches to exploit complementarity!

How to improve constraints in the future?

 \triangleright Construct CD-odd observables

 \rightarrow easy to interpret but experimentally difficult for top-associated Higgs production,

- \blacktriangleright indirect constraints
	- \rightarrow comparably low model dep., but deviations could also be caused by other BSM physics.
- \triangleright include more kinematic information, [see e.g. ATLAS and CMS studies: 2003.10866,2004.04545] \rightarrow dependence on HVV couplings?
- \Rightarrow Should pursue all approaches to exploit complementarity!

[Introduction](#page-2-0)

[Current LHC constraints](#page-7-0)

[Machine-learning-based inference](#page-22-0)

[Complementarity with EDM and baryogenesis constraints](#page-34-0)

[Conclusions](#page-38-0)

Constructing the likelihood function — basics I

Goal of LHC measurements

Derive likelihood function $p_{full}(\{x_i\}|\theta)$ giving probability of observing a set of events with observables x_i for a given model with parameters θ .

We can write

$$
p_{\text{full}}(\{x_i\}|\theta) = \text{Pois}(n|L\sigma(\theta))\prod_i p(x_i|\theta),
$$

with the probability density of observing a single event

$$
p(x|\theta) = \frac{1}{\sigma(x)} \frac{d^d \sigma(x|\theta)}{dx^d}
$$

How can we obtain $p(x|\theta)$?

Constructing the likelihood function — basics II

MC simulators allow to sample $p(x|\theta)$ using the following steps:

- 1. generate parton-level events,
- 2. parton shower,
- 3. detector simulation.

$$
p(x|\theta) = \int dz_d \int dz_s \int dz_p \underbrace{p(x|z_d)p(z_d|z_s)p(z_s|z_p)p(z_p|\theta)}_{=p(x,z|\theta)}
$$
(1)

Large number of involved parameters \rightarrow can not compute this integral directly!

Constructing the likelihood function — traditional approach

Summary statistics

Calculate most relevant observable(s) and bin events into histogram.

$$
\blacktriangleright r(x|\theta_0, \theta_1) \equiv \frac{p(x|\theta_0)}{p(x|\theta_1)} \leftrightarrow \text{ratio of events predicted/measured per bin.}
$$

- \blacktriangleright Disadvantages:
	- low dimensionality \rightarrow loose of information,
	- binning \rightarrow loose of information.
- \rightarrow Can we use the whole available information?

Machine-learning-based inference

[Brehmer,Cranmer,Kling,...,1906.01578,1805.12244,1805.00013,1805.00020,1808.00973]

1. Calculate joint likelihood ratio

$$
r(x,z|\theta_0,\theta_1)\equiv\frac{p(x,z|\theta_0)}{p(x,z|\theta_1)}=\frac{p(x|z_d)p(z_d|z_s)p(z_s|z_p)p(z_p|\theta_0)}{p(x|z_d)p(z_d|z_s)p(z_s|z_p)p(z_p|\theta_1)}=\frac{p(z_p|\theta_0)}{p(z_p|\theta_1)}=\frac{d\sigma(z_p|\theta_0)}{d\sigma(z_p|\theta_1)}\frac{\sigma(\theta_1)}{\sigma(\theta_0)},
$$

[Note: evaluating $p(z_p|\theta)$ ∼ evaluating matrix element → relatively easy using morphing techniques,] 2. define suitable loss function, e.g.

$$
L[\hat{r}(x|\theta_0,\theta_1)] = \frac{1}{N} \sum_{(x_i,z_i)\sim p(x,z|\theta_1)} |r(x_i,z_i|\theta_0,\theta_1) - \hat{r}(x_i|\theta_0,\theta_1)|^2,
$$

3. express estimator $\hat{r}(x_i|\theta_0,\theta_1)$ as neural network which is trained to minimize L $\rightarrow \hat{r}$ converges to true r

Machine-learning-based inference — overview

▶ We used implementation of publicly available code MadMiner designed to work with $MadGraph + Pythia + Delphes.$

Application to \mathcal{CP} violation in the Higgs–top-quark interaction

- **►** Concentrate on top-associated Higgs production ($t\bar{t}H$, tH , tWH) with $H \rightarrow \gamma\gamma$,
- Free model parameters: c_t , \tilde{c}_t , c_V (+ renormalization scale μ_R),
- demand at least one lepton in final state \rightarrow backgrounds: ZH, WH, (non-Higgs backgrounds are assumed to be subtracted by fit to smoothly falling $m_{\gamma\gamma}$ distribution)
- \triangleright defined 47 observables used by neural network,
- ▶ used two different detector cards: ATLAS LHC card, HL-LHC card.
- \rightarrow Evaluate likelihood for different luminosities.

Expected limits assuming SM data

Assumption: $c_V = 1$,

 \blacktriangleright no variation of renormalization scale.

Dependence on c_V and renormalization scale

- \triangleright Floating c_V and μ_R only results in slightly looser constraints \rightarrow only small dependence on our knowledge of the HVV coupling and the theoretical uncertainty,
- additional uncertainty not considered: pdf uncertainty.

Most sensitive observables — Fisher information

What observables drive these constraints?

 \blacktriangleright Evaluate sensitivity using Fisher matrix

$$
I_{ij}(\theta) = \mathbb{E}\left[\frac{\partial \log p_{\text{full}}(\{x\}|\theta)}{\partial \theta_i} \frac{\partial \log p_{\text{full}}(\{x\}|\theta)}{\partial \theta_j}\bigg|_{\theta}\right],
$$

 \blacktriangleright related to the minimal covariance of an estimator $\hat{\theta}$ via

$$
\text{cov}(\hat{\theta}|\theta)_{ij} \geq I_{ij}^{-1}(\theta),
$$

 \triangleright 1D case: Δ θ = var($\hat{\theta}|\theta$) ≥ 1/ $\sqrt{I(\theta)}$.

Most sensitive observables — SM

Most sensitive observables \sim CP-mixed BP

[Introduction](#page-2-0)

[Current LHC constraints](#page-7-0)

[Machine-learning-based inference](#page-22-0)

[Complementarity with EDM and baryogenesis constraints](#page-34-0)

[Conclusions](#page-38-0)

EDM and BAU constraints

EDM:

- Several EDMs are sensitive to \mathcal{CP} violation in the Higgs sector,
- \triangleright we consider only constraints from theoretically cleanest EDM
	- the electron EDM (eEDM),
- \blacktriangleright eEDM evaluated using results from [Brod et al., 1310.1385, 1503.04830].

BAU:

- In different techniques used in the literature to calculate baryon asymmetry Y_B \rightarrow large theoretical uncertainty,
- \triangleright we use benchmark model for bubble wall properties maximising Y_B \rightarrow values should be regarded as an upper bound,
- \triangleright evaluation based on simple fit formula. [Shapira,2106.05338]

Single flavour modifications

EDM places very strong constraints on \mathcal{CP} -violating top-Yukawa coupling; very similar for global modification.

Dependence on electron-Yukawa coupling

- ► eEDM $d_e/d_e^{\text{exp}} \approx 854 c_e \tilde{c}_t + 1082 \tilde{c}_e c_V 610 \tilde{c}_e c_t + \dots$
- In hardly any collider constraints on c_e and \tilde{c}_e ,
- \triangleright cancellation between electron and top contributions to eEDM possible,
- allows for substantial contribution of \mathcal{CP} -violating top-Yukawa coupling to BAU.

[Introduction](#page-2-0)

[Current LHC constraints](#page-7-0)

[Machine-learning-based inference](#page-22-0)

[Complementarity with EDM and baryogenesis constraints](#page-34-0)

[Conclusions](#page-38-0)

Conclusions

Initial question

How can we constrain a \mathcal{CP} -odd component of the top-Yukawa coupling?

- \blacktriangleright Current LHC rate measurements:
	- strong constraints from $gg \to H$ and $H \to \gamma \gamma$,
	- sizable CP-odd coupling allowed if κ_{ϵ} and κ_{γ} are varied independently,
- \triangleright kinematic constraints using top-associated Higgs production:
	- ML techniques promise strong constraints at HL-LHC,
	- Higgs p_T -shape appears to be a promising observable,
- \blacktriangleright FDM and BAU constraints:
	- strong complementary constraints,
	- have to be careful with interpretation due to strong dependence on first-generation Yukawa couplings.

Conclusions

Initial question

How can we constrain a \mathcal{CP} -odd component of the top-Yukawa coupling?

- \blacktriangleright Current LHC rate measurements:
	- strong constraints from $gg \to H$ and $H \to \gamma \gamma$,
	- sizable CP-odd coupling allowed if κ_{ϵ} and κ_{γ} are varied independently,
- \triangleright kinematic constraints using top-associated Higgs production:
	- ML techniques promise strong constraints at HL-LHC,
	- Higgs p_T -shape appears to be a promising observable,
- \blacktriangleright FDM and BAU constraints:
	- strong complementary constraints,
	- have to be careful with interpretation due to strong dependence on first-generation Yukawa couplings.

Thanks for your attention!

[Appendix](#page-41-0)

Relevant processes: tWH production

- interferes with $t\bar{t}H$ production,
- \blacktriangleright $\sigma_{t\bar{t}H}^{\text{SM}} \approx 34 \sigma_{tWH}^{\text{SM}}$
- **►** but non-negligible contribution in CP-odd case: $\sigma_{t\bar{t}H}^{CP-odd} \approx 3.5 \sigma_{tWH}^{CP-odd}$,
- \rightarrow fully taken into account in numerical analysis.

Impact of CMS $H \rightarrow \tau \tau$ CP analysis

Left: fit result without CMS $H \to \tau \tau$ CP analysis. Right: fit result with CMS $H \to \tau \tau$ CP analysis.

- **Decay width** $\Gamma_{H\to\tau\tau} \propto c_{\tau}^2 + \tilde{c}_{\tau}^2$ **,**
- **I** CMS $H \rightarrow \tau \tau$ CP analysis disentangles c_{τ} and \tilde{c}_{τ} .

Single flavour modifications

- \triangleright Only \mathcal{CP} violation in tau-Yukawa coupling able to explain substantial amount of BAU while still satisfying eEDM and LHC constraints,
- \triangleright sizeable \mathcal{CP} violation in bottom-Yukawa coupling still possible but very small contribution to BAU,
- eEDM places very strong constraints on \mathcal{CP} -violating top-Yukawa coupling; very similar for global modification (floating c_f and \tilde{c}_f).