Constraining the \mathcal{CP} character of the Higgs-top-quark interaction

Henning Bahl

DESY THDM working group

11.11.2021, online

			EDM & BAU	
0000	0000000	0000000000	0000	

Talk based on

▶ 2007.08542

in collaboration with P. Bechtle, S. Heinemeyer, J. Katzy, T. Klingl, K. Peters, M. Saimpert, T. Stefaniak, G. Weiglein,

> 2110.10177

in collaboration with S. Brass,

work in progress

in collaboration with P. Bechtle, E. Fuchs, S. Heinemeyer, J. Katzy, M. Menen, K. Peters, M. Saimpert, G. Weiglein.

Intro		EDM & BAU	
● 000			

Introduction

Current LHC constraints

Machine-learning-based inference

Complementarity with EDM and baryogenesis constraints

Conclusions

Intro		EDM & BAU	
0000			

Introduction

Current LHC constraints

Machine-learning-based inference

Complementarity with EDM and baryogenesis constraints

Conclusions

Intro			EDM & BAU	
0000	0000000	0000000000	0000	00

Constraining the \mathcal{CP} nature of the Higgs boson — motivation

- ► New sources of CP violation are necessary to explain the baryon asymmetry of the Universe,
- one possibility: CP violation in the Higgs sector with Higgs boson being CP-admixed state,
- ▶ most BSM theories predict largest CP violation in Higgs–fermion–fermion couplings
- \blacktriangleright \mathcal{CP} violation in the Higgs sector can be constrained by
 - demanding successful explanation of the baryon asymmetry (BAU),
 - electric dipole measurements,
 - collider measurements.

Focus of this talk

How well can we constrain \mathcal{CP} violation in the Higgs-top-quark interaction?

Intro			EDM & BAU	
0000	0000000	0000000000	0000	00

Establishing \mathcal{CP} violation — different types of observables

Three different types of measurements: Measurements of

▶ pure CP-odd observables:

- unambiguous markers for \mathcal{CP} violation:
 - LHC measurements: e.g. decay angle in $H \rightarrow \tau \tau$ [CMS-PAS-HIG-20-006] or jet angular correlations in VBF with $H \rightarrow \tau \tau$, EDM measurements.
- CP-even observables:
 - many precision measurements are indirectly sensitive,
 - e.g. rate of Higgs production via gluon fusion,
 - deviations from SM need not be due to \mathcal{CP} violation
 - \rightarrow potentially high model dependence.

Intro		EDM & BAU	
0000			

Effective model

► Yukawa Lagrangian (generated e.g. by $1/\Lambda^2(\Phi^{\dagger}\Phi)Q_L\tilde{\Phi}f_R$ operator in SMEFT),

$$\mathcal{L}_{\mathsf{yuk}} = -rac{y_t^{\mathsf{SM}}}{\sqrt{2}} \overline{t} \left(c_t + i\gamma_5 \widetilde{c}_t
ight) t H$$

optional: additional free parameters

• $c_V \rightarrow$ rescaling HVV couplings

 $(tH \text{ and } tWH \text{ production depend on } c_V),$

- $\kappa_g
 ightarrow$ rescaling gg
 ightarrow H ("removing" gluon fusion constraints),
- $\kappa_{\gamma} \rightarrow$ rescaling $H \rightarrow \gamma \gamma$ ("removing" $H \rightarrow \gamma \gamma$ constraints),
- ▶ did not include CP-odd HVV operators,
- ► SM: $c_t = 1$, $\tilde{c}_t = 0$, $c_V = 1$.

Considered four models:

- 1. (c_t, \tilde{c}_t) free,
- 2. (c_t, \tilde{c}_t, c_V) free,
- 3. $(c_t, \tilde{c}_t, c_V, \kappa_\gamma)$ free,
- 4. $(c_t, \tilde{c}_t, c_V, \kappa_\gamma, \kappa_g)$ free.

LHC constraints	EDM & BAU	
●0000000		

Introduction

Current LHC constraints

Machine-learning-based inference

Complementarity with EDM and baryogenesis constraints

Conclusions

	LHC constraints		EDM & BAU	
0000	0000000	0000000000	0000	00

LHC constraints — setup

[based on HB et al.,2007.08542]

- Most relevant observables:
 - Higgs production (ggH, ZH, tTH, tH, tWH)
 - Higgs decays $(H \rightarrow f\bar{f}, \gamma\gamma, gg)$,
- experimental input:
 - all relevant Higgs measurements:
 - Higgs signal-strength measurements,
 - ZH STXS measurements (p_T shape),
 - CMS $H \rightarrow \tau \tau CP$ analysis [2110.04836],
 - did not include dedicated experimental top-Yukawa CP analyses (difficult to reinterpret in other model),
 - if available, included all uncertainty correlations,
- random scan with $\mathcal{O}(10^7 10^8)$ points,
- ▶ χ^2 fit performed using HiggsSignals.

LHC constraints	EDM & BAU	
0000000		

Relevant processes: $gg \rightarrow H \& H \rightarrow \gamma \gamma$

- top-Yukawa influences
 - $gg \rightarrow H$ signal strength

$$\kappa_g^2 \equiv \frac{\sigma_{gg \to H}}{\sigma_{gg \to H}^{\rm SM}} \bigg|_{M_t \to \infty} = c_t^2 + \frac{9}{4} \tilde{c}_t^2 + \dots,$$

calculate κ_g either in terms of c_t and \tilde{c}_t or treat it as free parameter (\rightarrow undiscovered colored BSM particles),

kinematic shapes could be sensitive,

 $(\Delta \phi_{jj} ext{ in } gg
ightarrow H+2j, ext{ see [Atlas-conf-2020-055]})$

i similarly $H \rightarrow \gamma \gamma$.

	LHC constraints		EDM & BAU	
0000	0000000	0000000000	0000	00

Relevant processes: ZH production

 $\sim Z$ g $\mathfrak{w}_{\mathsf{T}}$ g -0000 >~~~~~ - H g uu H $\mu_{gg \to ZH}$ 2.010.51.59.0 1.0 7.5 0.56.0 5 0.04.5-0.53.0 -1.01.5-1.5

 -2.0_{-2}^{-2}

-1

0

 C_{t}

1

Total rate:

- \blacktriangleright Experimental measurement: $pp \rightarrow ZH$,
- $\blacktriangleright \sigma_{a\bar{a}\to ZH}^{\rm SM} \approx 6\sigma_{gg\to ZH}^{\rm SM},$
- but $\sigma_{gg \rightarrow ZH}$ can be significantly enhanced.

0.0

2

Intro LI	HC constraints		EDM & BAU	
0000 0	000000	0000000000	0000	00

g -

Relevant processes: ZH production

Total rate:

▶ Experimental measurement: $pp \rightarrow ZH$,

 \bar{q}

- $\blacktriangleright \ \sigma^{\rm SM}_{q\bar{q}\rightarrow ZH}\approx 6\sigma^{\rm SM}_{gg\rightarrow ZH},$
- ► but $\sigma_{gg \rightarrow ZH}$ can be significantly enhanced. Kinematic shapes:
 - ▶ $Z p_T$ -shape sensitive to Higgs CP-properties,
 - use STXS bins as additional input.

	LHC constraints		EDM & BAU	
0000	0000000	0000000000		00

Relevant processes: *ttH* and *tH* production

- $\blacktriangleright \ \sigma^{\rm SM}_{t\bar{t}H}\approx 7\sigma^{\rm SM}_{tH},$
- but \mathcal{CP} -odd top-Yukawa coupling can enhance σ_{tH} .

	LHC constraints		EDM & BAU	
0000	0000000	0000000000	0000	00

Relevant processes: *ttH* and <u>*tH* production</u>

- $\blacktriangleright \ \sigma^{\rm SM}_{t\bar{t}H}\approx 7\sigma^{\rm SM}_{tH},$
- but \mathcal{CP} -odd top-Yukawa coupling can enhance σ_{tH} .

Kinematic shape:

- Higgs p_T shape measured in STXS framework, [ATLAS-CONF-2020-026]
- applicability questionable.

LHC constraints	EDM & BAU	
00000000		

Relevant processes: combined top-associated Higgs production

▶ $t\bar{t}H$ and tH difficult to disentangle \rightarrow normally combination of both measured,

• $\mu_{tH+t\bar{t}H+tWH} = \frac{\sigma(pp \to t\bar{t}H+tH+tWH)}{\sigma_{SM}(pp \to t\bar{t}H+tH+tWH)}$, • plots for $c_V = 1$.

	LHC constraints		EDM & BAU	
0000	00000000	0000000000	0000	00

LHC constraints	EDM & BAU	
00000000		

LHC constraints	EDM & BAU	
00000000		

LHC constraints	EDM & BAU	
00000000		

LHC constraints	EDM & BAU	
00000000		

 \rightarrow still significant $\mathcal{CP}\text{-}\mathsf{odd}$ coupling allowed in 5D model.

LHC constraints	EDM & BAU	
0000000		

How to improve constraints in the future?

- Construct CP-odd observables
 - \rightarrow easy to interpret but experimentally difficult for top-associated Higgs production,
- indirect constraints
 - \rightarrow comparably low model dep., but deviations could also be caused by other BSM physics.
- ▶ include more kinematic information, [see e.g. ATLAS and CMS studies: 2003.10866,2004.04545] \rightarrow dependence on *HVV* couplings?
- \Rightarrow Should pursue all approaches to exploit complementarity!

LHC constraints	EDM & BAU	
0000000		

How to improve constraints in the future?

- Construct CP-odd observables
 - \rightarrow easy to interpret but experimentally difficult for top-associated Higgs production,
- indirect constraints
 - \rightarrow comparably low model dep., but deviations could also be caused by other BSM physics.
- ▶ include more kinematic information, [see e.g. ATLAS and CMS studies: 2003.10866,2004.04545] \rightarrow dependence on *HVV* couplings?
- \Rightarrow Should pursue all approaches to exploit complementarity!

	ML-based inference	EDM & BAU	
	0000000000		

Introduction

Current LHC constraints

Machine-learning-based inference

Complementarity with EDM and baryogenesis constraints

Conclusions

	ML-based inference	EDM & BAU	
	0000000000		

Constructing the likelihood function — basics I

Goal of LHC measurements

Derive likelihood function $p_{\text{full}}(\{x_i\}|\theta)$ giving probability of observing a set of events with observables x_i for a given model with parameters θ .

We can write

$$p_{\mathsf{full}}(\{x_i\}|\theta) = \mathsf{Pois}(n|L\sigma(\theta)) \prod_i p(x_i|\theta),$$

with the probability density of observing a single event

$$p(x|\theta) = \frac{1}{\sigma(x)} \frac{d^d \sigma(x|\theta)}{dx^d}$$

How can we obtain $p(x|\theta)$?

		ML-based inference	EDM & BAU	
0000	0000000	0000000000	0000	00

Constructing the likelihood function — basics II

MC simulators allow to sample $p(x|\theta)$ using the following steps:

- 1. generate parton-level events,
- 2. parton shower,
- 3. detector simulation.

$$p(x|\theta) = \int dz_d \int dz_s \int dz_p \underbrace{p(x|z_d)p(z_d|z_s)p(z_s|z_p)p(z_p|\theta)}_{=p(x,z|\theta)}$$
(1)

Large number of involved parameters \rightarrow can not compute this integral directly!

		ML-based inference	EDM & BAU	
0000	0000000	000000000	0000	00

Constructing the likelihood function — traditional approach

Summary statistics

Calculate most relevant observable(s) and bin events into histogram.

►
$$r(x|\theta_0, \theta_1) \equiv \frac{p(x|\theta_0)}{p(x|\theta_1)} \leftrightarrow$$
 ratio of events predicted/measured per bin.

- Disadvantages:
 - low dimensionality \rightarrow loose of information,
 - binning \rightarrow loose of information.
- \rightarrow Can we use the whole available information?

	ML-based inference	EDM & BAU	
	0000000000		

Machine-learning-based inference

[Brehmer, Cranmer, Kling,...,1906.01578,1805.12244,1805.00013,1805.00020,1808.00973]

1. Calculate joint likelihood ratio

$$r(x, z|\theta_0, \theta_1) \equiv \frac{p(x, z|\theta_0)}{p(x, z|\theta_1)} = \frac{p(x|z_d)p(z_d|z_s)p(z_s|z_p)p(z_p|\theta_0)}{p(x|z_d)p(z_d|z_s)p(z_s|z_p)p(z_p|\theta_1)} = \frac{p(z_p|\theta_0)}{p(z_p|\theta_1)} = \frac{d\sigma(z_p|\theta_0)}{d\sigma(z_p|\theta_1)} \frac{\sigma(\theta_1)}{\sigma(\theta_0)} = \frac{d\sigma(z_p|\theta_0)}{\sigma(\theta_0)} = \frac{d\sigma(z_p|\theta$$

[Note: evaluating $p(z_p|\theta) \sim$ evaluating matrix element \rightarrow relatively easy using morphing techniques,] 2. define suitable loss function, e.g.

$$L[\hat{r}(x|\theta_{0},\theta_{1})] = \frac{1}{N} \sum_{(x_{i},z_{i}) \sim p(x,z|\theta_{1})} |r(x_{i},z_{i}|\theta_{0},\theta_{1}) - \hat{r}(x_{i}|\theta_{0},\theta_{1})|^{2}$$

3. express estimator $\hat{r}(x_i|\theta_0, \theta_1)$ as neural network which is trained to minimize $L \rightarrow \hat{r}$ converges to true r

		ML-based inference	EDM & BAU	
0000	0000000	0000000000	0000	00

Machine-learning-based inference — overview

We used implementation of publicly available code MadMiner designed to work with MadGraph + Pythia + Delphes.

0000 0000000 000000 00000 00000 00000 0000			ML-based inference	EDM & BAU	
	0000	0000000	0000000000	0000	00

Application to \mathcal{CP} violation in the Higgs–top-quark interaction

- ► Concentrate on top-associated Higgs production ($t\bar{t}H$, tH, tWH) with $H \rightarrow \gamma\gamma$,
- ▶ free model parameters: c_t , \tilde{c}_t , c_V (+ renormalization scale μ_R),
- ► demand at least one lepton in final state \rightarrow backgrounds: *ZH*, *WH*, (non-Higgs backgrounds are assumed to be subtracted by fit to smoothly falling $m_{\gamma\gamma}$ distribution)
- defined 47 observables used by neural network,
- ▶ used two different detector cards: ATLAS LHC card, HL-LHC card.
- \rightarrow Evaluate likelihood for different luminosities.

		ML-based inference	EDM & BAU	
0000	0000000	00000000000	0000	00

Expected limits assuming SM data

• Assumption: $c_V = 1$,

no variation of renormalization scale.

		ML-based inference	EDM & BAU	
0000	0000000	00000000000	0000	00

Dependence on c_V and renormalization scale

- ► Floating c_V and µ_R only results in slightly looser constraints → only small dependence on our knowledge of the HVV coupling and the theoretical uncertainty,
- additional uncertainty not considered: pdf uncertainty.

		ML-based inference	EDM & BAU	
0000	0000000	00000000000	0000	00

Most sensitive observables — Fisher information

What observables drive these constraints?

Evaluate sensitivity using Fisher matrix

$$\mathcal{H}_{ij}(heta) = \mathbb{E}\left[rac{\partial \log p_{\mathsf{full}}(\{x\}| heta)}{\partial heta_i} rac{\partial \log p_{\mathsf{full}}(\{x\}| heta)}{\partial heta_j} \bigg|_{ heta}
ight],$$

 \blacktriangleright related to the minimal covariance of an estimator $\hat{\theta}$ via

$$\operatorname{cov}(\hat{ heta}| heta)_{ij} \geq I_{ij}^{-1}(heta),$$

▶ 1D case: $\Delta \theta = \operatorname{var}(\hat{\theta}|\theta) \ge 1/\sqrt{I(\theta)}$.

	ML-based inference	EDM & BAU	
	00000000000		

Most sensitive observables — SM

		ML-based inference	EDM & BAU	
0000	0000000	0000000000	0000	00

Most sensitive observables — CP-mixed BP

	EDM & BAU	
	0000	

Introduction

Current LHC constraints

Machine-learning-based inference

Complementarity with EDM and baryogenesis constraints

Conclusions

			EDM & BAU	
0000	0000000	0000000000	0000	00

EDM and BAU constraints

EDM:

- \blacktriangleright Several EDMs are sensitive to \mathcal{CP} violation in the Higgs sector,
- we consider only constraints from theoretically cleanest EDM the electron EDM (aEDM)
 - the electron EDM (eEDM),
- eEDM evaluated using results from [Brod et al.,1310.1385,1503.04830].

BAU:

- different techniques used in the literature to calculate baryon asymmetry $Y_B \rightarrow$ large theoretical uncertainty,
- ▶ we use benchmark model for bubble wall properties maximising Y_B → values should be regarded as an upper bound,
- evaluation based on simple fit formula. [Shapira,2106.05338]

	EDM & BAU	
	0000	

Single flavour modifications

 eEDM places very strong constraints on CP-violating top-Yukawa coupling; very similar for global modification.

	EDM & BAU	
	0000	

Dependence on electron-Yukawa coupling

- ► eEDM $d_e/d_e^{exp} \approx 854c_e\tilde{c}_t + 1082\tilde{c}_ec_V 610\tilde{c}_ec_t + \dots$
- hardly any collider constraints on c_e and \tilde{c}_e ,
- cancellation between electron and top contributions to eEDM possible,
- \blacktriangleright allows for substantial contribution of $\mathcal{CP}\text{-violating top-Yukawa coupling to BAU.}$

	EDM & BAU	Conclusions
		00

Introduction

Current LHC constraints

Machine-learning-based inference

Complementarity with EDM and baryogenesis constraints

Conclusions

			EDM & BAU	Conclusions
0000	0000000	0000000000	0000	00

Conclusions

Initial question

How can we constrain a \mathcal{CP} -odd component of the top-Yukawa coupling?

- Current LHC rate measurements:
 - strong constraints from gg
 ightarrow H and $H
 ightarrow \gamma\gamma$,
 - sizable \mathcal{CP} -odd coupling allowed if κ_g and κ_γ are varied independently,
- kinematic constraints using top-associated Higgs production:
 - ML techniques promise strong constraints at HL-LHC,
 - Higgs p_T -shape appears to be a promising observable,
- EDM and BAU constraints:
 - strong complementary constraints,
 - have to be careful with interpretation due to strong dependence on first-generation Yukawa couplings.

			EDM & BAU	Conclusions
0000	0000000	0000000000	0000	00

Conclusions

Initial question

How can we constrain a \mathcal{CP} -odd component of the top-Yukawa coupling?

- Current LHC rate measurements:
 - strong constraints from gg
 ightarrow H and $H
 ightarrow \gamma\gamma$,
 - sizable \mathcal{CP} -odd coupling allowed if κ_g and κ_γ are varied independently,
- kinematic constraints using top-associated Higgs production:
 - ML techniques promise strong constraints at HL-LHC,
 - Higgs p_T -shape appears to be a promising observable,
- EDM and BAU constraints:
 - strong complementary constraints,
 - have to be careful with interpretation due to strong dependence on first-generation Yukawa couplings.

Thanks for your attention!

Appendix

Relevant processes: tWH production

- ▶ interferes with $t\bar{t}H$ production,
- $\blacktriangleright \ \sigma_{t\bar{t}H}^{\rm SM} \approx 34 \sigma_{tWH}^{\rm SM},$
- ▶ but non-negligible contribution in CP-odd case: $\sigma_{t\bar{t}H}^{CP-\text{odd}} \approx 3.5 \sigma_{tWH}^{CP-\text{odd}}$,
- \rightarrow fully taken into account in numerical analysis.

Impact of CMS $H \rightarrow \tau \tau \ CP$ analysis

Left: fit result without CMS $H \rightarrow \tau \tau \ CP$ analysis.

Right: fit result with CMS ${\it H} \rightarrow \tau \tau ~ {\cal CP}$ analysis.

- Decay width $\Gamma_{H o au au} \propto c_{ au}^2 + ilde{c}_{ au}^2$,
- CMS $H \rightarrow \tau \tau \ CP$ analysis disentangles c_{τ} and \tilde{c}_{τ} .

Single flavour modifications

- Only CP violation in tau-Yukawa coupling able to explain substantial amount of BAU while still satisfying eEDM and LHC constraints,
- sizeable CP violation in bottom-Yukawa coupling still possible but very small contribution to BAU,
- ▶ eEDM places very strong constraints on CP-violating top-Yukawa coupling; very similar for global modification (floating c_f and \tilde{c}_f).