The forgotten channels: charged Higgs boson decays to a W^{\pm} and a non-SM-like Higgs boson

Henning Bahl

based on JHEP 06 (2021) 183

in collaboration with

T. Stefaniak, J. Wittbrodt

14th Annual Meeting of the Helmholtz Alliance "Physics at the Terascale"

23.11.2021

Existing experimental searches for charged Higgs bosons

Production process	Higgs decay	Final state	# of exp. searches
$ ho p ho o H^{\pm} t b$	$H^{\pm} ightarrow au u_{ au}$	$tb(au u_ au)$	5
$pp ightarrow H^{\pm} tb$	$H^\pm o tb$	tbtb	4
$pp ightarrow tt, t ightarrow H^{\pm}b$	$H^\pm ightarrow cb$	tbcb	1
$pp ightarrow tt, t ightarrow H^{\pm}b$	$H^\pm ightarrow cs$	tbcs	2
$pp ightarrow H^{\pm} qq^{\prime} \; ({\sf VBF})$	$H^\pm o W^\pm Z$	$W^\pm Z q q'$	3
$pp ightarrow tt, t ightarrow H^{\pm}b$	$H^\pm o W^\pm A$	tb ${\cal W}^\pm \mu^+ \mu^-$	2
$ ho p ho o H o H^\pm W^\mp$	$H^\pm o W^\pm h$	$W^{\pm}W^{\mp}bb$	1

ightarrow 12 searches in fermionic channels, 6 searches for bosonic channels (3 of which only appear for triplet-like H^{\pm}).

Are the bosonic charged Higgs decay channels theoretically less motivated?

Current impact of fermionic charged Higgs boson searches

- All points pass theoretical and experimental constraints,
- constraints evaluated using ScannerS, HDecay, HiggsBounds, HiggsSignals,
- $H^{\pm} \rightarrow \tau \nu_{\tau}$ relevant in low mass region,
- $H^{\pm} \rightarrow tb$ hardly constraining in high mass region.

Bosonic charged Higgs boson couplings

- ► Radiative EW: $H^{\pm}H^{\mp}\gamma$, $H^{\pm}H^{\mp}Z$,
- triple Higgs: $H^{\pm}H^{\mp}h_i/a_i$,
- mixed EW: $H^{\pm}W^{\mp}Z/\gamma$ (only in triplet extensions),
- Higgs EW: $H^{\pm}W^{\mp}h_i/a_i$

In the 2HDM, we have (with h_i being the CP-even Higgs bosons)

Alignment limit

$$g^{2}(H^{\pm}W^{\mp}h_{125}) \rightarrow 0, \ g^{2}(H^{\pm}W^{\mp}h_{\mathsf{BSM}}) \rightarrow \frac{g^{2}}{4} = g^{2}(H^{\pm}W^{\mp}A)$$

 \rightarrow Charged Higgs boson couplings to a ${\it W}$ and a non-SM-like Higgs boson are maximized!

	Bosonic decays		
00	0	000000	0

Parameter scan in the 2HDM type I

All points pass theoretical and experimental constraints,
 similar results for BR(H[±] → W[±]h_{BSM}).

 \rightarrow Searches for bosonically decaying charged Higgs bosons well motivated!

Benchmark scenarios for bosonic charged Higgs searches

Concept

Define $(m_{h_{\rm BSM}}/m_A, m_{H^\pm})$ planes with sizeable unconstrained $H^\pm \to W^\pm h_{\rm BSM}/A$ signal.

- Take into account all experimental and theoretical constraints,
- **b** benchmark scenarios cover different mass ranges and different decay modes of h_{BSM}/A .

All scenarios defined in 2HDM type I (except of $cH(Wh_{BSM}^{light})$ scenario):

- ▶ cH(Wh_{BSM}) scenario → exact alignment, $m_A = m_{H^{\pm}}$;
- ▶ cH(*WA*) scenario → same as cH(*Wh*_{BSM}) scenario but $h_{BSM} \leftrightarrow A$;
- ▶ cH(Wh_{BSM}^{fphob}) scenario → approximate alignment, fermiophobic h_{BSM} , $m_A = m_{H^{\pm}}$;
- ▶ cH(Wh_{BSM}^{light}) scenario → approximate alignment, light h_{BSM} , $m_A = m_{H^{\pm}}$;
- ▶ cH($Wh_{\text{BSM}}^{\ell \text{phil}}$) scenario $\rightarrow \sim$ cH($Wh_{\text{BSM}}^{\text{light}}$) but in lepton-specific 2HDM, $m_A = m_{H^{\pm}}$.

		Benchmark scenarios	
00	00	00000	0

cH(*Wh*_{BSM}) scenario

Complementarity to neutral Higgs boson searches,

► BR($h_{\text{BSM}} \rightarrow b\bar{b}$) ~ 80%, BR($h_{\text{BSM}} \rightarrow \tau^+ \tau^-$) ~ 8%, BR($h_{\text{BSM}} \rightarrow \gamma \gamma$) ~ 0.01%.

		Benchmark scenarios	
00	00	00000	0

cH(*WA*) scenario

Weaker constraints from neutral Higgs boson searches,

▶ slightly enhanced BR($h_{\text{BSM}} \rightarrow \gamma \gamma$) ~ 0.01 – 0.1%.

$cH(Wh_{BSM}^{fphob})$ scenario — fermiophobic h_{BSM}

• h_{BSM} only decays to vector bosons $(\gamma \gamma, W^+ W^-, ZZ)$.

	Benchmark scenarios	
	000000	

$cH(Wh_{BSM}^{light})$ scenario — light h_{BSM}

Requires fine-tuning of m²₁₂ and tan β to suppress h₁₂₅ → h_{BSM} h_{BSM} decays,
 BR(h_{BSM} → bb̄) ~ 80%, BR(h_{BSM} → γγ) ~ 10%.

$cH(Wh_{BSM}^{\ell phil})$ scenario — light h_{BSM} in the LS 2HDM

Same as cH(Wh_{BSM}^{light}) scenario but defined in the lepton-specific 2HDM \rightarrow BR($h_{BSM} \rightarrow \tau \tau$) \sim 100%

	Conclusions
	•

Conclusions

- Most existing experimental searches for charged Higgs bosons concentrate on fermionic decays,
- ▶ the bosonic $H^{\pm} \rightarrow W^{\pm} h_{\text{BSM}} / A$ decay has, however, a naturally large branching ratio close to the alignment limit.
- \rightarrow Proposed five 2HDM benchmark scenarios to motivate future searches for bosonically decaying charged Higgs bosons.
 - Sizeable signal cross sections for various production and decay modes,
 - large variety of possible decay modes for neutral Higgs bosons.

For every scenario, full XS and branching ratio data available as arXiv ancillary material.

	Conclusions
	•

Conclusions

- Most existing experimental searches for charged Higgs bosons concentrate on fermionic decays,
- ▶ the bosonic $H^{\pm} \rightarrow W^{\pm} h_{\text{BSM}} / A$ decay has, however, a naturally large branching ratio close to the alignment limit.
- \rightarrow Proposed five 2HDM benchmark scenarios to motivate future searches for bosonically decaying charged Higgs bosons.
 - Sizeable signal cross sections for various production and decay modes,
 - large variety of possible decay modes for neutral Higgs bosons.

For every scenario, full XS and branching ratio data available as arXiv ancillary material.

Thanks for your attention!

Charged Higgs production

- $H^{\pm}tb$ production, $\propto 1/\tan^2\beta$,
- ▶ $H^{\pm}h_i, H^{\pm}A$ production, maximized in alignment limit,
- $H^{\pm}W^{\mp}$ production, $\propto 1/\tan^2\beta$.

	$m_{h_{125}}$ [GeV]	m_{H^\pm} [GeV]	$m_{h_{ m BSM}}$ [GeV]	m_A [GeV]	$c(h_{\rm BSM}VV)$	$\tan\beta$	m ² ₁₂ [GeV ²]
cH(<i>Wh</i> _{BSM}) cH(<i>WA</i>)	125.09	150–300	65–200 m _H ±	<i>m_{H[±]}</i> 65–200	0	3	500 5000
$cH(Wh_{BSM}^{fphob})$	125.09	150–300	65–200	$m_{H^{\pm}}$	0.2	~ 4.9	1200
cH(<i>Wh</i> ^{IIght} _{BSM})		100–300	10-62.5	$m_{H^{\pm}}$	-0.062	16.6	~ 25
$cH(Wh_{BSM}^{\ell phil})$		same as c⊦	$I(Wh_{BSM}^{light})$	but in the	lepton-specific	2HDM	

Table: Parameter choices in the five benchmark scenarios for the $H^{\pm} \rightarrow W^{\pm} \phi$ ($\phi = h_{\text{BSM}}, A$) decay the 2HDM. All scenarios except cH($Wh_{\text{BSM}}^{\ell \text{phil}}$) are defined in the type I 2HDM.

$cH(Wh_{BSM})$

Appendix 000000000

cH(WA)

 $cH(Wh_{BSM}^{fphob})$

$cH(Wh_{BSM}^{fphob})$

$$\tan \beta = \frac{\sqrt{1 - c(h_{\text{BSM}}VV)^2}}{c(h_{\text{BSM}}VV)}$$
(1)

 $cH(Wh_{BSM}^{light})$

$cH(\textit{Wh}_{BSM}^{light})$

$$g_{h_1h_1h_2} = 0: m_{12}^2 = rac{(m_{h_2}^2 + 2m_{h_1}^2)c_lpha s_lpha}{3rac{c_lpha s_lpha}{c_eta s_eta} - 1}$$

9/9

(2)