Constraining the \mathcal{CP} character of the Higgs-top-quark interaction

Henning Bahl

Theory seminar

13.1.2022, Humboldt-Universität zu Berlin, online

Talk based on

- ➤ 2007.08542 in collaboration with P. Bechtle, S. Heinemeyer, J. Katzy, T. Klingl, K. Peters, M. Saimpert, T. Stefaniak, G. Weiglein,
- ▶ 2110.10177 in collaboration with S. Brass,
- work in progress
 in collaboration with P. Bechtle, E. Fuchs, S. Heinemeyer, J. Katzy, M. Menen, K. Peters, M. Saimpert,
 G. Weiglein.

Introduction

Intro 0000

Current LHC constraints

Machine-learning-based inference

Complementarity with EDM and baryogenesis constraints

Conclusions

Intro

Current LHC constraints

Machine-learning-based inference

Complementarity with EDM and baryogenesis constraints

Conclusions

Constraining the \mathcal{CP} nature of the Higgs boson — motivation

- \blacktriangleright New sources of ${\cal CP}$ violation are necessary to explain the baryon asymmetry of the Universe.
- ightharpoonup one possibility: \mathcal{CP} violation in the Higgs sector with Higgs boson being \mathcal{CP} -admixed state,
- \blacktriangleright most BSM theories predict largest \mathcal{CP} violation in Higgs–fermion–fermion couplings
- \triangleright \mathcal{CP} violation in the Higgs sector can be constrained by
 - demanding successful explanation of the baryon asymmetry (BAU),
 - electric dipole measurements,
 - collider measurements.

Focus of this talk

Intro

How well can we constrain \mathcal{CP} violation in the Higgs-top-quark interaction?

Establishing \mathcal{CP} violation — different types of observables

Three different types of measurements: Measurements of

- \triangleright pure \mathcal{CP} -odd observables:
 - unambiguous markers for \mathcal{CP} violation:
 - LHC measurements:
 - e.g. decay angle in H o au au [CMS-PAS-HIG-20-006] or jet angular correlations in VBF with H o au au,
 - EDM measurements.
- ► CP-even observables:
 - many precision measurements are indirectly sensitive,
 - e.g. rate of Higgs production via gluon fusion,
 - deviations from SM need not be due to \mathcal{CP} violation
 - \rightarrow potentially high model dependence.

Effective model

Intro

▶ Yukawa Lagrangian (generated e.g. by $1/\Lambda^2(\Phi^{\dagger}\Phi)Q_L\tilde{\Phi}f_R$ operator in SMEFT),

$$\mathcal{L}_{\mathsf{yuk}} = -rac{y_t^{\mathsf{SM}}}{\sqrt{2}} ar{t} \left(c_t + i \gamma_5 ilde{c}_t
ight) t \mathcal{H}.$$

- optional: additional free parameters
 - $c_V o$ rescaling HVV couplings (tH and tWH production depend on c_V),
 - $\kappa_g o \text{rescaling } gg o H$ ("removing" gluon fusion constraints),
 - $\kappa_{\gamma}
 ightarrow$ rescaling $H
 ightarrow \gamma \gamma$ ("removing" $H
 ightarrow \gamma \gamma$ constraints),
- ightharpoonup did not consider \mathcal{CP} -odd HVV operators,
- ► SM: $c_t = 1$, $\tilde{c}_t = 0$, $c_V = 1$.

Considered four models:

- 1. (c_t, \tilde{c}_t) free,
- 2. (c_t, \tilde{c}_t, c_V) free,
- 3. $(c_t, \tilde{c}_t, c_V, \kappa_{\gamma})$ free,
- 4. $(c_t, \tilde{c}_t, c_V, \kappa_{\gamma}, \kappa_g)$ free.

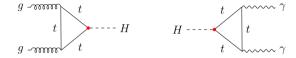
Introduction

Current LHC constraints

Machine-learning-based inference

Complementarity with EDM and baryogenesis constraints

Conclusions

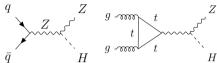

[based on HB et al., 2007.08542]

Most relevant observables:

LHC constraints

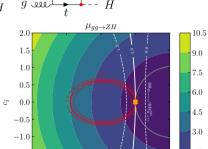
- Higgs production (*ggH*, *ZH*, *t̄tH*, *tH*, *tWH*)
- Higgs decays $(H o f \bar{f}, \gamma \gamma, gg)$,
- experimental input:
 - all relevant Higgs measurements:
 - Higgs signal-strength measurements,
 - ZH STXS measurements (p_T shape),
 - ► CMS $H \rightarrow \tau \tau \ \mathcal{CP}$ analysis [2110.04836],
 - did not include dedicated experimental top-Yukawa CP analyses (difficult to reinterpret in other model),
 - if available, included all uncertainty correlations,
- random scan with $\mathcal{O}(10^7 10^8)$ points,
- \triangleright χ^2 fit performed using HiggsSignals.

Relevant processes: $gg \rightarrow H \& H \rightarrow \gamma \gamma$


- top-Yukawa influences
 - ullet gg
 ightarrow H signal strength

$$\kappa_{g}^{2} \equiv \left. \frac{\sigma_{gg o H}}{\sigma_{gg o H}^{\text{SM}}} \right|_{M_{t} o \infty} \simeq c_{t}^{2} + \frac{9}{4} \tilde{c}_{t}^{2} + \ldots,$$

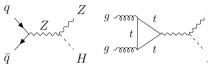
calculate κ_g either in terms of c_t and \tilde{c}_t or treat it as free parameter (\rightarrow undiscovered colored BSM particles),


- kinematic shapes could be sensitive ($\Delta \phi_{ii}$ in $gg \to H+2j$, see [ATLAS-CONF-2020-055])
- ightharpoonup similar for $H o \gamma \gamma$: $\kappa_{\gamma}^2 \simeq 0.08 c_t^2 + 0.18 \tilde{c}_t^2 + 1.62 c_V^2 0.71 c_V c_t + \dots$

Relevant processes: ZH production

Total rate:

- \triangleright Experimental measurement: $pp \rightarrow ZH$,
- $ightharpoonup \sigma_{qar{q} o ZH}^{SM}pprox 6\sigma_{gg o ZH}^{SM}$,
- ▶ but $\sigma_{gg \to ZH}$ can be significantly enhanced.

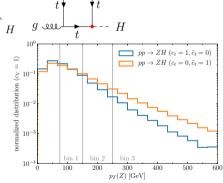


0

-1.5 -2.0

-1

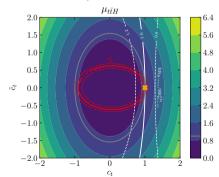
Relevant processes: ZH production

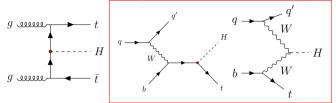


Total rate:

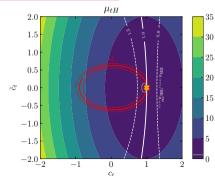

- ightharpoonup Experimental measurement: $pp \rightarrow ZH$,
- $ightharpoonup \sigma_{q\bar{q} o ZH}^{\rm SM}pprox 6\sigma_{gg o ZH}^{\rm SM}$,
- but $\sigma_{gg \to ZH}$ can be significantly enhanced.

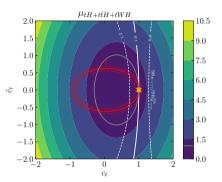
Kinematic shapes:


- \triangleright Z p_T -shape sensitive to Higgs \mathcal{CP} -properties,
- use STXS bins as additional input.

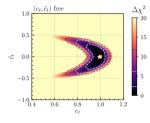

Relevant processes: *ttH* and *tH* production

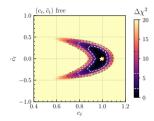
- $ightharpoonup \sigma_{t\bar{t}H}^{SM} \approx 7\sigma_{tH}^{SM}$,
- ▶ but \mathcal{CP} -odd coupling can enhance σ_{tH} .

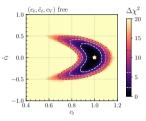

Relevant processes: ttH and tH production


- $ightharpoonup \sigma_{t\bar{t}H}^{SM} \approx 7\sigma_{tH}^{SM}$,
- ▶ but \mathcal{CP} -odd coupling can enhance σ_{tH} .

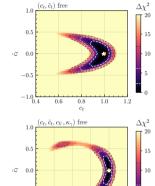
Kinematic shape:

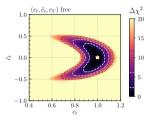

- ► Higgs *p_T* shape measured in STXS framework, [ATLAS-CONF-2020-026]
- applicability questionable.

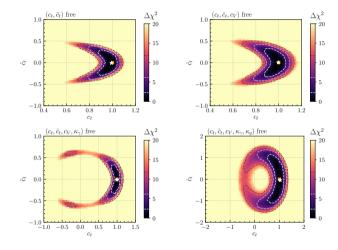



Relevant processes: combined top-associated Higgs production

- $ightharpoonup t\bar{t}H$ and tH difficult to disentangle \to normally combination of both measured,
- $\mu_{tH+t\bar{t}H+tWH} = \frac{\sigma(pp \to t\bar{t}H+tH+tWH)}{\sigma_{SM}(pp \to t\bar{t}H+tH+tWH)},$
- ▶ plots for $c_V = 1$.




-0.5

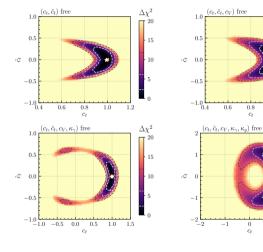

-1.0 -1.0 -0.5 0.0

0.5 1.0

 c_t

1.0

 $\Delta \chi^2$


15

 $\Delta \chi^2$

15

10

Fit results

- ► Large model dependence,
- ▶ still significant *CP*-odd coupling allowed in 5D model.

How to improve constraints in the future?

- Construct CP-odd observables
 - \rightarrow easy to interpret but experimentally difficult for top-associated Higgs production,
- indirect constraints
 - ightarrow comparably low model dep., but deviations could also be caused by other BSM physics.
- include more kinematic information, [see e.g. ATLAS and CMS studies: 2003.10866,2004.04545]
 - \rightarrow model dependence (e.g. HVV couplings)?
- ⇒ Should pursue all approaches to exploit complementarity!

How to improve constraints in the future?

- ► Construct CP-odd observables
 - ightarrow easy to interpret but experimentally difficult for top-associated Higgs production,
- indirect constraints
 - ightarrow comparably low model dep., but deviations could also be caused by other BSM physics.
- include more kinematic information, [see e.g. ATLAS and CMS studies: 2003.10866,2004.04545]
 - → model dependence (e.g. HVV couplings)?
- ⇒ Should pursue all approaches to exploit complementarity!

Introduction

Current LHC constraints

Machine-learning-based inference

Complementarity with EDM and baryogenesis constraints

Conclusions

Constructing the likelihood function — basics I

Goal of LHC measurements

Derive likelihood function $p_{\text{full}}(\{x_i\}|\theta)$ giving probability of observing a set of events with observables x_i for a given model with parameters θ .

We can write

$$p_{\mathsf{full}}(\{x_i\}|\theta) = \mathsf{Pois}(n|L\sigma(\theta)) \prod_i p(x_i|\theta),$$

with the probability density of observing a single event

$$p(x|\theta) = \frac{1}{\sigma(x)} \frac{d^d \sigma(x|\theta)}{dx^d}$$

How can we obtain $p(x|\theta)$?

Constructing the likelihood function — basics II

MC simulators allow to sample $p(x|\theta)$ using the following steps:

- 1. generate parton-level events,
- 2. parton shower,
- 3. detector simulation.

$$p(x|\theta) = \int dz_d \int dz_s \int dz_p \underbrace{p(x|\mathbf{z}_d)p(\mathbf{z}_d|\mathbf{z}_s)p(\mathbf{z}_s|\mathbf{z}_p)p(\mathbf{z}_p|\theta)}_{=p(x,z|\theta)}$$
(1)

Large number of involved parameters \rightarrow can not compute this integral directly!

ML-based inference

Constructing the likelihood function — traditional approach

Summary statistics

Calculate most relevant observable(s) and bin events into histogram.

- $ightharpoonup r(x|\theta_0,\theta_1) \equiv rac{p(x|\theta_0)}{p(x|\theta_1)} \leftrightarrow {
 m ratio\ of\ events\ predicted/measured\ per\ bin.}$
- Disadvantages:
 - low dimensionality \rightarrow loose of information,
 - binning → loose of information.
- \rightarrow Can we use the whole available information?

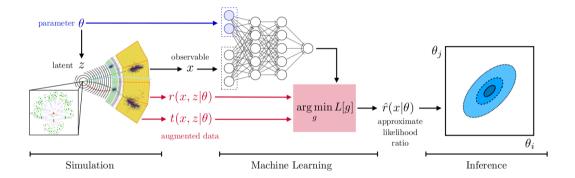
Possible approaches: matrix element method or optimal observable approach. [see e.g. Kraus, Martini, Peitzsch, Uwer, 1908.09100]

Machine-learning-based inference

[Brehmer, Cranmer, Kling,..., 1906.01578, 1805.12244, 1805.00013, 1805.00020, 1808.00973]

1. Calculate joint likelihood ratio

$$r(x,z|\theta_0,\theta_1) \equiv \frac{p(x,z|\theta_0)}{p(x,z|\theta_1)} = \frac{p(x|z_d)p(z_d|z_s)p(z_s|z_p)p(z_p|\theta_0)}{p(x|z_d)p(z_d|z_s)p(z_s|z_p)p(z_p|\theta_1)} = \frac{p(z_p|\theta_0)}{p(z_p|\theta_1)} = \frac{d\sigma(z_p|\theta_0)}{d\sigma(z_p|\theta_1)} \frac{\sigma(\theta_1)}{\sigma(\theta_0)},$$


[Note: evaluating $p(z_p|\theta) \sim$ evaluating matrix element \rightarrow relatively easy using morphing techniques,]

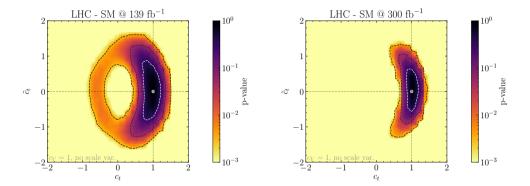
2. define suitable loss function, e.g.

$$L[\hat{r}(x|\theta_0,\theta_1)] = \frac{1}{N} \sum_{(x_i,z_i) \sim p(x,z|\theta_1)} |r(x_i,z_i|\theta_0,\theta_1) - \hat{r}(x_i|\theta_0,\theta_1)|^2,$$

3. express estimator $\hat{r}(x_i|\theta_0,\theta_1)$ as neural network which is trained to minimize $L\to\hat{r}$ converges to true r

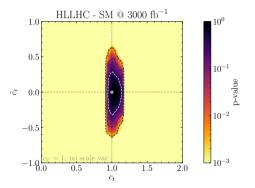
Machine-learning-based inference — overview

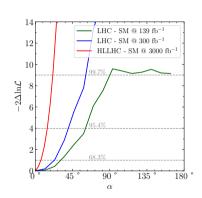
► We used implementation of publicly available code MadMiner designed to work with MadGraph + Pythia + Delphes.


Application to \mathcal{CP} violation in the Higgs-top-quark interaction

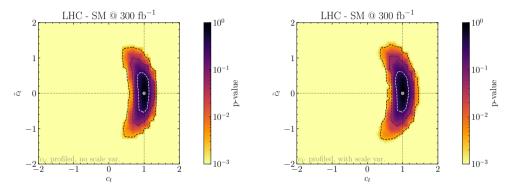
► Concentrate on top-associated Higgs production ($t\bar{t}H$, tH, tWH) with $H \to \gamma\gamma$,

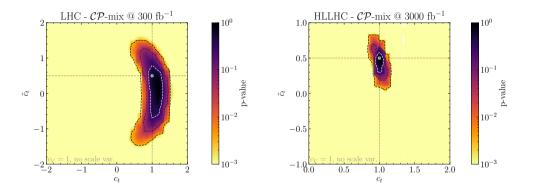
MI -based inference 000000000000000


- free model parameters: c_t , \tilde{c}_t , c_V (+ renormalization scale μ_R),
- demand at least one lepton in final state \rightarrow backgrounds: ZH, WH. (non-Higgs backgrounds are assumed to be subtracted by fit to smoothly falling $m_{\gamma\gamma}$ distribution)
- used two different detector cards: ATLAS LHC card. HL-LHC card.
- defined 47 observables used by neural network,
- averaged over ensemble of six neural networks to minimize ML uncertainty.
- → Evaluate likelihood for different luminosities.


Expected limits assuming SM data - LHC

- Assumption: $c_V = 1$,
- no variation of renormalization scale.


Expected limits assuming SM data – HL-LHC + angle interpretation


lacktriangle Can also interprete results in terms of \mathcal{CP} -violating angle $an lpha \equiv ilde{c}_t/c_t.$

Dependence on c_V and renormalization scale

- ▶ Floating c_V and μ_R only results in slightly looser constraints
 - ightarrow only small dependence on our knowledge of the HVV coupling and the theoretical uncertainty,
- additional uncertainty not considered: pdf uncertainty.

Expected limits assuming SM data - LHC

Assumption: $c_t = 1$, $\tilde{c}_t = 0.5$ realized in Nature.

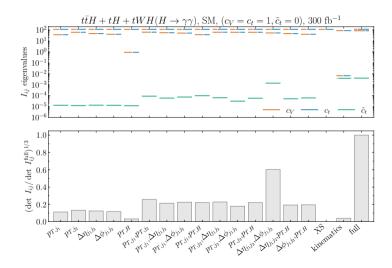
Most sensitive observables — Fisher information

What observables drive these constraints?

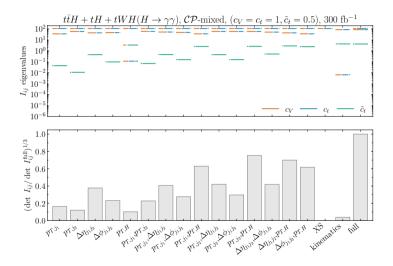
► Evaluate sensitivity using Fisher matrix

$$I_{ij}(heta) = \mathbb{E}\left[rac{\partial \log p_{\mathsf{full}}(\{x\}| heta)}{\partial heta_i} rac{\partial \log p_{\mathsf{full}}(\{x\}| heta)}{\partial heta_j}igg|_{ heta}
ight],$$

ightharpoonup related to the minimal covariance of an estimator $\hat{\theta}$ via


$$\operatorname{cov}(\hat{\theta}|\theta)_{ij} \geq I_{ij}^{-1}(\theta),$$

▶ 1D case: $\Delta \theta = \text{var}(\hat{\theta}|\theta) \ge 1/\sqrt{I(\theta)}$.


 $Higher\ information \longrightarrow higher\ precision$

Most sensitive observables — SM

 č_t hard to constraint close to SM point without full kinematic information.

Most sensitive observables — \mathcal{CP} -mixed benchmark point

Higgs p_T shape seems to be well suited to constrain c

t in case of a deviation from the SM. Introduction

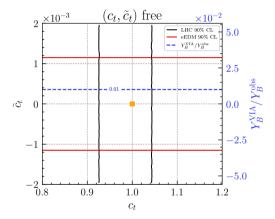
Current LHC constraints

Machine-learning-based inference

Complementarity with EDM and baryogenesis constraints

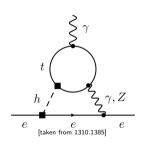
Conclusions

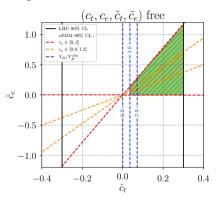
EDM and BAU constraints


EDM:

- \triangleright Several EDMs are sensitive to \mathcal{CP} violation in the Higgs sector,
- we consider only constraints from theoretically cleanest EDM
 the electron EDM (eEDM).
- ▶ eEDM evaluated using results from [Brod et al.,1310.1385,1503.04830].

BAU:


- \triangleright different techniques used in the literature to calculate baryon asymmetry Y_B
 - ightarrow large theoretical uncertainty,
- we employ vev-insertion approximation (VIA) with benchmark model for bubble wall properties maximising Y_B
 - \rightarrow values should be regarded as an upper bound,
- evaluation based on simple fit formula. [Shapira,2106.05338]


Single flavour modifications

ightharpoonup eEDM places very strong constraints on \mathcal{CP} -violating top-Yukawa coupling; very similar for global modification.

Dependence on electron-Yukawa coupling

- ▶ eEDM $d_e/d_e^{\text{exp}} \approx 870c_e\tilde{c}_t 1082\tilde{c}_ec_V + 610\tilde{c}_ec_t + \ldots$
- ▶ hardly any collider constraints on c_e and \tilde{c}_e ,
- fine-tuned cancellation between electron and top contributions to eEDM possible,
- \triangleright allows for substantial contribution of \mathcal{CP} -violating top-Yukawa coupling to BAU.

Introduction

Current LHC constraint

Machine-learning-based inference

Complementarity with EDM and baryogenesis constraints

Conclusions

Conclusions

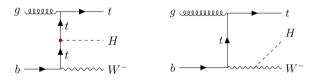
Initial question

How can we constrain a \mathcal{CP} -odd component of the top-Yukawa coupling?

- Current LHC rate measurements:
 - strong constraints from $gg \to H$ and $H \to \gamma \gamma$,
 - sizable $\mathcal{CP} ext{-}\mathrm{odd}$ coupling allowed if κ_g and κ_γ are varied independently,
- kinematic constraints using top-associated Higgs production:
 - ML-based inference promises strong constraints at HL-LHC,
 - Higgs p_T -shape appears to be a promising observable,
- EDM and BAU constraints:
 - strong complementary constraints,
 - have to be careful with interpretation due to strong dependence on first-generation Yukawa couplings.

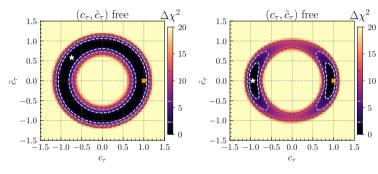
Conclusions

Initial question


How can we constrain a \mathcal{CP} -odd component of the top-Yukawa coupling?

- Current LHC rate measurements:
 - strong constraints from $gg \to H$ and $H \to \gamma \gamma$,
 - sizable $\mathcal{CP} ext{-}\mathrm{odd}$ coupling allowed if κ_g and κ_γ are varied independently,
- kinematic constraints using top-associated Higgs production:
 - ML-based inference promises strong constraints at HL-LHC,
 - Higgs p_T -shape appears to be a promising observable,
- EDM and BAU constraints:
 - strong complementary constraints,
 - have to be careful with interpretation due to strong dependence on first-generation Yukawa couplings.

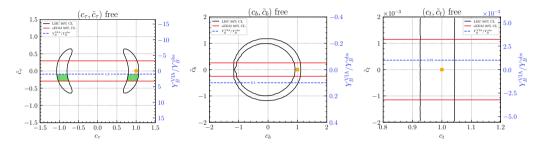
Thanks for your attention!


Appendix

Relevant processes: tWH production

- ightharpoonup interferes with $t\bar{t}H$ production,
- $ightharpoonup \sigma_{t\bar{t}H}^{SM} \approx 34\sigma_{tWH}^{SM}$
- ▶ but non-negligible contribution in \mathcal{CP} -odd case: $\sigma^{\mathcal{CP}\text{-odd}}_{t\bar{t}H} \approx 3.5\sigma^{\mathcal{CP}\text{-odd}}_{tWH}$,
- \rightarrow fully taken into account in numerical analysis.

Impact of CMS $H \to \tau \tau \ \mathcal{CP}$ analysis



Left: fit result without CMS $H \to \tau \tau \ \mathcal{CP}$ analysis.

Right: fit result with CMS $H \to \tau \tau \ \mathcal{CP}$ analysis.

- ▶ Decay width $\Gamma_{H \to \tau \tau} \propto c_{\tau}^2 + \tilde{c}_{\tau}^2$,
- ▶ CMS $H \rightarrow \tau \tau \ \mathcal{CP}$ analysis disentangles c_{τ} and \tilde{c}_{τ} .

Single flavour modifications

- ightharpoonup Only \mathcal{CP} violation in tau-Yukawa coupling able to explain substantial amount of BAU while still satisfying eEDM and LHC constraints,
- ightharpoonup sizeable ${\cal CP}$ violation in bottom-Yukawa coupling still possible but very small contribution to BAU,
- ▶ eEDM places very strong constraints on \mathcal{CP} -violating top-Yukawa coupling; very similar for global modification (floating c_f and \tilde{c}_f).