External leg corrections as an origin of large logarithms

Henning Bahl

based on 2112.11419 (accepted for publication in JHEP)

In collaboration with

J. Braathen, G. Weiglein

THE UNIVERSITY OF CHICAGO

Universität Freiburg, 8.2.2022

Talk outline

- 1. Introduction
- 2. External leg corrections as an origin of large logarithms
- 3. Applications
- 4. Conclusion

Introduction

Motivation

- BSM physics needed to explain e.g. Dark Matter, baryon asymmetry, etc.
- Many BSM models predict extended scalar sector (e.g. singlet extensions, 2HDM, MSSM).
- If a new particle is discovered, its characterization will be of foremost interest.
- Precise theory predictions will be needed to discriminate between different possible realization of BSM physics ⇒ calculation of loop corrections crucial.
- One of the main challenges: large logarithms.

This talk: identify a new source of large logarithms related to external leg corrections.

Large logarithms in precision predictions

- In many calculations, large logarithms appear spoiling the reliability of the perturbative expansion.
- Different types of large logarithms are known (non-comprehensive list):
 - 1. Logarithms containing heavy mass scale appearing in prediction of low-scale observable
 - E.g. prediction of SM-like Higgs mass in the MSSM $\rightarrow \ln \frac{M_{SUSY}^2}{m_{s}^2}$.
 - Resum by integrating out the heavy particles.
 - 2. Logarithms involving light quark mass
 - E.g. heavy Higgs boson decay to fermions.
 - Resum large logarithms by involving Yukawa coupling to heavy mass scale.
 - 3. Sudakov logarithms
 - E.g. thrust T distribution in QCD $\rightarrow \ln^2(1-T)$ appears in integrated distribution.
 - Resum by exponentiation or using Soft Collinear Field Theory (SCET).

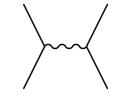
Recap: infrared divergencies

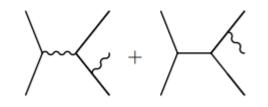
• Consider e.g. $e^+e^- \rightarrow \mu^+\mu^-$.

- 1L virtual QED correction is IR divergent; i.e., contains $\ln^2 \frac{m_{\gamma}^2}{Q^2}$ and $\ln^1 \frac{m_{\gamma}^2}{Q^2}$ terms $(m_{\gamma}: \text{photon mass}, Q: \text{ren. scale}).$
- Real emission contribution of photons with energy below detector resolution also contains IR divergencies.

$$\sigma_{2 \to 2} = \sigma \left(e^+ e^- \to \mu^+ \mu^- \right) + \sigma \left(e^+ e^- \to \mu^+ \mu^- \gamma \right) \Big|_{E_\gamma < E_{\text{res}} \text{ or } \theta_{\gamma\mu} < \theta_{\text{res}}}$$

• Sum of virtual and real corrections IR finite.



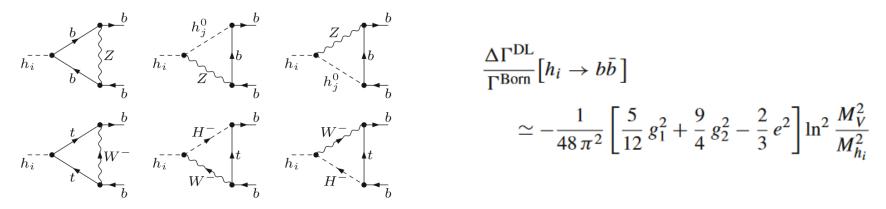


Electroweak Sudakov logarithms

• Sudakov logarithms also appear in electroweak corrections in the form

$$\sim \frac{g^2}{16\pi^2} \ln^2 \frac{M_V^2}{s}$$
 and $\sim \frac{g^2}{16\pi^2} \ln \frac{M_V^2}{s}$ where M_V is a gauge or Higgs boson mass.

• Example: heavy Higgs boson decay into $b\overline{b}$ (see e.g. [Domingo, Paßehr, 1907.05468]).

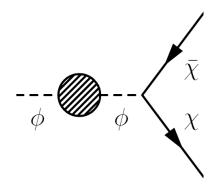


- Sudakov logarithms related to infrared limit $(M_V \to 0)$; cancel in combined $h_i \to b\bar{b}$, $h_i \to b\bar{b} + Z/h_j$, $h_i \to t\bar{b} + W^-$ amplitude.
- If additional $Z/h_j/W$ radiation can be resolved analytically \rightarrow large logarithms remain in result.

This talk: Sudakov-like logarithms arising from external leg corrections.

External leg corrections: LSZ factor

• Need to ensure that external particles have correct OS properties ⇒ LSZ formalism!



• For non-mixing particles, this accounts to multiplying the amplitude by factors of $\sqrt{Z_{\phi}}$ for every external particle ϕ ,

$$\sqrt{Z_{\phi}} = \frac{1}{\sqrt{1 + \widehat{\Sigma}_{\phi\phi}'(\mathcal{M}_{\phi}^2)}},$$

where $\hat{\Sigma}'_{\phi\phi}$ is the momentum derivative of the $\phi\phi$ self energy.

External leg corrections: Z-matrix formalism

[Fuchs,Weiglein,1610.06193]

In general, we also need to consider mixing:

$$\begin{split} \hat{\Gamma}_{\phi_a^{\text{physical}}} &= \sum_j \hat{\mathbf{Z}}_{aj} \hat{\Gamma}_{\phi_j} \\ \text{With} \quad \hat{\mathbf{Z}}_{aj} &= \sqrt{\hat{Z}_i^a} \hat{Z}_{ij}^a \quad \text{and} \quad \hat{Z}_i^a &= \frac{1}{1 + \hat{\Sigma}_{ii}^{\text{eff}\,\prime}(p^2 = \mathcal{M}_a^2)}, \qquad \hat{Z}_{ij}^a &= \frac{\Delta_{ij}(p^2)}{\Delta_{ii}(p^2)} \Big|_{p^2 = \mathcal{M}_a^2} \end{split}$$

 $\bar{\phi}_1 \bigoplus_{\phi_2} \bar{\chi}$

 Δ_{ij} is the *ij* element of the propagator matrix, \mathcal{M}_a^2 is the complex pole and

$$\hat{\Sigma}_{ii}^{\text{eff}}(p^2) = \hat{\Sigma}_{ii}(p^2) + \frac{\Delta_{ij}(p^2)}{\Delta_{ii}(p^2)}\hat{\Sigma}_{jj}(p^2) + \frac{\Delta_{ik}(p^2)}{\Delta_{ii}(p^2)}\hat{\Sigma}_{kk}(p^2)$$

for three particles i, j, k.

e.g. for three Higgs boson *h*, *H*, *A*:

$$rac{h_a}{p^2 = \mathcal{M}_a^2} \hspace{-1.5cm} \left(\hat{\Gamma}_{h_a} \hspace{-1.5cm} = \hspace{-1.5cm} \sqrt{\hat{Z}_a} \hspace{-1.5cm} \left(\begin{array}{c} h_a \hspace{-1.5cm} = \hspace{-1.5cm} h \hspace{-1.5cm} \left\langle \hat{\Gamma}_h \hspace{-1.5cm} + \hspace{-1.5cm} \begin{array}{c} h_a \hspace{-1.5cm} = \hspace{-1.5cm} H \hspace{-1.5cm} \left\langle \hat{\Gamma}_h \hspace{-1.5cm} + \hspace{-1.5cm} \begin{array}{c} h_a \hspace{-1.5cm} = \hspace{-1.5cm} H \hspace{-1.5cm} \left\langle \hat{\Gamma}_h \hspace{-1.5cm} + \hspace{-1.5cm} \begin{array}{c} h_a \hspace{-1.5cm} = \hspace{-1.5cm} H \hspace{-1.5cm} \left\langle \hat{\Gamma}_h \hspace{-1.5cm} + \hspace{-1.5cm} \begin{array}{c} h_a \hspace{-1.5cm} = \hspace{-1.5cm} H \hspace{-1.5cm} \left\langle \hat{\Gamma}_h \hspace{-1.5cm} + \hspace{-1.5cm} \begin{array}{c} h_a \hspace{-1.5cm} = \hspace{-1.5cm} A \hspace{-1.5cm} \left\langle \hat{\Gamma}_h \hspace{-1.5cm} \right\rangle \hspace{-1.5cm} + \hspace{-1.5cm} \left\langle \hat{\Gamma}_h \hspace{-1.5cm} + \hspace{-1.5cm} \begin{array}{c} h_a \hspace{-1.5cm} \left\langle \hat{\Gamma}_h \hspace{-1.5cm} + \hspace{-1.5cm} \left\langle \hat{\Gamma}_h \hspace{-1.5cm} \right\rangle \hspace{-1.5cm} + \hspace{-1.5cm} \left\langle \hat{\Gamma}_$$

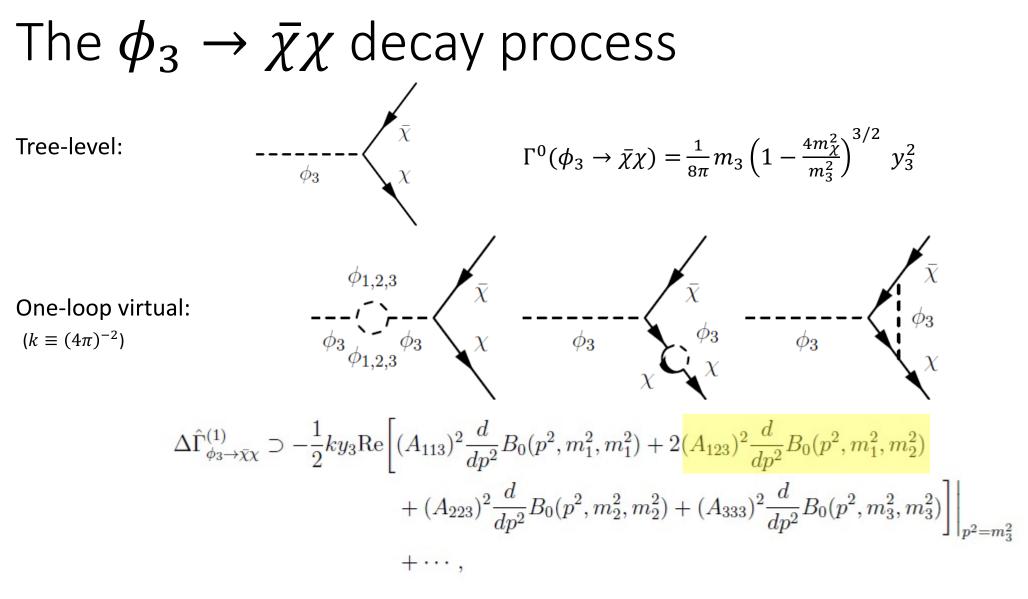
External leg corrections as a source of large logarithms

Toy model

- Three real scalars and one Dirac fermion: ϕ_1, ϕ_2, ϕ_3 and χ
- \mathbb{Z}_2 symmetry: $\phi_1 \rightarrow -\phi_1, \phi_2 \rightarrow -\phi_2, \phi_3 \rightarrow \phi_3, \chi \rightarrow \chi$

$$\begin{aligned} \mathcal{L} &= \frac{1}{2} \sum_{i=3}^{3} (\partial_{\mu} \phi_{i} \partial^{\mu} \phi_{i} - m_{i}^{2} \phi_{i}^{2}) \\ &- \frac{1}{2} A_{113} \phi_{1}^{2} \phi_{3} - \frac{A_{123}}{4} \phi_{1} \phi_{2} \phi_{3} - \frac{1}{2} A_{223} \phi_{2}^{2} \phi_{3} - \frac{1}{6} A_{333} \phi_{3}^{3} \\ &- \frac{1}{24} \lambda_{1111} \phi_{1}^{4} - \frac{1}{6} \lambda_{1112} \phi_{1}^{3} \phi_{2} - \frac{1}{4} \lambda_{1122} \phi_{1}^{2} \phi_{2}^{2} - \frac{1}{6} \lambda_{1222} \phi_{1} \phi_{2}^{3} - \frac{1}{24} \lambda_{2222} \phi_{2}^{4} \\ &- \frac{1}{4} \lambda_{1133} \phi_{1}^{2} \phi_{3}^{2} - \frac{1}{2} \lambda_{1233} \phi_{1} \phi_{2} \phi_{3}^{2} - \frac{1}{4} \lambda_{2233} \phi_{2}^{2} \phi_{3}^{2} - \frac{1}{24} \lambda_{3333} \phi_{3}^{4} \\ &+ \bar{\chi} (i \partial - m_{\chi}) \chi + y_{3} \phi_{3} \bar{\chi} \chi \,, \end{aligned}$$

• For the present study, we are mainly interested in the trilinear couplings (especially A_{123}).



No mixing & no vertex corrections proportional to A_{ijk} !

Infrared limits

1. ϕ_2 and ϕ_3 are almost mass-degenerate, ϕ_1 is light $(m_2 \rightarrow m_3, m_1 \rightarrow 0)$

$$\frac{d}{dp^2} B_0(p^2, m_1^2, m_2^2) \big|_{p^2 = m_3^2} = \frac{1}{m_3^2} \left(\frac{1}{2} \ln \frac{m_3^2}{m_1^2} - 1 + \mathcal{O}\left(\epsilon\right) \right)$$

with $\epsilon \equiv m_3^2 - m_2^2$ and $m_1^2 \sim \epsilon$.

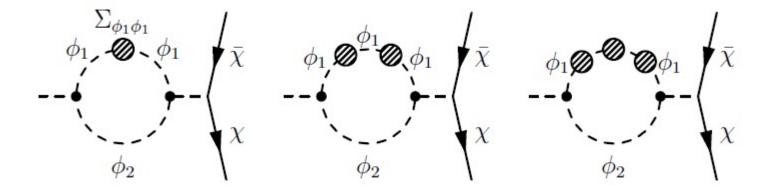
2. ϕ_2 and ϕ_3 are almost mass-degenerate, ϕ_1 is massless ($m_1 = 0, m_2 \rightarrow m_3$)

$$\frac{d}{dp^2} B_0(p^2, 0, m_2^2) \Big|_{p^2 = m_3^2} = \frac{1}{m_3^2} \left(\ln \frac{m_3^2}{\epsilon} - 1 + \mathcal{O}\left(\epsilon\right) \right)$$

Infrared divergencies appear in external leg corrections

Regulating the IR divergency I: resummation of ϕ_1 contributions

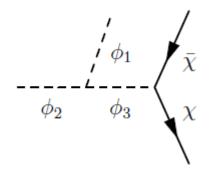
Idea: give ϕ_1 an effective mass by resuming ϕ_1 self-energy insertions (like for the Goldstone boson catastrophe).



$$\hat{\Gamma}(\phi_3 \to \chi \bar{\chi}) \supset \Gamma^{(0)}(\phi_3 \to \chi \bar{\chi}) \cdot \left[1 + k \frac{(A_{123})^2}{m_3^2} \left(\frac{1}{2} \ln \frac{\Delta m_1^2}{m_3^2} + 1 \right) \right] \quad \text{with} \qquad \Delta m_{\phi_1}^2 = \hat{\Sigma}_{11}^{(1)}(p^2 = 0)$$

IR divergence regulated, but physical interpretation unclear.

Regulating the IR divergency II: soft ϕ_1 radiation



Include soft ϕ_1 radiation (here: $m_1 \neq 0$ with $m_2 = m_3$; $\epsilon \neq 0$ with $m_1 = 0$ case follows analogously):

$$\begin{split} \Gamma^{(0)}(\phi_2 \to \chi \bar{\chi} \phi_1) \Big|^{\text{soft}} &= \Gamma^{(0)}(\phi_3 \to \chi \bar{\chi}) \cdot k \frac{(A_{123})^2}{m_3^2} \bigg[-\frac{E_\ell}{\sqrt{E_\ell^2 + m_1^2}} - \frac{1}{2} \ln m_1^2 \\ &\quad + \ln(E_\ell + \sqrt{E_\ell^2 + m_1^2}) \bigg] \\ &= \Gamma^{(0)}(\phi_3 \to \chi \bar{\chi}) \cdot k \frac{(A_{123})^2}{m_3^2} \bigg[-1 - \frac{1}{2} \ln m_1^2 + \ln(2E_\ell) + \mathcal{O}(m_1) \bigg] \end{split}$$
detector resolution

 \Rightarrow sum of virtual and real corrections is infrared finite:

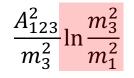
$$\hat{\Gamma}(\phi_3 \to \chi \bar{\chi}) + \Gamma^{(0)}(\phi_2 \to \chi \bar{\chi} \phi_1) \Big|^{\text{soft}} = \Gamma^{(0)}(\phi_3 \to \chi \bar{\chi}) \cdot \left[1 + k \frac{(A_{123})^2}{m_3^2} \ln \frac{2E_\ell}{m_3} \right] + \cdots,$$

Infrared divergencies are regulated with clear physical interpretation!

The appearance of large logarithms

If the mass of ϕ_1 is large enough (or the mass difference ϵ), $\phi_3 \rightarrow \chi \overline{\chi}$ and $\phi_3 \rightarrow \chi \overline{\chi} \phi_1$ processes can be distinguished experimentally.

Then, we will have terms like



appearing in our amplitude.

For many BSM theories trilinear couplings are of the order of the BSM mass scale ($A_{123} \sim m_3$).

Large unsuppressed logarithms appear in the prediction of the decay width!

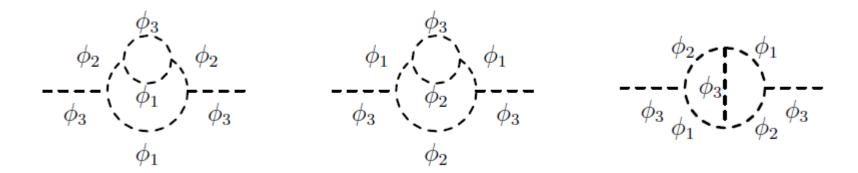
How large is the impact of these logarithms at higher orders?

External leg corrections at the 2L level I

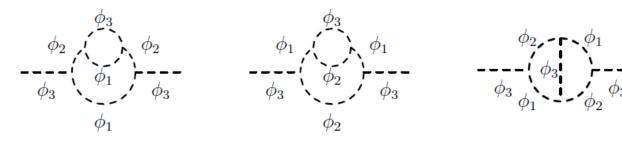
- Resummation could be feasible using SCET approach (see e.g. [Alte,König,Neubert,1902.04593]).
- We take a more direct approach by explicitly evaluating 2L corrections.

$$\hat{\Gamma}(\phi_3 \to \chi \bar{\chi}) = \Gamma^{(0)}(\phi_3 \to \chi \bar{\chi}) \left\{ 1 - \operatorname{Re} \hat{\Sigma}_{33}^{(1)\prime}(m^2) - \operatorname{Re} \hat{\Sigma}_{33}^{(2)\prime}(m^2) + \left(\operatorname{Re} \hat{\Sigma}_{33}^{(1)\prime}(m^2) \right)^2 + \left(\operatorname{Im} \hat{\Sigma}_{33}^{(1)\prime}(m^2) \right)^2 + \mathcal{O}(k^3) \right\}$$

with the two-loop diagrams (including only corrections leading in powers of A_{123})



External leg corrections at the 2L level II



With $m_1^2 = \epsilon$, $m_2^2 = m_3^2 = m^2$ we obtain

$$\hat{\Sigma}_{33}^{(1)}(p^2) = k(A_{123})^2 B_0(p^2, \epsilon, m^2),$$

$$\hat{\Sigma}_{33}^{(2, \text{ genuine})}(p^2) = k^2 (A_{123})^4 [T_{11234}(p^2, m^2, m^2, \epsilon, m^2, \epsilon) + T_{11234}(p^2, \epsilon, \epsilon, m^2, m^2, m^2) + T_{12345}(p^2, m^2, \epsilon, m^2, \epsilon, m^2)].$$

,

 T_{11234} and T_{12345} are the finite parts of

$$\begin{split} \mathbf{T}_{11234}(p^2, x, y, z, u, v) &\equiv \\ &\equiv \mathcal{C}^2 \int \int \frac{d^d q_1 d^d q_2}{(q_1^2 - x)(q_1^2 - y)((q_1 + p)^2 - z)((q_1 - q_2)^2 - u)(q_2^2 - v)} \,, \\ &\mathbf{T}_{12345}(p^2, x, y, z, u, v) \equiv \\ &\equiv \mathcal{C}^2 \int \int \frac{d^d q_1 d^d q_2}{(q_1^2 - x)((q_1 + p)^2 - y)((q_1 - q_2)^2 - z)(q_2^2 - u)((q_2 + p)^2 - v)} \end{split}$$

Evaluation of 2L integrals

- 2L integrals can be evaluated numerically using e.g. TSIL [Martin, Robertson, 0501132].
- We want to extract the large logarithms \Rightarrow analytic expansion in infrared limits.

(using expressions from [Martin,Robertsion,0312092,0307101,0501132])

• Example result for T_{11234} (with $m_1^2 = \epsilon, m_2^2 = m_3^2 = m^2$):

$$\begin{aligned} \frac{d}{dp^2} T_{11234}(p^2,\epsilon,\epsilon,m^2,m^2,m^2) \bigg|_{p^2 = m^2} = \\ &= -\frac{\overline{\ln m^2}}{2m^2\epsilon} + \frac{3\pi \overline{\ln m^2}}{8m^3\sqrt{\epsilon}} + \frac{-50 + 6\pi^2 + 3\overline{\ln\epsilon} - 12\overline{\ln m^2} + 18\overline{\ln\epsilon}\overline{\ln}m^2 - 18\overline{\ln^2}m^2}{36m^4} \end{aligned}$$

• Terms of $\mathcal{O}(1/\epsilon, 1/\sqrt{\epsilon})$ appear!

 $(\overline{\ln x} = \ln x / Q^2 \text{ and ren. scale } Q)$

\overline{MS} 2L result

(for
$$m_1^2 = \epsilon, m_2^2 = m_3^2 = m^2$$
)

We obtain

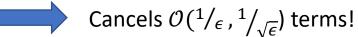
$$\begin{split} \hat{\Gamma}(\phi_3 \to \chi \bar{\chi}) &= \Gamma^{(0)}(\phi_3 \to \chi \bar{\chi}) \bigg\{ 1 - \frac{k(A_{123})^2}{m^2} \bigg[\frac{1}{2} \ln \frac{m^2}{\epsilon} - 1 \bigg] \\ &+ \frac{k^2 (A_{123})^4}{m^4} \bigg[\frac{m^2 \overline{\ln} m^2}{2\epsilon} - \frac{m\pi (4 + \overline{\ln} m^2)}{8\sqrt{\epsilon}} \\ &+ \frac{17}{9} - \frac{\pi^2}{8} + \frac{1}{8} \ln^2 \frac{m^2}{\epsilon} + \frac{1}{6} \overline{\ln} \epsilon + \frac{1}{12} \overline{\ln} m^2 \\ &+ \pi^2 \ln 2 - \frac{3}{2} \zeta(3) \bigg] \bigg\} \,. \end{split}$$

Terms enhanced by $\mathcal{O}(1/\epsilon, 1/\sqrt{\epsilon})$ appear in result! Can we absorb them into the renormalization of the masses and A_{123} ? $\hat{\Sigma}_{33}^{(2, \text{ subloop})}(p^2) = k(A_{123})^2 \left[\left(\frac{2\delta^{(1)}A_{123}}{A_{123}} + \delta^{(1)}Z_3 \right) B_0(p^2, m_1^2, m_2^2) + \delta^{(1)}m_1^2 \frac{\partial}{\partial m_1^2} B_0(p^2, m_1^2, m_2^2) + \delta^{(1)}m_2^2 \frac{\partial}{\partial m_2^2} B_0(p^2, m_1^2, m_2^2) \right]$

Mass renormalization

Renormalize m_1 and m_2 in the OS scheme:

 $\delta^{(1)}m_1^2 = k(A_{123})^2 \operatorname{Re}B_0(m_1^2, m_2^2, m_3^2)$ $\delta^{(1)}m_2^2 = k(A_{123})^2 \operatorname{Re}B_0(m_2^2, m_1^2, m_3^2)$



OS mass renormalization essential to avoid unphysically large corrections!

Similar issues are known to appear e.g. in the MSSM: non-decoupling of gluino corrections.

(see e.g. [9812472, 0105096,1606.09213, 1912.04199, 1912.10002])

Renormalization of A_{123}

• Three options for renormalization of A_{123} (CT is scale independent at leading order in A_{123}):

•
$$A_{123} \ \overline{MS}$$
:
 $\hat{\Gamma}(\phi_3 \to \chi \bar{\chi}) = \Gamma^{(0)}(\phi_3 \to \chi \bar{\chi}) \left\{ 1 - \frac{k(A_{123})^2}{m^2} \left[\frac{1}{2} \ln \frac{m^2}{\epsilon} - 1 \right] + \frac{k^2 (A_{123})^4}{m^4} \left[\frac{1}{8} \ln^2 \frac{m^2}{\epsilon} - \frac{7}{6} \ln \frac{m^2}{\epsilon} + \frac{71}{36} - \frac{3\pi^2}{8} + \pi^2 \ln 2 - \frac{3}{2} \zeta(3) \right] \right\}$

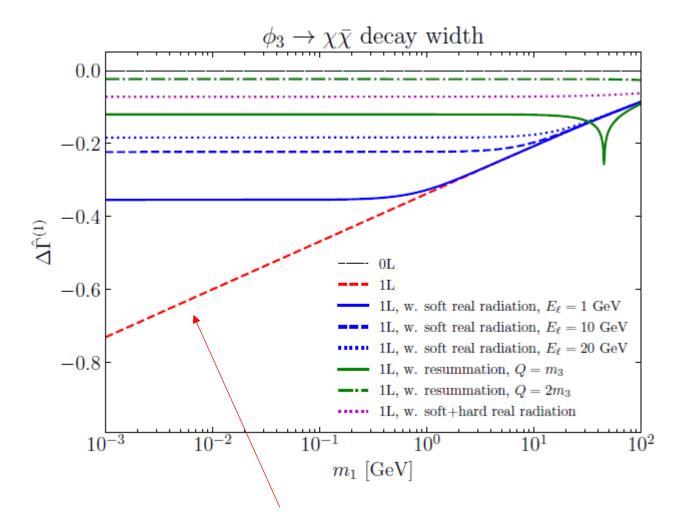
• A_{123} OS via $\phi_2 \rightarrow \phi_1 \phi_3$ amplitude:

$$\hat{\Gamma}(\phi_3 \to \chi \bar{\chi}) = \Gamma^{(0)}(\phi_3 \to \chi \bar{\chi}) \left\{ 1 - \frac{k(A_{123})^2}{m^2} \left[\frac{1}{2} \ln \frac{m^2}{\epsilon} - 1 \right] + \frac{k^2 (A_{123})^4}{m^4} \left[\frac{1}{8} \ln^2 \frac{m^2}{\epsilon} - \frac{31}{24} \ln \frac{m^2}{\epsilon} + \frac{19}{18} - \frac{3\pi^2}{8} + \pi^2 \ln 2 - \frac{3}{2} \zeta(3) \right] \right\}$$

• Choose A_{123} counterterm such that $\ln^2 \epsilon$ in $\hat{\Gamma}(\phi_3 \rightarrow \chi \bar{\chi})$ cancels ("no-log-sq" scheme):

$$\hat{\Gamma}(\phi_3 \to \chi \bar{\chi}) = \Gamma^{(0)}(\phi_3 \to \chi \bar{\chi}) \left\{ 1 - \frac{k(A_{123})^2}{m^2} \left[\frac{1}{2} \ln \frac{m^2}{\epsilon} - 1 \right] + \frac{k^2 (A_{123})^4}{m^4} \left[-\frac{11}{12} \ln \frac{m^2}{\epsilon} + \frac{71}{36} - \frac{3\pi^2}{8} + \pi^2 \ln 2 - \frac{3}{2} \zeta(3) \right] \right\}$$

Numerical analysis – 1L level

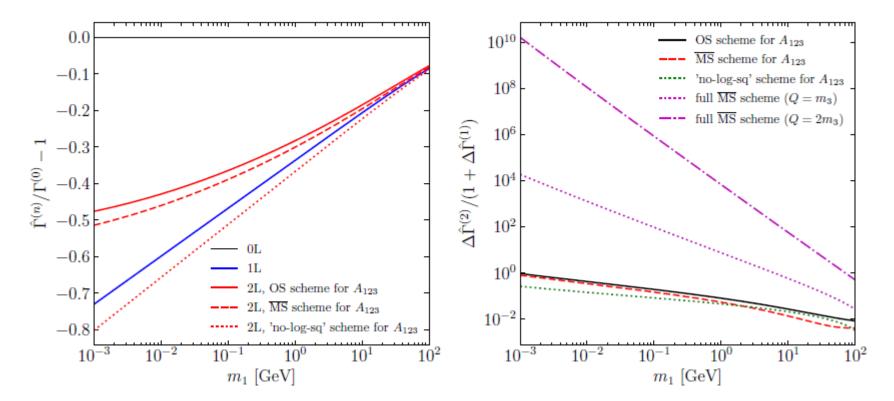


- If φ₁ radiation can be resolved experimentally, large 1L corrections are possible!
- Resumming ϕ_1 contributions results in substantial scale dependence (also no clear physical interpretation).

Large logarithm if no real radiation is included.

Numerical analysis – 2L level $(m_2 = m_3 = 1 \text{ TeV}, A_{123} = 3 \text{ TeV})$

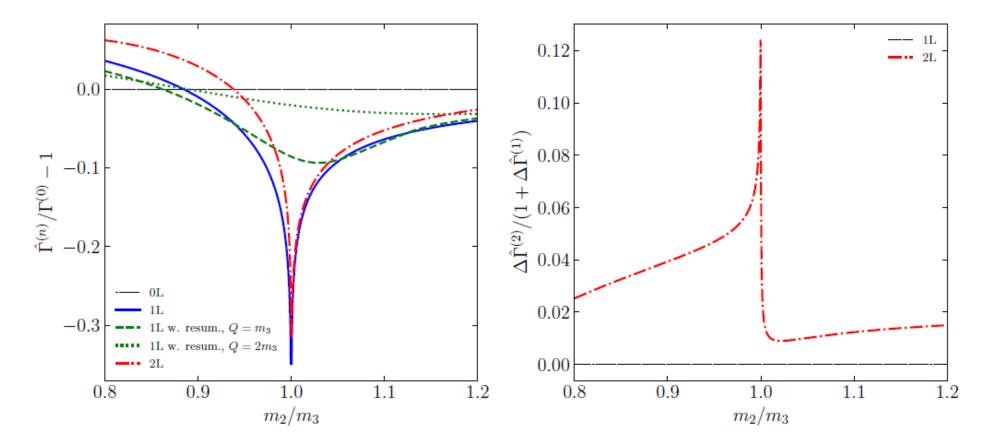
 $\phi_3 \rightarrow \chi \bar{\chi} \text{ decay width}$



2L corrections can have substantial impact close to IR limit. Only moderate differences between A_{123} schemes.

Numerical analysis – 2L level $(m_1 = 0 \text{ TeV}, m_3 = 0.5 \text{ TeV}, A_{123}^{\overline{MS}} = 1.5 \text{ TeV})$

 $\phi_3 \rightarrow \chi \bar{\chi} \text{ decay width}$



2L corrections can have substantial impact close to IR limit.

Applications

Stop-Higgs couplings in the MSSM

Higgs bosons: CP-even h, H bosons, CP-odd A boson, charged H^{\pm} bosons.

For simplicity: neglect all contributions proportional to the electroweak gauge couplings.

Then, the stop mass matrix is given by $(X_t = A_t - \mu / \tan \beta)$

$$\mathbf{M}_{\tilde{t}} = \begin{pmatrix} m_{\tilde{t}_L}^2 + m_t^2 & m_t X_t \\ m_t X_t & m_{\tilde{t}_R}^2 + m_t^2 \end{pmatrix}$$

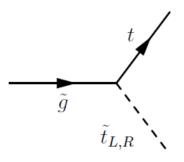
In the **unbroken** phase of the theory ($v = 0 \rightarrow m_t = 0$), the stops do not mix (\tilde{t}_L and \tilde{t}_R are mass eigenstates).

In this approximations, the stop-Higgs couplings are given by $(Y_t = A_t + \mu \tan \beta)$

$$\begin{split} c(H\tilde{t}_{L}\tilde{t}_{L}) &= c(H\tilde{t}_{R}\tilde{t}_{R}) = c(A\tilde{t}_{L}\tilde{t}_{L}) = c(A\tilde{t}_{R}\tilde{t}_{R}) = 0 & c(h\tilde{t}_{L}\tilde{t}_{L}) = c(G\tilde{t}_{L}\tilde{t}_{L}) = c(G\tilde{t}_{R}\tilde{t}_{R}) = 0, \\ c(H\tilde{t}_{L}\tilde{t}_{R}) &= -\frac{1}{\sqrt{2}}h_{t}c_{\beta}Y_{t}, & c(h\tilde{t}_{L}\tilde{t}_{R}) = \frac{1}{\sqrt{2}}h_{t}s_{\beta}X_{t}, \\ c(A\tilde{t}_{L}\tilde{t}_{R}) &= -c(A\tilde{t}_{R}\tilde{t}_{L}) = \frac{1}{\sqrt{2}}h_{t}c_{\beta}Y_{t}, & c(G\tilde{t}_{L}\tilde{t}_{R}) = -c(G\tilde{t}_{R}\tilde{t}_{L}) = \frac{1}{\sqrt{2}}h_{t}s_{\beta}X_{t}, \\ c(H^{+}\tilde{t}_{R}\tilde{b}_{R}) &= c(H^{+}\tilde{t}_{L}\tilde{b}_{L}) = c(H^{+}\tilde{t}_{L}\tilde{b}_{R}) = 0, & c(G^{+}\tilde{t}_{R}\tilde{b}_{R}) = c(G^{+}\tilde{t}_{L}\tilde{b}_{L}) = c(G^{+}\tilde{t}_{L}\tilde{b}_{R}) = 0, \\ c(H^{+}\tilde{t}_{R}\tilde{b}_{L}) &= -h_{t}c_{\beta}Y_{t}, & c(G^{+}\tilde{t}_{R}\tilde{b}_{L}) = -h_{t}s_{\beta}X_{t}. \end{split}$$

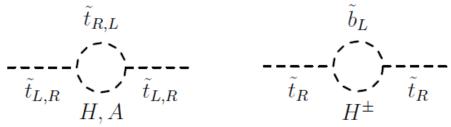
$$\begin{split} h_t: & \text{top-Yukawa coupling,} \\ & \tan\beta: \text{ratio of vevs} \\ c_\beta &\equiv \cos\beta, \\ & s_\beta &\equiv \sin\beta \end{split}$$

Note: no couplings involving two identical stops.



Gluino decay in the MSSM: Y_t terms

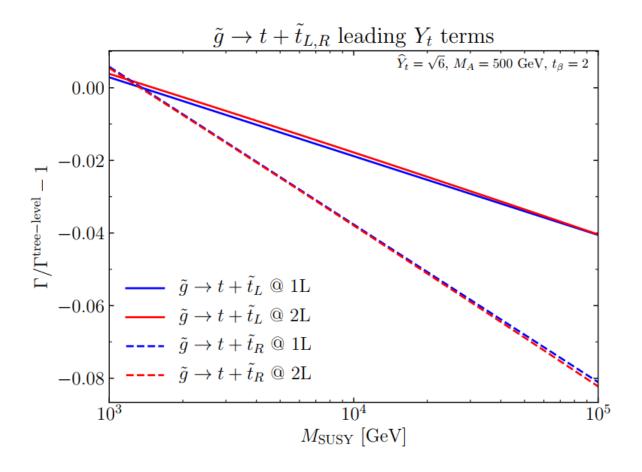
Consider first corrections leading corrections in Y_t :



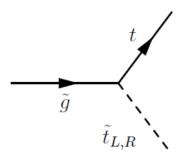
Non-SM Higgs bosons H, A, H^{\pm} have the mass m_A , which plays the role of m_1 in the toy model (and $m_{\tilde{t}_{L,R}} \leftrightarrow m_{2,3}$).

 $\begin{aligned} \text{Assuming } m_{\tilde{t}_{R}} &= m_{\tilde{t}_{L}} = M_{SUSY} \text{ and renormalising all masses and } Y_{t} \text{ on-shell, we obtain } (\hat{Y}_{t} \equiv Y_{t}/M_{SUSY} \sim \mathcal{O}(1)) \\ \hat{\Gamma}_{\tilde{g} \to t+\tilde{t}_{L}} &= \Gamma_{\tilde{g} \to t+\tilde{t}_{L}}^{(0)} \left\{ 1 - \operatorname{Re}\hat{\Sigma}_{t_{L}\tilde{t}_{L}}^{(1)'}(m_{\tilde{t}_{L}}^{2}) - \operatorname{Re}\hat{\Sigma}_{t_{L}\tilde{t}_{L}}^{(2)'}(m_{\tilde{t}_{L}}^{2}) \right. \\ &+ \left(\operatorname{Re}\hat{\Sigma}_{t_{L}\tilde{t}_{L}}^{(1)'}(m_{\tilde{t}_{L}}^{2}) \right)^{2} + \left(\operatorname{Im}\hat{\Sigma}_{t_{L}\tilde{t}_{L}}^{(1)'}(m_{\tilde{t}_{L}}^{2}) \right)^{2} + \mathcal{O}(k^{3}) \right\} \\ &= \Gamma_{\tilde{g} \to t+\tilde{t}_{L}}^{(0)} \left\{ 1 - kh_{t}^{2}c_{\beta}^{2}\hat{Y}_{t}^{2} \left[\frac{1}{2} \ln \frac{M_{SUSY}}{m_{A}^{2}} - 1 \right] \\ &- k^{2}h_{t}^{4}c_{\beta}^{4}\hat{Y}_{t}^{4} \left[\frac{1}{4} \ln^{2} \frac{M_{SUSY}^{2}}{m_{A}^{2}} - 2 \right] \ln \frac{M_{SUSY}}{m_{A}^{2}} + \frac{11}{12}\pi^{2} - \frac{35}{12} \right] \\ &+ \mathcal{O}\left(\frac{m_{A}}{M_{SUSY}} \right) + \mathcal{O}(k^{3}) \right\}, \end{aligned}$

Gluino decay in the MSSM: Y_t terms

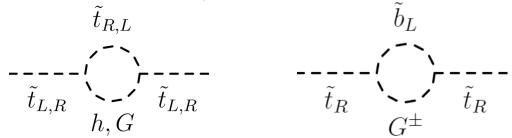


- We set $M_A = 500 \text{ GeV} \Rightarrow \tilde{g} \rightarrow t + \tilde{t}_{L,R}$ probably distinguishable from $\tilde{g} \rightarrow t + \tilde{t}_{L,R} + H, A, H^{\pm}$.
- Large logarithms have sizeable impact at the oneloop level (i.e., for right-handed stop); two-loop corrections only moderate.
- Suggests that fixed-order treatment is sufficient.



Gluino decay in the MSSM: X_t terms

Next, consider corrections leading corrections in X_t :

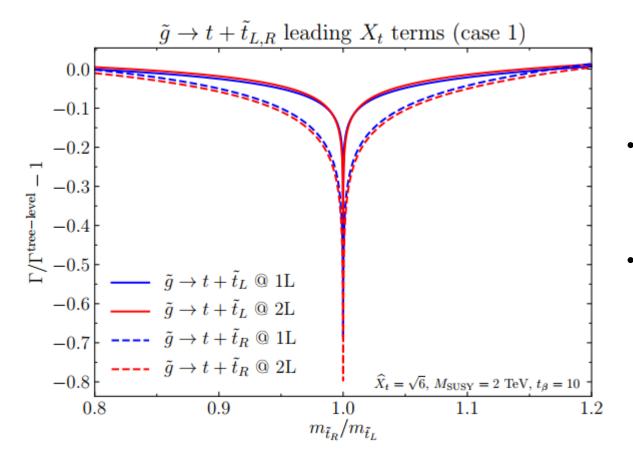


In the gaugeless limit, SM-like scalars h, G, G^{\pm} are massless and $\epsilon = m_{\tilde{t}_R}^2 - m_{\tilde{t}_L}^2$.

Renormalizing all masses and X_t in the OS scheme, we obtain $(\hat{X}_t \equiv X_t / M_{SUSY} \sim \mathcal{O}(1))$

$$\begin{split} \hat{\Gamma}_{\bar{g} \to t + \bar{t}_{L}} &= \Gamma_{\bar{g} \to t + \bar{t}_{L}}^{(0)} \left\{ 1 - \operatorname{Re} \hat{\Sigma}_{\bar{t}_{L}\bar{t}_{L}}^{(1)'}(m_{\bar{t}_{L}}^{2}) - \operatorname{Re} \hat{\Sigma}_{\bar{t}_{L}\bar{t}_{L}}^{(2)'}(m_{\bar{t}_{L}}^{2}) \\ &+ \left(\operatorname{Re} \hat{\Sigma}_{\bar{t}_{L}\bar{t}_{L}}^{(1)'}(m_{\bar{t}_{L}}^{2}) \right)^{2} + \left(\operatorname{Im} \hat{\Sigma}_{\bar{t}_{L}\bar{t}_{L}}^{(1)'}(m_{\bar{t}_{L}}^{2}) \right)^{2} + \mathcal{O}(k^{3}) \right\} = \\ &= \Gamma_{\bar{g} \to t + \bar{t}_{L}}^{(0)} \left\{ 1 - kh_{t}^{2}s_{\beta}^{2}\hat{X}_{t}^{2} \left[\ln \frac{M_{SUSY}^{2}}{\epsilon} - 1 \right] \\ &- k^{2}h_{t}^{4}s_{\beta}^{4}\hat{X}_{t}^{4} \left[\ln^{2} \frac{M_{SUSY}^{2}}{\epsilon} - 1 \right] \\ &- k^{2}h_{t}^{4}s_{\beta}^{4}\hat{X}_{t}^{4} \left[\ln^{2} \frac{M_{SUSY}^{2}}{\epsilon} - \frac{15}{4} \ln \frac{M_{SUSY}^{2}}{\epsilon} + \frac{1}{2}\ln \frac{m_{IR}^{2}}{\epsilon} + \frac{1}{6}\pi^{2} - \frac{35}{12} \right] \\ &+ \mathcal{O} \left(\frac{\epsilon}{M_{SUSY}} \right) + \mathcal{O}(k^{3}) \right\}, \end{split}$$

Gluino decay in the MSSM: X_t terms



- Large logarithms have sizeable impact at the oneloop level close to IR limit; two-loop corrections only moderate.
- Suggests that fixed-order treatment is sufficient.

Gluino decay in the MSSM: X_t terms ($v \neq 0$)

We can also consider leading corrections in X_t for $v \neq 0$ (assuming $m_{\tilde{t}_R} = m_{\tilde{t}_L}$):

• stops mix $\rightarrow \tilde{t}_1$ and \tilde{t}_2 mass eigenstates,

•
$$m_{\tilde{t}_1}^2 = M_{SUSY}^2 + m_t^2 - m_t X_t$$
 and $m_{\tilde{t}_2}^2 = M_{SUSY}^2 + m_t^2 + m_t X_t$

• For $M_{SUSY} \gg m_t$, stop mass difference $\epsilon = 2m_t X_t$ will be small with respect to M_{SUSY}^2 .

$$\begin{split} \hat{\Sigma}_{\tilde{t}_{1}\tilde{t}_{1}}^{(1)}(p^{2}) &= \hat{\Sigma}_{\tilde{t}_{2}\tilde{t}_{2}}^{(1)}(p^{2}) = \frac{1}{2}kh_{t}^{2}s_{\beta}^{2}X_{t}^{2} \bigg[B_{0}(p^{2}, m_{\mathrm{IR}}^{2}, M_{\mathrm{SUSY}}^{2}) \\ &+ B_{0}(p^{2}, m_{\mathrm{IR}}^{2}, M_{\mathrm{SUSY}}^{2} - m_{t}X_{t} + m_{t}^{2}) \\ &+ B_{0}(p^{2}, m_{\mathrm{IR}}^{2}, M_{\mathrm{SUSY}}^{2} - m_{t}X_{t} + m_{t}^{2}) \bigg] \\ \hat{\Sigma}_{\tilde{t}_{1}\tilde{t}_{2}}^{(1)}(p^{2}) &= \hat{\Sigma}_{\tilde{t}_{2}\tilde{t}_{1}}^{(1)}(p^{2}) = \frac{1}{2}kh_{t}^{2}s_{\beta}^{2}X_{t}^{2}B_{0}(p^{2}, m_{\mathrm{IR}}^{2}, M_{\mathrm{SUSY}}^{2}) , \end{split}$$

Additional infrared divergency because of couplings involving two identical stops.

 \Rightarrow need to introduce infrared regulator mass m_{IR}^2 .

 $c(h\tilde{t}_{1}\tilde{t}_{1}) = -c(h\tilde{t}_{2}\tilde{t}_{2}) = \frac{1}{\sqrt{2}}h_{t}s_{\beta}X_{t},$ $c(h\tilde{t}_{1}\tilde{t}_{2}) = c(h\tilde{t}_{2}\tilde{t}_{1}) = 0,$ $c(G\tilde{t}_{1}\tilde{t}_{1}) = c(G\tilde{t}_{2}\tilde{t}_{2}) = 0,$ $c(G\tilde{t}_{1}\tilde{t}_{2}) = -c(G\tilde{t}_{2}\tilde{t}_{1}) = \frac{1}{\sqrt{2}}h_{t}s_{\beta}X_{t},$ $c(G^{+}\tilde{t}_{1}\tilde{b}_{1}) = c(G^{+}\tilde{t}_{2}\tilde{b}_{1}) = -\frac{1}{\sqrt{2}}h_{t}s_{\beta}X_{t},$ $c(G^{+}\tilde{t}_{1}\tilde{b}_{2}) = c(G^{+}\tilde{t}_{2}\tilde{b}_{2}) = 0.$

Gluino decay in the MSSM: X_t terms ($v \neq 0$)

Virtual amplitude:

$$\begin{split} \hat{\Gamma}_{\tilde{g} \to t+\tilde{t}_{1}} &= \Gamma_{\tilde{g} \to t+\tilde{t}_{1}}^{(0)} \left[1 - \operatorname{Re} \frac{\partial}{\partial p^{2}} \hat{\Sigma}_{\tilde{t}_{1}\tilde{t}_{1}}^{(1)}(p^{2}) \big|_{p^{2}=m_{\tilde{t}_{1}^{2}}} \right] - 2 \frac{\operatorname{Re} \hat{\Sigma}_{\tilde{t}_{1}\tilde{t}_{2}}^{(1)}(m_{\tilde{t}_{1}}^{2})}{m_{\tilde{t}_{1}}^{2} - m_{\tilde{t}_{2}}^{2}} \cdot \Gamma_{\tilde{g} \to t+\tilde{t}_{2}}^{(0)} = \\ &= \Gamma_{\tilde{g} \to t+\tilde{t}_{1}}^{(0)} \left[1 - \frac{1}{2} k h_{t}^{2} s_{\beta}^{2} \hat{X}_{t}^{2} \left(\ln \frac{M_{\mathrm{SUSY}}^{2}}{m_{t}^{2}} + \frac{1}{2} \ln \frac{M_{\mathrm{SUSY}}^{2}}{m_{\mathrm{IR}}^{2}} - 3 - \ln 2 - 2 \ln |\hat{X}_{t}| \right) \right] \\ &- \frac{1}{4} k h_{t}^{2} s_{\beta}^{2} \hat{X}_{t}^{2} \left(\ln \frac{M_{\mathrm{SUSY}}^{2}}{m_{t}^{2}} - 2 \ln |\hat{X}_{t}| \right) \cdot \Gamma_{\tilde{g} \to t+\tilde{t}_{2}}^{(0)} , \\ \hat{\Gamma}_{\tilde{g} \to t+\tilde{t}_{2}} &= \Gamma_{\tilde{g} \to t+\tilde{t}_{2}}^{(0)} \left[1 - \operatorname{Re} \frac{\partial}{\partial p^{2}} \hat{\Sigma}_{\tilde{t}_{2}\tilde{t}_{2}}^{(1)}(p^{2}) \big|_{p^{2}=m_{\tilde{t}_{2}^{2}}} \right] - 2 \frac{\operatorname{Re} \hat{\Sigma}_{\tilde{t}_{2}\tilde{t}_{1}}^{(1)}(m_{\tilde{t}_{2}}^{2})}{m_{\tilde{t}_{2}}^{2} - m_{\tilde{t}_{1}}^{2}} \cdot \Gamma_{\tilde{g} \to t+\tilde{t}_{1}}^{(0)} = \\ &= \Gamma_{\tilde{g} \to t+\tilde{t}_{2}}^{(0)} \left[1 - \operatorname{Re} \frac{\partial}{\partial p^{2}} \hat{\Sigma}_{\tilde{t}_{2}\tilde{t}_{2}}^{(1)}(p^{2}) \big|_{p^{2}=m_{\tilde{t}_{2}^{2}}} \right] - 2 \frac{\operatorname{Re} \hat{\Sigma}_{\tilde{t}_{2}\tilde{t}_{1}}^{(1)}(m_{\tilde{t}_{2}}^{2})}{m_{\tilde{t}_{2}}^{2} - m_{\tilde{t}_{1}}^{2}} \cdot \Gamma_{\tilde{g} \to t+\tilde{t}_{1}}^{(0)} = \\ &= \Gamma_{\tilde{g} \to t+\tilde{t}_{2}}^{(0)} \left[1 - \operatorname{Re} \frac{\partial}{\partial p^{2}} \hat{\Sigma}_{\tilde{t}_{2}\tilde{t}_{2}}^{(1)}(p^{2}) \big|_{p^{2}=m_{\tilde{t}_{2}^{2}}} \right] - 2 \frac{\operatorname{Re} \hat{\Sigma}_{\tilde{t}_{2}\tilde{t}_{1}}^{(1)}(m_{\tilde{t}_{2}}^{2})}{m_{\tilde{t}_{2}}^{2} - m_{\tilde{t}_{1}}^{2}} \cdot \Gamma_{\tilde{g} \to t+\tilde{t}_{1}}^{(0)} = \\ &= \Gamma_{\tilde{g} \to t+\tilde{t}_{2}}^{(0)} \left[1 - \frac{1}{2} k h_{t}^{2} s_{\beta}^{2} \hat{X}_{t}^{2} \left(\ln \frac{M_{\mathrm{SUSY}}^{2}}{m_{t}^{2}} + \frac{1}{2} \ln \frac{M_{\mathrm{SUSY}}^{2}}{m_{\mathrm{T}}^{2}} - 3 - \ln 2 - 2 \ln |\hat{X}_{t}| \right) \right] \\ &- \frac{1}{4} k h_{t}^{2} s_{\beta}^{2} \hat{X}_{t}^{2} \left(\ln \frac{M_{\mathrm{SUSY}}^{2}}{m_{t}^{2}} - 2 \ln |\hat{X}_{t}| \right) \cdot \Gamma_{\tilde{g} \to t+\tilde{t}_{1}}^{(0)} . \end{split}$$

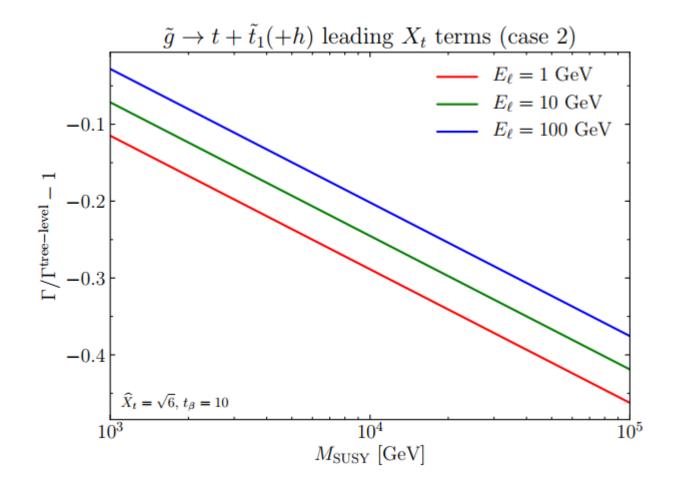
Real emission amplitude:

$$\Gamma^{(0)}_{\tilde{g} \to t + \tilde{t}_{1,2} + h} = \Gamma^{(0)}_{\tilde{g} \to t + \tilde{t}_{1,2}} \cdot \frac{1}{2} k h_t s_\beta \widehat{X}_t^2 \left[\frac{1}{2} \ln \frac{E_\ell^2}{m_{\rm IR}^2} - 1 + \ln 2 \right]$$

Note:

Real emission of h boson does not affect large logarithms.

Gluino decay in the MSSM: X_t terms ($v \neq 0$)



Large logarithms are not an artifact of assuming v = 0, but also appear in the broken phase ($v \neq 0$).

Heavy Higgs decay in the N2HDM

• Extend SM Higgs sector by second doublet as well as a real singlet Φ_S :

$$\begin{split} V^{(0)} &= m_{11}^2 |\Phi_1|^2 + m_{22}^2 |\Phi_2|^2 - m_{12}^2 \left(\Phi_1^{\dagger} \Phi_2 + \text{h.c.} \right) \\ &+ \frac{1}{2} \lambda_1 |\Phi_1|^4 + \frac{1}{2} \lambda_2 |\Phi_2|^4 + \lambda_3 |\Phi_1|^2 |\Phi_2|^2 + \lambda_4 |\Phi_2^{\dagger} \Phi_1|^2 + \frac{1}{2} \lambda_5 \left((\Phi_1^{\dagger} \Phi_2)^2 + \text{h.c.} \right) \\ &+ \frac{1}{2} m_S^2 \Phi_S^2 + \frac{1}{6} a_S \Phi_S^3 + \frac{1}{24} \lambda_S |\Phi_S|^4 + \frac{1}{2} a_{1S} |\Phi_1|^2 \Phi_S + \frac{1}{2} a_{2S} |\Phi_2|^2 \Phi_S \\ &+ \frac{1}{6} \lambda_{1S} |\Phi_1|^2 \Phi_S^2 + \frac{1}{2} \lambda_{2S} |\Phi_2|^2 \Phi_S^2 \,. \end{split}$$

$$X_a \equiv \frac{a_{1S} - a_{2S}}{4} ,$$

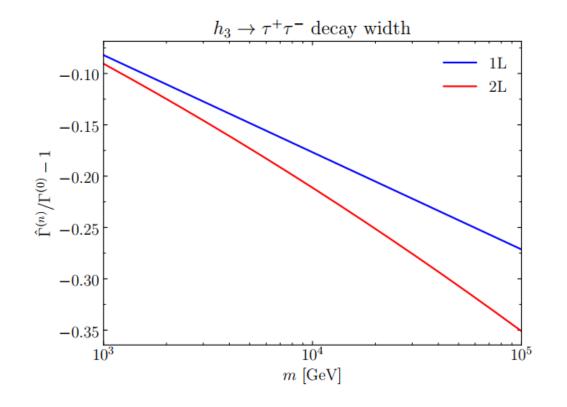
$$Y_a \equiv \frac{a_{1S} s_\beta^2 + a_{2S} c_\beta^2}{4} ,$$

$$Z_a \equiv \frac{a_S}{4} - Y_a$$

 $\eta_1 q = \eta_2 q$

- No \mathbb{Z}_2 symmetry transforming Φ_S imposed \Rightarrow trilinear couplings.
- Consider decay of heaviest three \mathcal{CP} -even mass eigenstate h_3 (which is mostly doubletlike) to tau leptons.
- $h_3 \rightarrow \tau^+ \tau^-$ decay width will receive external leg corrections proportional to trilinear couplings; focus on X_a here.

$h_3 \rightarrow \tau^+ \tau^-$ decay in the N2HDM



Considered scenario with

$$m_{h_1}^2 \sim m_{h_2}^2 \sim m_G^2 \sim m_{G^\pm}^2 \sim \epsilon, \quad m_{h_3}^2 = m_A^2 = m_{H^\pm}^2 = m^2$$

and chose

$$\tan \beta = 1.26, \sin \alpha_3 = 0.94, X_a = 3m$$
.

 \Rightarrow Sizeable one- and two-loop corrections.

Conclusions

Conclusions

- If a new BSM particle is discovered, precise theoretical predictions will be a crucial to unravel its nature.
- Identified new source of large Sudakov-like logarithmic contributions:
 - Appear on **external legs** of heavy scalar particles.
 - At least one light scalar particle needs to present.
 - Large trilinear coupling between scalars needed.
- Discussed toy model containing one light and two heavy scalars at the one- and two-loop level:
 - Occurrence of large logarithms related to **infrared limit**.
 - Infrared divergencies can be regulated by including radiation of the light scalar particle.
 - If additional radiation can be resolved experimentally \rightarrow large logarithms appear.
 - On-shell renormalization of masses crucial at the 2L level.
- Exemplary applications: gluino decay in the MSSM, heavy Higgs decay in the N2HDM
 - Found sizeable 1L corrections; only moderate 2L effects \rightarrow no resummation needed.

Thanks for your attention!

Mass configuration 1

$$\begin{split} \frac{d}{dp^2} T_{11234}(p^2, m^2, m^2, \epsilon, m^2, \epsilon) \bigg|_{p^2 = m^2} &= \\ &= \frac{\pi (2 - \overline{\ln}m^2)}{4\sqrt{\epsilon}m^3} + \frac{-6\overline{\ln}e\overline{\ln}m^2 - 3\overline{\ln}^2\epsilon + 24\overline{\ln}\epsilon + 9\overline{\ln}^2m^2 - 24\overline{\ln}m^2 - \pi^2}{24m^4} , \\ \frac{d}{dp^2} T_{11234}(p^2, \epsilon, \epsilon, m^2, m^2, m^2) \bigg|_{p^2 = m^2} &= \\ &= -\frac{\overline{\ln}m^2}{2m^2\epsilon} + \frac{3\pi\overline{\ln}m^2}{8m^3\sqrt{\epsilon}} + \frac{-50 + 6\pi^2 + 3\overline{\ln}\epsilon - 12\overline{\ln}m^2 + 18\overline{\ln}e\overline{\ln}m^2 - 18\overline{\ln}^2m^2}{36m^4} , \\ \frac{d}{dp^2} T_{12345}(p^2, m^2, \epsilon, m^2, \epsilon, m^2) \bigg|_{p^2 = m^2} &= \\ &= \frac{1}{4m^4} \bigg[2 + \ln\frac{m^2}{\epsilon} + \ln^2\frac{m^2}{\epsilon} \bigg] - \frac{\pi^2\ln 2 - 3/2\zeta(3)}{m^4} . \\ & \frac{1}{m^4} \frac{d}{dp^2} T_{11234}(p^2, m^2, \epsilon, m^2, \epsilon, m^2, \epsilon) \bigg|_{p^2 = m^2} \frac{85.552342}{55.52342} \frac{85.606671}{m^4\frac{d}{dp^2}} T_{11234}(p^2, m^2, \epsilon, m^2, \epsilon, m^2, \epsilon) \bigg|_{p^2 = m^2} \frac{-3387.9644}{-3387.9533} \\ & \frac{1}{m^4\frac{d}{dp^2}} T_{12345}(p^2, m^2, \epsilon, m^2, \epsilon, m^2, \epsilon, m^2) \bigg|_{p^2 = m^2} \frac{1}{21.636871} \frac{21.274760}{21.274760} \end{split}$$

Mass configuration 2

$$\begin{aligned} \frac{d}{dp^2} T_{11234}(p^2, m^2 + \epsilon, m^2 + \epsilon, 0, m^2, 0) \bigg|_{p^2 = m^2} &= \\ &= \frac{2 - \overline{\ln}m^2}{m^2 \epsilon} + \frac{-\pi^2 + 6\overline{\ln}\epsilon - 3\overline{\ln}^2\epsilon - 6\overline{\ln}m^2 + 3\overline{\ln}^2m^2}{6m^4} + \mathcal{O}(\epsilon) \,, \\ &\frac{d}{dp^2} T_{11234}(p^2, m^2, m^2, 0, m^2 + \epsilon, 0) \bigg|_{p^2 = m^2 + \epsilon} &= \\ &= \frac{\overline{\ln}m^2 - 2}{m^2 \epsilon} + \frac{2\pi^2 + 18 + 6i\pi + (6 - 6i\pi)\overline{\ln}\epsilon - 3\overline{\ln}^2\epsilon - 12\overline{\ln}m^2 + 3\overline{\ln}^2m^2}{6m^4} \\ &+ \mathcal{O}(\epsilon) \,, \end{aligned}$$

$$\begin{aligned} \frac{d}{dp^2} T_{12345}(p^2, m^2 + \epsilon, 0, m^2, 0, m^2 + \epsilon) \Big|_{p^2 = m^2} &= \\ &= \frac{1}{m^4} \Big[\pi^2 \Big(\frac{1}{4} - \ln 2 \Big) + \frac{3}{2} \zeta(3) + \ln \frac{m^2}{\epsilon} + \ln^2 \frac{m^2}{\epsilon} \Big] + \mathcal{O}(\epsilon) \,, \\ &\frac{d}{dp^2} T_{12345}(p^2, m^2, 0, m^2 + \epsilon, 0, m^2) \Big|_{p^2 = m^2 + \epsilon} &= \\ &= \frac{1}{m^4} \Big[-\pi^2 \Big(\frac{3}{4} + \ln 2 \Big) + \frac{3}{2} \zeta(3) + i\pi + (1 + 2i\pi) \ln \frac{m^2}{\epsilon} + \ln^2 \frac{m^2}{\epsilon} \Big] \\ &+ \mathcal{O}(\epsilon) \,. \end{aligned}$$

$$\begin{split} & \left. \frac{d}{dp^2} T_{11234}(p^2, m_1^2, m_1^2, m^2 + \epsilon, m^2 + \epsilon, m^2) \right|_{p^2 = m^2} \\ &= - \left. \frac{\overline{\ln}m^2}{2m^2 m_1^2} + \frac{3\pi \overline{\ln}m^2}{8m^3 m_1} \right. \\ &+ \left. \frac{-50 + 6\pi^2 + 3\overline{\ln}m_1^2 - 12\overline{\ln}m^2 + 18\overline{\ln}m_1^2\overline{\ln}m^2 - 18\overline{\ln}^2 m^2}{36m^4} \right. \\ &+ \left. \frac{\epsilon}{m^2} \left[\frac{\pi \overline{\ln}m^2}{8mm_1^3} - \frac{1 + 2\overline{\ln}m^2}{4m^2 m_1^2} + \frac{\pi(40 + 27\overline{\ln}m^2)}{192m^3 m_1} - \frac{23 + 90\overline{\ln}m^2 - 42\overline{\ln}m_1^2}{144m^4} \right] \right. \\ &+ \mathcal{O}(\epsilon^2) \,, \\ & \left. \frac{d}{dp^2} T_{11234}(p^2, m_1^2, m_1^2, m^2, m^2, m^2 + \epsilon) \right|_{p^2 = m^2 + \epsilon} \\ &= - \left. \frac{\overline{\ln}m^2}{2m^2 m_1^2} + \frac{3\pi \overline{\ln}m^2}{8m^3 m_1} \right. \\ &+ \left. \frac{-50 + 6\pi^2 + 3\overline{\ln}m_1^2 - 12\overline{\ln}m^2 + 18\overline{\ln}m_1^2\overline{\ln}m^2 - 18\overline{\ln}^2 m^2}{36m^4} \right. \\ &+ \left. \frac{\epsilon}{m^2} \left[\frac{\pi \overline{\ln}m^2}{8mm_1^3} - \frac{3}{4m^2 m_1^2} + \frac{\pi(-112 + 81\overline{\ln}m^2)}{192m^3 m_1} \right. \\ &+ \left. \frac{329 - 48\pi^2 - 138\overline{\ln}m^2 + 144\overline{\ln}^2 m^2 + 90\overline{\ln}m_1^2 - 144\overline{\ln}m^2\overline{\ln}m_1^2}{144m^4} \right. \\ &+ \mathcal{O}(\epsilon^2) \,, \end{split}$$

Integral	Numerical results	
	TSIL	Expansion
$m^{4} \frac{d}{dp^{2}} T_{11234}(p^{2}, m^{2} + \epsilon, m^{2} + \epsilon, 0, m^{2}, 0) \bigg _{p^{2} = m^{2}}$	-13022.295	-13021.642
$m^4 \frac{d}{dp^2} T_{11234}(p^2, m_1^2, m_1^2, m^2 + \epsilon, m^2 + \epsilon, m^2) \Big _{p^2 = m^2}$	-3361.5011	-3361.3207
$m^{4} \frac{d}{dp^{2}} T_{12345}(p^{2}, m^{2} + \epsilon, 0, m^{2}, 0, m^{2} + \epsilon) \Big _{p^{2} = m^{2}}$	91.482800	91.470115

N2HDM: analytic results

$$\begin{split} \hat{\Sigma}_{h_{3}h_{3}}^{(2)'}(m^{2}) \Big| \stackrel{\mathcal{O}(s_{a_{3}}^{4})}{=} \\ &= k^{2} X_{a}^{4} c_{\alpha_{3}}^{4} s_{2\beta}^{4} s_{\alpha_{3}}^{4} \bigg\{ 16 \frac{\partial}{\partial p^{2}} T_{12345}(p^{2}, m^{2}, \epsilon, m^{2}, \epsilon, m^{2}) \\ &\quad + 16 \frac{\partial}{\partial p^{2}} T_{11234}(p^{2}, m^{2}, m^{2}, \epsilon, m^{2}, m^{2}, \epsilon) \\ &\quad + 8 \frac{\partial}{\partial p^{2}} T_{11234}(p^{2}, \epsilon, \epsilon, m^{2}, m^{2}, m^{2}, \epsilon) \\ &\quad + 16 \frac{\partial}{\partial p^{2}} C_{0}(0, p^{2}, p^{2}, m^{2}, \epsilon, \sigma) B_{0}(m^{2}, \epsilon, m^{2}) \\ &\quad + 8 \frac{\partial}{\partial p^{2}} C_{0}(0, p^{2}, p^{2}, m^{2}, \epsilon, \epsilon) B_{0}(\epsilon, m^{2}, m^{2}) \\ &\quad + 8 B_{0}'(p^{2}, m^{2}, \epsilon) \times \bigg[C_{0}(m^{2}, \epsilon, m^{2}, m^{2}, \epsilon) + 4 B_{0}'(m^{2}, \epsilon, m^{2}) \\ &\quad + B_{0}'(\epsilon, m^{2}, m^{2}) \bigg] \bigg\} \bigg|_{p^{2} = m^{2}} \\ &= \frac{2k^{2} X_{a}^{4} c_{\alpha_{3}}^{4} s_{2\beta}^{4} s_{\alpha_{3}}^{4}}{m^{4}} \bigg[\frac{121}{9} + 4\sqrt{3}\pi + \frac{7\pi^{2}}{3} - 8\pi^{2} \ln 2 + \frac{2}{3} \bigg(21 + \sqrt{3}\pi \bigg) \ln \frac{\epsilon}{m^{2}} \\ &\quad + 5 \ln^{2} \frac{\epsilon}{m^{2}} + 12\zeta(3) \bigg] \,. \end{split}$$

$$\begin{split} \dot{\Sigma}_{h_{3}h_{3}}^{(2)\prime}(m^{2})\Big| &\stackrel{\mathcal{O}(s_{3}^{*})}{=} \\ &= k^{2}X_{a}^{4}c_{a_{3}}^{4}s_{2\beta}^{4}s_{a_{3}}^{2}\left\{12\frac{\partial}{\partial p^{2}}T_{11234}(p^{2},m^{2},m^{2},\epsilon,m^{2},\epsilon)\right. \\ &\quad + 12\frac{\partial}{\partial p^{2}}C_{0}(0,p^{2},p^{2},m^{2},m^{2},\epsilon)B_{0}(m^{2},\epsilon,m^{2}) \\ &\quad + 6B_{0}^{\prime}(p^{2},m^{2},\epsilon)\times\left[C_{0}(m^{2},\epsilon,m^{2},m^{2},m^{2},\epsilon)+8B_{0}^{\prime}(m^{2},\epsilon,m^{2})\right. \\ &\quad + B_{0}^{\prime}(\epsilon,m^{2},m^{2})\right]\Big\}\Big|_{p^{2}=m^{2}} \\ &= \frac{k^{2}X_{a}^{4}c_{a_{3}}^{4}s_{2\beta}^{4}s_{a_{3}}^{2}}{2m^{4}}\left[94+5\pi^{2}+4\sqrt{3}\pi+\left(95+2\sqrt{3}\pi\right)\ln\frac{\epsilon}{m^{2}}+21\ln^{2}\frac{\epsilon}{m^{2}}\right]. \\ \dot{\Sigma}_{h_{3}h_{3}}^{(2)\prime}(m^{2})\Big| &\stackrel{\mathcal{O}(s_{0}^{a})}{=} 3k^{2}X_{a}^{4}c_{a_{3}}^{4}s_{2\beta}^{4}\left\{\frac{\partial}{\partial p^{2}}T_{12345}(p^{2},m^{2},\epsilon,m^{2},\epsilon,m^{2})\right. \\ &\quad + \frac{\partial}{\partial p^{2}}T_{11234}(p^{2},\epsilon,\epsilon,m^{2},m^{2},\epsilon)B_{0}(m^{2},\epsilon,m^{2}) \\ &\quad + \frac{\partial}{\partial p^{2}}C_{0}(0,p^{2},p^{2},m^{2},\epsilon,\epsilon)B_{0}(m^{2},\epsilon,m^{2}) \\ &\quad + \frac{\partial}{\partial p^{2}}C_{0}(0,p^{2},p^{2},m^{2},\epsilon,\epsilon)B_{0}(\epsilon,m^{2},m^{2}) \\ &\quad + \frac{\partial}{\partial p^{2}}L_{0}^{\prime}(0,p^{2},p^{2},m^{2},\epsilon,\epsilon)B_{0}(\epsilon,m^{2},m^{2}) \\ &\quad + \frac{\partial}{\partial p^{2}}L_{0}^{\prime}$$