# New constraints on extended Higgs sectors from the trilinear Higgs coupling

#### Henning Bahl

based on 2202.03453

In collaboration with

J. Braathen, G. Weiglein



THE UNIVERSITY OF CHICAGO

PIKIMO meeting, 5/30/2022

### The Higgs boson – what we know so far.

- A scalar behaving similar as the SM Higgs boson was discovered at the LHC.
- What we know about this scalar:
  - Its mass, vev, spin.
  - It's not a  $\mathcal{CP}$ -odd state.
  - Its couplings to gauge bosons (*WW*, *ZZ*, *gg*,  $\gamma\gamma$ ):  $\mathcal{O}(10)$  %
  - Its coupling to third generation fermions: O(20) %
  - Its coupling to muons:  $\mathcal{O}(50)$  %
- What we don't know about this scalar:
  - Its exact  $\mathcal{CP}$  nature.
  - Its couplings to first- and second-generation fermions.
  - Its width (are there any decays to non-SM particles?).
  - The shape of its potential.

 $\rightarrow$  Modification of Higgs potential can have implications for e.g. cosmology.

#### The Higgs potential

In the SM, the Higgs potential is completely determined by the Higgs mass and its vev:

$$V_h^{\rm SM} = \frac{1}{2}m_h^2 h^2 + \frac{m_h^2}{2\nu}h^3 + \frac{m_h^2}{8\nu^2}h^4 + \cdots$$

Relation between the different terms can easily be modified by BSM physics  $\rightarrow$  add modifier  $\kappa_{\lambda}$  (and  $\kappa_{\lambda_4}$ ):



How can we constraint  $\kappa_{\lambda}$  experimentally?

unknown

#### Double-Higgs production

Most direct probe of trilinear Higgs coupling: double-Higgs production via gluon fusion.



In the SM: large destructive interference between box and triangle contribution.

 $\Rightarrow$  Deviations from SM trilinear Higgs coupling can significantly enhance the *hh* cross section.

Interpret experimental upper limits on hh cross section as limits on  $\kappa_{\lambda}$ .

## Experimental bound on $\kappa_{\lambda}$

Current strongest limit:  $-1.0 < \kappa_{\lambda} < 6.6$  at 95% CL [ATLAS-CONF-2021-052].

Assumptions:

- All other Higgs couplings are SM-like.
- Non-resonant Higgs-boson pair production only deviates from the SM via a modified trilinear Higgs coupling.



Can we use this limit to constrain BSM models?

### $\kappa_{\lambda}$ in the 2-Higgs-doublet-model (2HDM)

• Focus first on **2HDM type I** in the alignment limit (similar results expected for other types/models).

$$\begin{aligned} V_{2\text{HDM}}(\Phi_1, \Phi_2) &= m_{11}^2 \, \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \, \Phi_2^{\dagger} \Phi_2 - m_{12}^2 \left( \Phi_1^{\dagger} \Phi_2 + \Phi_2^{\dagger} \Phi_1 \right) \\ &+ \frac{1}{2} \lambda_1 (\Phi_1^{\dagger} \Phi_1)^2 + \frac{1}{2} \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + \frac{1}{2} \lambda_5 \left( (\Phi_1^{\dagger} \Phi_2)^2 + (\Phi_2^{\dagger} \Phi_1)^2 \right). \end{aligned}$$

- 2 Higgs doublets  $\rightarrow$  5 physical Higgs bosons: CP-even h, H; CP-odd A; charged  $H^{\pm}$ .
- Most relevant/largest couplings:

$$g_{hh\Phi\Phi} = -\frac{2(M^2 - m_{\Phi}^2)}{v^2}$$
 with  $\Phi \in \{H, A, H^{\pm}\}$  and  $M^2 = \frac{m_{12}^2}{s_\beta c_\beta}$ 

- Strategy:
  - 1. Scan parameter space applying various theoretical and experimental constraints.
  - 2. Identify regions with large deviations of  $\kappa_{\lambda}$ , which is calculated at the 2L level.
  - 3. Define a benchmark scenario and apply constraints on  $\kappa_{\lambda}$ .

#### 2HDM parameter scan

- We checked for:
  - Vacuum stability and boundedness-from-below.
  - NLO perturbative unitarity.
  - Electroweak precision observables (calculated at the 2L level using THDM\_EWPOS [Hessenberger,Hollik,1607.04610]).
  - SM-like Higgs measurements via HiggsSignals.
  - Direct searches for BSM scalars via HiggsBounds.
  - b-physics constraints.
- Most constraints checked using ScannerS.
- For each point passing the constraints, we calculate  $\kappa_{\lambda}$  at the 1L and 2L level ( $\kappa_{\lambda}^{(1)}$  and  $\kappa_{\lambda}^{(2)}$ ) using results from [Braathen,Kanemura,1911.11507].

#### 2HDM parameter scan - results



Largest corrections for  $m_A \simeq m_{H^{\pm}}$ ,  $m_H < m_{H^{\pm}}$  and  $m_H \simeq m_{H^{\pm}}$ ,  $m_A < m_{H^{\pm}}$ . 2L corrections have sizeable impact.

#### Constraints on $\kappa_{\lambda}$ - benchmark scenario



Experimental bound on  $\kappa_{\lambda}$  excludes so far unconstrained parameter space!

#### Conclusions

- Measurement of the trilinear Higgs coupling crucial to determine shape of Higgs potential.
- Large deviations from the SM possible in many BSM models.
- We showed that already current bounds exclude significant parts of so far unconstrained 2HDM parameter space.
- Including 2L corrections important for precise prediction.
- We expect similar results in other BSM Higgs models.
- More precise bounds expected in the future  $\Rightarrow$  more precise theory predictions will be needed.
- Potentially interesting implications for cosmology.

#### Thanks for your attention!

## Appendix

#### Calculating BSM corrections to $\kappa_{\lambda}$

• Need to calculate Higgs three-point function:



• Alternatively, employ zero momentum approximation and then use effective potential:

$$\lambda_{hhh} \equiv \frac{\partial^3 V_{\text{eff}}}{\partial h^3} \bigg|_{\text{min}} \equiv \lambda_{hhh}^{(0)} + \kappa \delta^{(1)} \lambda_{hhh} + \kappa^2 \delta^{(2)} \lambda_{hhh}$$



 Using V<sub>eff</sub>, 1L and 2L corrections have been calculated in various BSM Higgs models (see e.g. [Braathen,Kanemura,1911.11507]).

#### Calculating BSM corrections to $\kappa_{\lambda}$

[Braathen,Kanemura,1911.11507]



- Large non-decoupling corrections found in several BSM models.
- Analysis assumed that all BSM masses are equal  $M_{\Phi}$ .
- No phenomenological analysis has been performed.

#### Idea of this work:

Can we constrain these models based on the large corrections to  $\kappa_{\lambda}$ ?

### Applying the constraints on $\kappa_{\lambda}$

Assumptions of experimental bound:

- All other Higgs couplings are SM-like.
  - 2HDM in the alignment limit with heavy BSM masses.
- Higgs-boson pair production only deviates from the SM via a modified trilinear Higgs coupling.
  - No resonant contribution because *Hhh* coupling is zero in alignment limit.
  - Other BSM contributions to *hh* production?



• We include the all corrections leading in the large coupling  $g_{hh\Phi\Phi}$  at the NLO and NNLO level.  $\uparrow$ 

 $M_W$  in the 2HDM

$$\begin{split} \Delta\rho_{\rm non-SM}^{(1)} &= \frac{\alpha}{16\pi^2 s_W^2 M_W^2} \bigg\{ \frac{m_A^2 m_H^2}{m_A^2 - m_H^2} \ln \frac{m_A^2}{m_H^2} \\ &- \frac{m_A^2 m_{H^\pm}^2}{m_A^2 - m_{H^\pm}^2} \ln \frac{m_A^2}{m_{H^\pm}^2} \\ &- \frac{m_H^2 m_{H^\pm}^2}{m_H^2 - m_{H^\pm}^2} \ln \frac{m_H^2}{m_{H^\pm}^2} + m_{H^\pm}^2 \bigg\} \,, \end{split}$$

$$\Delta M_W \simeq \frac{1}{2} M_W \frac{c_W^2}{c_W^2 - s_W^2} \Delta \rho \,.$$

$$\Delta M_W \simeq 0$$
 if  $m_A = m_{H^\pm}$  or  $m_H = m_{H^\pm}$ 



#### $M_W$ in the 2HDM – correlation with $\kappa_{\lambda}$ ?

