Higgs mass calculation in FeynHiggs

Henning Bahl

The 19th Workshop of the LHC Higgs Working Group, 28.11.2022

Henning Bahl 1

The SM-like Higgs mass as a precision observable

Special feature of the MSSM:

Mass of the lightest CP-even Higgs M_h is calculable in terms of model parameters \Rightarrow can be used as a precision observable.

- At the tree-level: $M_h^2 \simeq M_Z^2 \cos^2(2\beta) \leq M_Z^2$,
- M_h is, however, heavily affected by loop corrections,
- unique sensitivity to SUSY parameters (even for very heavy SUSY scales).

Experimentally measured mass: [Aad et al.,1503.07589]

 $M_h^{\rm exp} = 125.08 \pm 0.21$ (stat.) \pm 0.11 (sys.) GeV

To fully profit from experimental precision, higher-order calculations are crucial!

This is the main purpose of **FeynHiggs**.

[Authors: HB, Thomas Hahn, Sven Heinemeyer, Wolfgang Hollik, Sebastian Paßehr, Heidi Rzehak, Georg Weiglein]

Calculation of the Higgs boson masses

Three approaches are used:

- Fixed-order (FO) approach:
	- + precise for low SUSY scales,
	- $-$ but for high scales large logarithms $\ln(M_{\rm SUSY}^2/m_t^2)$ terms spoil convergence of perturbative expansion.
- Effective field theory (EFT) approach:
	- + precise for high SUSY scales (since logarithms are resumed),
	- but for low scales $\mathcal{O}(m_t/M_{\text{SUSY}})$ terms are missed if higher-dimensional operators are not included.
- Hybrid approach combing FO and EFT approaches:
	- ++ precise for low and high SUSY scales.

Current status:

- \rightarrow FO: (full 1L) + (2L in gaugeless limit),
- \rightarrow EFT: (full LL + NLL) + (NNLL + partial N³LL in gaugeless limit).

Remaining theoretical uncertainty for single-scale SCenario [HB,Heinemeyer,Hollik,Weiglein,1912.04199] (single-scale scenario: all non-SM particles at M_{SUSY})

Approximate remaining theory uncertainty (for \overline{DR} stop sector):

- Small stop mixing: $\Delta M_h \sim 0.5$ GeV
- Large stop mixing: $\Delta M_h \sim 1.0$ GeV

(slightly larger for OS stop sector)

Exemplary pheno application

• Higgs mass calculation has been used to define MSSM Higgs benchmark scenarios.

[Bagnaschi et al.,1808.07542; HB et al.,1901.05933,2005.14536; Bagnaschi et al.,LHCHWG-2021-001] → see also Emanuele Bagnaschi's talk later today!

- These scenarios are used by the experimental collaborations for interpretation.
- These scenarios have been defined using FeynHiggs 2.14.
- Updates since then have
	- improved theoretical uncertainty estimate (v2.15)
	- added real THDM as EFT (v2.16)
	- added partial N^3LL resummation + phase dependence in EFT (v2.17)
	- added complex THDM as EFT (v2.18)
	- introduced the MDR scheme + reimplemented of FO 2L corrections (v2.19)

[CMS, 2208.02717]

Focus of FH updates: multi-scale hierarchies

- Experimental searches for colored SUSY particles push mass scale to the TeV range.
- Uncolored particles can, however, be lighter.

Large hierarchy between non-SM particles \rightarrow tower of EFTs needed to resum all large logarithms.

• All these EFT towers are implemented in FeynHiggs.

Missing case so far: heavy gluino $(M_{\tilde{g}} = |M_3| \gg M_{\tilde{t}})$

• Increasingly relevant due to tightening LHC gluino limits.

Missing case so far: heavy gluino $(M_{\tilde{g}} = |M_3| \gg M_{\tilde{t}})$

- Increasingly relevant due to tightening LHC gluino limits.
- Large theoretical uncertainty due to M_3 power-enhanced terms appearing at the two-loop level in DR EFT calculation.

Missing case so far: heavy gluino $(M_{\tilde{g}} = |M_3| \gg M_{\tilde{t}})$

- Increasingly relevant due to tightening LHC gluino limits.
- Large theoretical uncertainty due to M_3 power-enhanced terms appearing at the two-loop level in DR EFT calculation.
- OS renormalization of the stop sector avoids this issue. This, however, spoils the resummation of large logarithms.

Missing case so far: heavy gluino $(M_{\tilde{q}} = |M_3| \gg M_{\tilde{t}})$

- Increasingly relevant due to tightening LHC gluino limits.
- Large theoretical uncertainty due to M_3 power-enhanced terms appearing at the two-loop level in DR EFT calculation.
- OS renormalization of the stop sector avoids this issue. This, however, spoils the resummation of large logarithms.
- While this is a known issue in the literature, it was not resolved in the context of Higgs mass calculations.

[Mühlleitner et al., 0812.3815, Aebischer et al., 1703.08061; Krämer et al., 1908.04798; Deppisch et al., 1908.01222]

Solution: Absorb power-enhanced terms into renormalization scheme [HB,Sobolev,Weiglein,1912.10002]

Use $\overline{\text{MDR}}$ instead of $\overline{\text{DR}}$ in EFT ($\overline{\text{DR}}$ ill-defined for $|Q| < M_3$):

$$
\left(m_{\tilde{t}_{L,R}}^{\overline{MDR}}\right)^{2} = \left(m_{\tilde{t}_{L,R}}^{\overline{DR}}\right)^{2} \left[1 + \frac{\alpha_{s}}{\pi} C_{F} \frac{|M_{3}|^{2}}{m_{\tilde{t}_{L,R}}^{2}} \left(1 + \ln \frac{Q^{2}}{|M_{3}|^{2}}\right)\right]
$$

$$
X_{t}^{\overline{MDR}}(Q) = X_{t}^{\overline{DR}}(Q) - \frac{\alpha_{s}}{\pi} C_{F} M_{3} \left(1 + \ln \frac{Q^{2}}{|M_{3}|^{2}}\right),
$$

resums all $\mathcal{O}(\alpha_S^n M_3^{2n},\alpha_S^n M_3^n)$ terms in Higgs mass calculation.

MDR scheme in FeynHiggs 2.19

- FeynHiggs now uses MDR scheme in EFT part by default.
- OS stop input parameters \rightarrow OS scheme is used in FO calculation and MDR scheme in EFT part.
- DR stop input parameters \rightarrow conversion to MDR scheme \rightarrow MDR scheme used in FO and EFT calculation. \triangleright Renormalization scale should not be below $M_3 \rightarrow$ otherwise no precise prediction possible.
- Alternatively, \overline{M} DR stop input parameters can be used directly as input.

First precise Higgs mass prediction for scenarios with $M_{\tilde{q}} \gg M_{\tilde{t}}!$

Reimplementation of 2L FO corrections

(based on [Goodsell & Paßehr, arXiv:1910.02094])

- Code for 2L FO corrections was divided in several pieces, which were based on multiple publications:
	- corrections in real MSSM, [Brignole et al., hep-ph/0206101,hep-ph/0112177]
	- corrections in complex MSSM. [Heinemeyer et al., hep-ph/0411114, hep-ph/0705.0746, Paßehr & Hollik, 1404.7074]
- Code became increasingly difficult to maintain, making it difficult to implement new features like the MDR scheme.

Complete reimplementation of 2L FO corrections in FeynHiggs 2.19.0:

- sum over generalized couplings:
	- \checkmark reduced algebraic size,
	- \checkmark improved readability;
- easier implementation of different schemes:
	- \checkmark MDR for stop sector,
	- \checkmark DR for sbottom sector;
- full phase dependence for 2L $\alpha_b \alpha_s$, $\alpha_b \alpha_t$, α_b^2 corrections;
- improved numerical stability.

 $FeynHiggs-2.18.0$ FeynHiggs-2.19.0 $\begin{array}{c|c} \hline \mathcal{O}\big(\alpha_t\,\alpha_s\big)\colon 2.9\,\text{MB} \ \hline \mathcal{O}\big(\alpha_t^2\big)\colon 364\,\text{KB} \end{array} \bigg|\begin{array}{c} \mathcal{O}\big(\alpha_{t,b}\,\alpha_s\big)\colon 224\,\text{KB} \ \hline \mathcal{O}\big(\big(\alpha_t+\alpha_b\big)^2\big)\colon 364\,\text{KB} \end{array}$

Improved numerical stability

Old implementation was plagued by numerical instabilities

- if two masses were close to each other (e.g. $m_{\tilde{t}_1} \simeq m_{\tilde{t}_2}$),
- close to kinematic thresholds (e.g. $X_t \sim 2M_{SUSY} \rightarrow m_{\tilde{t}_{1,2}} \simeq M_{SUSY} \pm m_t$).
- origin: integral reduction resulting in terms like $1/(m_{\tilde{t}_1}^2 m_{\tilde{t}_2}^2)$

Solution: delayed integral reduction. [Goodsell & Paßehr, arXiv:1910.02094]

Integrals are reduced at runtime depending on given mass spectrum.

Conclusions

- The SM-like Higgs boson mass is [a unique in the MSS](http://www.feynhiggs.de/)M, which is directly SUSY scale.
- Precision predictions in the MSSM Higgs sector are the main purpose of
- Recent updates of FeynHiggs are mainly focused on improving the preci-
- **New version FeynHiggs 2.19.0**
	- allows the user to obtain precise predictions for scenarios with a h
	- features a complete reimplementation of the fixed-order 2L corrections with a significant numerical stability.
- FeynHiggs can be downloaded at www.feynhiggs.de

Conclusions

- The SM-like Higgs boson mass is [a unique in the MSS](http://www.feynhiggs.de/)M, which is directly SUSY scale.
- Precision predictions in the MSSM Higgs sector are the main purpose of
- Recent updates of FeynHiggs are mainly focused on improving the preci-
- **New version FeynHiggs 2.19.0**
	- allows the user to obtain precise predictions for scenarios with a h
	- features a complete reimplementation of the fixed-order 2L corrections with a significant numerical stability.
- FeynHiggs can be downloaded at www.feynhiggs.de

Thanks for your attention!

- M_h^{125} scenario,
- M_h^1 $h^{125}(\tilde{\tau})$ scenario,
- M_h^1 $h^{125}(\tilde\chi)$ scenario,
- M_h^1 h^{125} (alignment) scenario,
- M_H^{125} scenario,
- $M_{h_1}^{12}$ h_1^{125} (CPV) scenario,
- $M^{125}_{h,\rm EFT}$ scenario,
- \cdot $M_{h,\text{EFT}}^{125}$ $_{h. \mathrm{EFT}}^{125}(\tilde{\chi})$ scenario,
- M_h^{\perp} $\frac{125\mu_i - 1}{h}$ scenario.