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Outline of the talk

Global LHC fit

Constraining CP violation using machine learning

Complementarity with EDM and baryogenesis constraints
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Introduction
Why should we care about CP violation in the Higgs–fermion couplings?
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CP violation in the Higgs sector

• New sources of CP violation are necessary to explain the baryon asymmetry of 

the Universe.

• One possibility: CP violation in the Higgs sector.

• CP violation in the Higgs sector can be constrained by 

• demanding significant contribution to the baryon asymmetry (BAU) 

• electric dipole measurements,

• collider measurements. 
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Is the SM-like Higgs boson a CP-admixed state?



The CP nature of the Higgs boson

• CP violation in 𝐻𝑉𝑉 couplings already tightly constrained via VBF and 𝑝𝑝 → 𝑉𝐻 production as well 
as 𝐻 → 4𝑙 decay. [ATLAS,CMS:..,2002.05315, 2104.12152,2109.13808,2202.06923,2205.05120] 

• CP-violating 𝐻𝑉𝑉 coupling can only be induced at the loop level → expected to be small in most 
BSM theories.

• CP violation in Higgs–fermion couplings can be induced at the tree level.
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Focus of this talk: Constraining CP violation in the Higgs–fermion interactions.



Constraining CP violation

• Pure CP-odd observables:
• Unambiguous markers for CP violation: e.g. 

• EDM measurements,
• decay angle in 𝐻 → 𝜏!𝜏".

• Experimentally difficult for some processes 
(i.e., top-associated Higgs production).
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CP violation in the Higgs sector can be constrained using:



Constraining CP violation

• Pure CP-even observables:
• Many rate measurements are indirectly 

sensitive: e.g.
• Higgs production via gluon fusion,
• 𝐻 → 𝛾𝛾.

• Deviations from SM need not be due to CP 
violation.
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CP violation in the Higgs sector can be constrained using:



Constraining CP violation

• Kinematic information:
• Effectively mixes CP-even and CP-odd observables.
• High sensitivity expected since all available 

information is used.
• Can be difficult to reinterpret if multivariate 

analysis is used.
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CP violation in the Higgs sector can be constrained using:

Exploit all three complementary approaches to learn as much as possible!



Why should we look for CP-violating 𝐻𝑓 ̅𝑓
couplings now?
• More and more experimental CP measurements:

• 𝐻𝑡𝑡 coupling: 𝑡 ̅𝑡𝐻, 𝑡𝐻, 𝑡𝑊𝐻 production (with 𝐻 → 𝛾𝛾, (𝑏𝑏) using kinematic analysis,
• 𝐻𝜏𝜏 coupling: 𝐻 → 𝜏𝜏 using CP-odd observable,
• 𝑔𝑔𝐻 coupling: 𝐻 + 2𝑗 production using CP-odd observable.

• Increased precision on indirectly sensitive channels. 
• E.g., 𝑔𝑔𝐻, 𝐻 → 𝛾𝛾, etc.

• Much more luminosity to be collected at HL-LHC.

• Tighter upper bounds on CP violation from EDM measurements.
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[ATLAS-CONF-2022-016]
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[CMS, 2104.12152]
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• Combine LHC measurements in global fit.
• Propose ways to improve measurements in the future.
• Compare LHC measurements with EDM bounds and baryogenesis constraints.

[CMS, 2104.12152]



Effective model
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• Modify Yukawa interactions by (e.g. generated by dim-6 (𝜙#𝜙)𝑄$ -𝜙𝑡% operator)

• Allow moreover for CP-conserving modification of 𝐻𝑉𝑉 couplings

• SM: 𝑐& = 1, �̃�& = 0, 𝑐' = 1.

• Parametrize effect of undiscovered colored and neutral BSM particles via effective Higgs–gluon 
and Higgs–photon interactions.
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Global LHC fit
What can we learn from current LHC data?
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LHC constraints — setup
• Experimental input:

• All relevant Higgs measurements:
• Rate measurements (production + decay),
• 𝑍𝐻 STXS measurements (𝑝( shape),
• CMS 𝐻 → 𝜏𝜏 CP analysis, [2110.04836]

• did not include dedicated experimental top-Yukawa CP analyses (difficult to reinterpret 
in another model).

• If available, included all uncertainty correlations.

• Scanning using either random scan or Markov-chain algorithm,

• 𝜒) fit performed using HiggsSignals including ~ 100 different measurements.
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Interlude: HiggsTools [HB et al., 2210.09332]
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HiggsTools is a complete and extended rewrite of HiggsBounds and HiggsSignals in modern C++.

HiggsPredictions-1 HiggsBounds-6 HiggsSignals-3

• Handles user input (model predictions).
• Provides tabulated cross sections and BRs.
• Common process definitions and clustering.

C++ interface for high performance; Python and Mathematica interfaces for ease of use.

current status: 258 limits current status: 131 measurements



Starting point — 1 flavor fits: 𝜏
[HB et al.,2202.11753]
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• Without CMS 𝐻 → 𝜏𝜏 CP analysis ring-like structure since Γ!→## ∝ 𝑐#$ + �̃�#$ (similar for muon-Yukawa 
coupling).

• With CMS 𝐻 → 𝜏𝜏 CP analysis, we can differentiate between CP-even and CP-odd tau-Yukawa coupling.

Without CMS 𝐻 → 𝜏𝜏 CP analysis. With CMS 𝐻 → 𝜏𝜏 CP analysis.



1 flavor fits: 𝑏
[HB et al.,2202.11753]
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• Ring-like structure since Γ!→%% ∝ 𝑐%$ + �̃�%$.
• Bottom-Yukawa coupling, however, also affects 𝑔𝑔𝐻 rate:

• &!!→#
&!!→#
$% ≃ 1.1𝑐'$ + 2.6�̃�'$ − 0.1𝑐'𝑐% +⋯ .

• Negative 𝑐% values disfavored since 𝑔𝑔𝐻 rate is enhanced by 
∼ 20%.

• Direct bottom CP measurements very difficult.

Indirect CP constraints will remain important for the bottom-Yukawa coupling.



Top-Yukawa coupling
• Probe top-Yukawa coupling at the loop-level via 𝑔𝑔 → 𝐻, 𝐻 → 𝛾𝛾, gg → 𝑍𝐻:

• 𝜅*) ≡
+!!→#
+!!→#
$% ≃ 1.1𝑐,) + 2.6�̃�,) − 0.1𝑐,𝑐- − 0.2�̃�,�̃�- +⋯, disfavors large �̃�,.

• 𝜅.) ≡
/#→&&
/#→&&
$% ≃ 1.6𝑐') − 0.7𝑐'𝑐, + 0.1𝑐,) + 0.2�̃�,) +⋯, disfavors negative/small 𝑐,.

•

+!!→'#
+!!→'#
$% ≃ 0.5𝑐,) + 0.5�̃�,) + 2.4𝑐') − 1.9𝑐'𝑐,…, disfavors negative 𝑐,.
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Top-Yukawa coupling
• Probe top-Yukawa coupling at the tree-level via top-associated Higgs production:

• Three subchannels: 𝑡 ̅𝑡𝐻, 𝑡𝐻, 𝑡𝑊𝐻.
• Difficult to disentangle experimentally.
• Consider combined signal strength

𝜇,0!,,̅0!,20 =
+ ,0!,,̅0!,20

+() ,0!,,̅0!,20
.
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1 flavor fits: 𝑡
[HB et al.,2007.08542]
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• 𝑔𝑔𝐻 and 𝐻 → 𝛾𝛾 total rates strongly constraint CP violation in top-Yukawa coupling.
• Relies on assumption that no other BSM physics affect 𝑔𝑔𝐻 and 𝐻 → 𝛾𝛾.
• What happens if we allow 𝜅. and 𝜅* to float freely? 



1 flavor fits: 𝑡 — free 𝜅!, 𝜅"
[HB et al.,2007.08542]
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• Colored and charged BSM particles can cancel the effect of a modified top-Yukawa coupling.
• Top-associated Higgs production is a more model-independent but weaker probe.

≥ 2 flavor fits ⇒ only weak correlations between different Yukawa couplings.



Constraining CP-violation 

using machine learning
How can we improve the LHC bounds on the top-Yukawa coupling in the future?
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Future probes of the top-Yukawa interaction
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• Future rates measurements:
• Need to disentangle 𝑡 ̅𝑡𝐻 and 𝑡𝐻 to improve sensitivity on �̃�,. 

[HB et al., 2007.08542]

• Possible alternative channels: 𝑡 ̅𝑡, 𝑡 ̅𝑡𝑡 ̅𝑡. 
[Cao et al.,1901.04567;Martini et al.,2104.04277]

• Even at HL-LHC comparably weak bounds expected.

• Multivariate analyses exploiting kinematic information:
• BDT analysis, [CMS,2003.10866;ATLAS,2004.04545]

• matrix-element approach,[e.g. Goncalves et al,1804.05874;Kraus et al.,1908.09100]

• High sensitivity expected.

• Future measurements of CP-odd observables: 
[e.g. Faroughy et al.,1909.00007; Bortolato et al.,2006.13110;Barman et al.,2110.07635]

• Difficult since top quarks need to be reconstructed.
• Resulting projected limits are relatively weak.
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Kinematic analysis using ML-based inference I 
[Brehmer et al.,1906.01578,1805.12244,1805.00013,1805.00020,1808.00973]
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• Allows to extract the full available information (maximal sensitivity).
• No information loss due to binning (as for BDT analysis).
• No approximation of shower and detector effects (as for matrix-element approach). 
• Use implementation in public code MadMiner designed to work with MadGraph + Pythia + Delphes. 

[Brehmer,Kling,Espejo,Cranmer,1907.10621]

[Brehmer et al.,1805.00013]

Matrix element information



Kinematic analysis using ML-based inference II

• Focus on top-associated Higgs production (𝑡 ̅𝑡𝐻,𝑡𝐻,𝑡𝑊𝐻) with 𝐻 → 𝛾𝛾.
• We require at least one lepton → consider 𝑍𝐻, 𝑊𝐻 as backgrounds.

• Non-Higgs backgrounds are assumed to be subtracted by fit to smoothly falling 𝑚.. distribution.

• Free parameters: 𝑐,, �̃�,, and 𝑐' (+ renormalization scale 𝜇%).

• Defined 47 observables used by neural network (photon, jet, lepton momenta, Higgs 𝑝(, etc.).
• Averaged over ensemble of six neural networks to minimize ML uncertainty. 

⇒ Evaluate likelihoods for different luminosities at the LHC + HL-LHC.

Henning Bahl 24



Expected limits at the (HL-)LHC
[HB&Brass,2110.10177]

Henning Bahl 25

• Can also interpret result in terms of mixing angle tan 𝛼 = �̃�'/𝑐'. 

• Additional variation of 𝑐( (and of the renormalization scale) only slightly weakens bounds (∼ 5∘ for 300 fb*+).

𝛼 ≤ 60∘ at 95% CL 𝛼 ≤ 40∘ at 95% CL 𝛼 ≤ 22∘ at 95% CL



Using ML to construct CP-odd observables I
[HB, Fuchs, Menen, work in progress, results preliminary]

• Goal: probe CP-violating Higgs–gluon interaction via 𝐻 + 2𝑗 production.

ℒ!,, = − +
-.
𝐻 − /&

01
𝑐,𝐺234 𝐺4,23 +

/&
$1
�̃�,𝐺234 𝐺4,23 (heavy top limit: 𝑐, = 𝑐' , Bc, = �̃�')

• The squared amplitude is then decomposed as: 
ℳ+,,

- = 𝑐.- ℳ+,,
/012324 -

+ 2𝑐.�̃�.𝑅𝑒[ℳ+,,
/012324ℳ+,,

/01566∗] + �̃�.- ℳ+,,
/01566 -

• Construct CP-odd observables via ΔΦ66:

Henning Bahl 26

𝑐!", �̃�!" terms

𝑐!�̃�! term

projected limit



Using ML to construct CP-odd observables II
[HB, Fuchs, Menen, work in progress, results preliminary]

• ML approach: train two neural networks
1. signal–background separation,
2. interference term (𝑐!�̃�!) vs. squared terms (𝑐!", �̃�!").

• Define CP-odd observables: 𝑶𝑵𝑵 = 𝑷8 − 𝑷* . (𝑃8/*: probability for pos./neg. interference event)      
[Bhardway et al., 2112.05052]

Henning Bahl 27

𝑐!", �̃�!" terms

𝑐!�̃�! term

projected limit

→ Significant improvement in sensitivity when using 𝑂:: instead of ΔΦ66.



Complementarity with EDM and 
baryogenesis constraints
Can CP violation in the Higgs sector explain the BAU?

Henning Bahl 28



EDM constraints

• Several EDMs are sensitive to CP violation in the Higgs sector.

• We consider only constraints from theoretically cleanest EDM: the electron EDM.                                     
[Brod et al.,1310.1385,1503.04830, 1810.12303, 2203.03736;Panico et al.,1810.09413;Altmannshofer et al.,2009.01258] 

• Strongest limit by ACME collaboration: 𝑑34567 = 1.1 ⋅ 10")8𝑒 cm at 90% CL. [ACME, Nature 562 (2018) 7727, 355-360]

• 9;
9;<=%>

≃ 𝑐3 870.0�̃�, + 3.9�̃�- + 3.4�̃�: +⋯ + �̃�3(610.1𝑐, + 3.1𝑐- + 2.8𝑐: − 1082.6𝑐' +⋯)

• Bounds strongly depend on assumptions about electron-Yukawa coupling.
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Baryon asymmetry of the Universe

• Different techniques used in the literature to calculate BAU 𝑌;: 
• Vev-insertion approach (VIA),

[Huet&Nelson,9504427,9506477;Carena et al., 9603420;Riotto, 9712221;Lee et al.,0412354;Postma et al.,2206.01120]

• WKB (or FH) approximation.
[Joecy et al.,9410282;Kainulainen et al.,0105295, 0202177;Prokopec et al., 0312110, 0406140;Konstandin et al.,1302.6713, 1407.3132]

• VIA approach yields consistently higher results by orders of magnitude.

• We use VIA approach with bubble wall parameters close to optimal values for 𝑌;:                                
[de Vries,1811.11104;Fuchs et al.,2003.00099,2007.06940;Shapira,2106.05338]

𝑌;
𝑌;<=>

≃ 28�̃�, − 0.2�̃�- − 11�̃�: +⋯

Henning Bahl 30

𝜂 ≡ 𝑌! [Basler et al.,2108.03580]

𝑌; values should be regarded as upper bound on what is theoretically achievable.



1 flavor results: 𝑡 and 𝑏
[HB et al.,2202.11753]
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• CP-violating bottom-Yukawa coupling contributes too less to BAU.

• CP-violating top-Yukawa coupling strongly constrained by eEDM → not able produce sufficient 

BAU.
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1 flavor results: 𝜏 and 𝜇
[HB et al.,2202.11753]
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• CP-violating tau-Yukawa coupling can potentially explain BAU within LHC and eEDM constraints.

• LHC constraints on CP-violating muon-Yukawa coupling are stronger than eEDM bounds.
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2 flavor results: 𝑡 and 𝑏
[HB et al.,2202.11753]
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• Presence of more than one CP-violating coupling allows for cancellation in eEDM.

→ Larger values for 𝑌;/𝑌;<=> can be reached.

Maximal 𝑌;/𝑌;<=> within LHC 
and eEDM constraints:



Dependence on electron-Yukawa coupling
[HB et al.,2202.11753]
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• Electron Yukawa-coupling only very weakly 
constrained (𝑔3 ≤ 268 at 95% CL).

• If 𝑐3 smaller, eEDM significantly weakened.

• Moreover, we can fine-tune CP-odd electron-
Yukawa coupling such that 𝑑3 < 𝑑34567.

• Neutron EDM has similar dependence on first-
generation quark-Yukawa couplings.
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• Electron Yukawa-coupling only very weakly 
constrained (𝑔3 ≤ 268 at 95% CL).

• If 𝑐3 smaller, eEDM significantly weakened.

• Moreover, we can fine-tune CP-odd electron-
Yukawa coupling such that 𝑑3 < 𝑑34567.

• Neutron EDM has similar dependence on first-
generation quark-Yukawa couplings.

LHC bounds important since they do not 
depend on 1st gen. Yukawa couplings.



Conclusions
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Conclusions

LHC already tightly constrains CP violation in the top- and tau-Yukawa couplings.

To improve bounds in the future, we need to exploit all available information using e.g. 
machine-learning to construct likelihood or CP-odd observables.

Complementarity of LHC, EDM, and baryogenesis constraints:
• CP violation in tau-Yukawa coupling remains viable source for electroweak baryogenesis.
• LHC allows to distinguish between CP violation in various Yukawa couplings (beginning to 

probe 2nd generation).
• EDM interpretation strongly depends on first generation Yukawa couplings.

Thanks for your attention!
Henning Bahl 36

Initial question: how well can we constrain CP violation in the Higgs–fermion interactions
and what are the implications for the BAU?
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Appendix
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Reasons for not including ATLAS and CMS top 
CP studies 
• CMS study: [2003.10866]

• All Higgs production modes (apart form top-associated Higgs production) are constrained to 
their SM predictions.

• No two-dimensional likelihood given when our study was published                                       
(now available in [CMS-PAS-HIG-19-009])

• ATLAS study: [2004.04545] 

• Two setups:
1. 𝜅* (and 𝜅.) constrained by other measurements (𝑔𝑔𝐻) excluding 𝑡 ̅𝑡𝐻 and 𝑡𝐻 but 

events generated at NLO → top-associated Higgs production and gluon fusion cannot 
be regarded as independent.

2. 𝜅* and 𝜅. calculated as function of 𝑐, and �̃�,.
• Assumed 𝐻𝑉𝑉 couplings equal to SM value.
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Experimental top CP studies [ATLAS,2004.04545;CMS,2104.12152]
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Correlation between 𝑔𝑔𝐻 and 𝑡 ̅𝑡𝐻 at NLO

Henning Bahl 40

[Maltoni,Vryonidou,Zhang,1607.05330]



2 flavor fits: 𝑡 and 𝑏
[HB et al.,2202.11753]

Henning Bahl 41

• 𝑔𝑔𝐻 rate correlates top and bottom Yukawa couplings: 𝜅,$ ≃ 1.1𝑐'$ + 2.6�̃�'$ − 0.1𝑐'𝑐% − 0.2�̃�'�̃�%.
• Correlation of CP-odd coupling modifiers weaker since bounds on �̃�' are stronger.



Charm- and muon-Yukawa couplings
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Global modification fits

Henning Bahl 43

• Universal fermion coupling modifiers: 𝑐? = 𝑐' = 𝑐% = ⋯ = 𝑐#, �̃�? = �̃�' = �̃�% = ⋯ = �̃�#.
• Dominated by constraints on top-Yukawa coupling.
• Additional varying 𝑐( reopens negative 𝑐? range.
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Interpretation in terms of CP-violating angle
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Variation of 𝑐# and renormalization scale
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Limits in case of deviation from SM

Henning Bahl 47

• CP-mix: 𝑐' = 1, 𝑐 @' = 0.5, 𝑐( = 1.



Which observables drive these constraints?
• Use Fisher matrix to evaluate information for different observables

→ The higher the information, the more precise we can measure a parameter.

• E.g., for SM point we have

• Evaluate Fisher matrix for various 1D and 2D histograms, full likelihood, XS only, kinematics only.
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Fisher information for SM scenario
[HB&Brass,2110.10177]
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• �̃�' not constrained by rate.

• Use of kinematic information 
mandatory.

• No single observable able to 
capture information about �̃�'.
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Fisher information for CP-mixed scenario
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Fisher information for CP-mixed scenario
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• For CP-mixed scenario, Higgs 𝑝A
captures sizeable amount of 
information on 𝑐 @'.

• 𝑝A binned STXS measurements 
useful to constrain CP violation 
in the top-Yukawa coupling.


