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CP violation in the Higgs sector

• New sources of CP violation are necessary to explain the baryon asymmetry of 

the Universe.

• One possibility: CP violation in the Higgs sector.

• CP violation in the Higgs sector can be constrained by 

• demanding significant contribution to the baryon asymmetry (BAU) 

• electric dipole measurements,

• collider measurements. 
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Focus of this talk: Constraining CP violation in the top-Yukawa interaction at the LHC.



Collider constraints @ loop level           [HB et al., 2007.08542]

• Effective model:

• Probe top-Yukawa coupling at the loop-level via 𝑔𝑔 → 𝐻, 𝐻 → 𝛾𝛾:
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Rate only



Collider constraints @ tree level
• Tree-level constraints: top associated Higgs production

• Direct access to top-Yukawa interaction → less model dependence.

• Three sub channels contribute: ̅𝑡𝑡𝐻, 𝑡𝐻 (or 𝑡𝐻𝑞), 𝑡𝑊𝐻.
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Rate only



Exploiting the kinematic information  [HB & Brass, 2110.10177]
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Exemplary kinematic distributions for top-associated Higgs production

How to best exploit the full available information to constraint top-Yukawa interaction?

→ Focused on top-associated Higgs production with 𝐻 → 𝛾𝛾 (demanding at least one lepton).



Machine-learning based inference 
[Brehmer et al.,1906.01578,1805.12244,1805.00013,1805.00020,1808.00973]
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• Allows to extract the full available information (maximal sensitivity).
• Use implementation in public code MadMiner [Brehmer,Kling,Espejo,Cranmer,1907.10621]                                

designed to work with MadGraph + Pythia + Delphes.
• Defined 47 observables as input for neural network.
Averaged over ensemble of six neural networks to minimize ML uncertainty. 



Expected limits at the (HL-)LHC
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• Assumed here that Higgs–vector-boson coupling is SM-like (𝑐! = 1).
• Additional variation of 𝑐! (and of the renormalization scale) only slightly weakens bounds.



Comparison of constraints on CP-violating phase
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• CP-violating phase 𝛼!:
tan 𝛼 = �̃�!/𝑐!

• Exploiting full kinematic information 
significantly strengthen limits.

• Including full-hadronic channel and other 
Higgs decay channels will allow to further 
improve sensitivity.
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Complementarity with eEDM and BAU [HB et al.,2202.11753]
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Electron EDM

• Several EDMs are sensitive to CP violation in the Higgs sector.

• We consider only the electron EDM.                                                
[Brod et al.,`13,`15, `18,`22;Panico et al.,`18;Altmannshofer et al.,`20] 

• "!
"!"#$%

≃ 870𝑐#�̃�! + �̃�# 610𝑐! − 1082.6𝑐$ +⋯

• Bounds strongly depend on assumptions about electron-
Yukawa coupling.

BAU

• Different techniques used in the literature to calculate BAU 𝑌%: vev-insertion approach (VIA) and WKB 
approximation.                                                                                                               
[Huet&Nelson,`95; Carena et al.,`96;Riotto,`97; Lee et al.,`04; Joecy et al.,`94; Kainulainen et al.,`01,`02; Prokopec et al.,`03,`04;Konstandin et al.,`13,`14; Basler,`21]

• VIA approach yields consistently higher results by orders of magnitude.

• We use VIA approach with bubble wall parameters close to optimal values for 𝑌% → 𝑌% values should be 
regarded as upper bound on what is theoretically achievable. [de Vries et al.,`18; Fuchs et al.,`20; Shapira,`21]



Constraints on top-Yukawa coupling
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• EDM constraint strongly limits size of �̃�!

• Only tiny amount of BAU can be generated via 
CP-violating top-Yukawa coupling.

• However, strong dependence on electron-
Yukawa coupling



Dependence on electron-Yukawa coupling
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• Electron Yukawa-coupling only very weakly 
constrained (𝑔# ≤ 268 at 95% CL).

• If 𝑐# smaller, eEDM significantly weakened.

• Moreover, we can fine-tune CP-odd electron-
Yukawa coupling such that 𝑑# < 𝑑#&'().

• Neutron EDM has similar dependence on first-
generation quark-Yukawa couplings.
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• Electron Yukawa-coupling only very weakly 
constrained (𝑔# ≤ 268 at 95% CL).

• If 𝑐# smaller, eEDM significantly weakened.

• Moreover, we can fine-tune CP-odd electron-
Yukawa coupling such that 𝑑# < 𝑑#&'().

• Neutron EDM has similar dependence on first-
generation quark-Yukawa couplings.

LHC bounds important since they do not 
depend on 1st gen. Yukawa couplings.



Conclusions
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LHC constraints:
• 𝑔𝑔 → 𝐻 and 𝐻 → 𝛾𝛾 tightly constrain CP violation in the top-Yukawa couplings 

indirectly.
• Top-associated Higgs production is prime candidate to reduce model dependence.
• Strong constraints from top-associated Higgs production can be expected if full 

kinematic information is exploited.

EDM and baryogenesis constraints:
• EDM bounds put very strong bounds on a CP-violating top-Yukawa interaction.
• Only very small contribution to BAU realizable
• EDM interpretation, however, strongly depends on first generation Yukawa couplings.

Thanks for your attention!

Initial question: how well can we constrain 
CP violation in the Higgs–top-quark interaction?



Appendix
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Interpretation in terms of CP-violating angle
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Variation of 𝑐! and renormalization scale
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Limits in case of deviation from SM
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• CP-mix: 𝑐" = 1, 𝑐 #" = 0.5, 𝑐! = 1.



Experimental studies [ATLAS,2004.04545;CMS,2104.12152]
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Which observables drive these constraints?

• Use Fisher matrix to evaluate information for different observables

• E.g., for SM point we have

• Evaluate Fisher matrix for various 1D and 2D histograms, full likelihood, XS only, kinematics only.
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with

with the parameter space spanned by
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Fisher information for SM scenario
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• 𝑐 #" not constrained by rate.

• Use of kinematic information 
mandatory.

• No single observable able to 
capture information about 𝑐 #".
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Fisher information for CP-mixed scenario
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Fisher information for CP-mixed scenario
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• For CP-mixed scenario, Higgs 𝑝$
captures sizeable amount of 
information on 𝑐 #".

• 𝑝$ binned STXS measurements 
useful to constrain CP violation 
in the top-Yukawa coupling.


