# Constraining the CP character of the Higgs-top-quark interaction

Henning Bahl



CEA Saclay, ATLAS group seminar , 4/4/2023

## CP violation in the Higgs sector

- New sources of CP violation are necessary to explain the baryon asymmetry of the Universe.
- One possibility: CP violation in the Higgs sector.

Focus of this talk: Constraining CP violation in the top-Yukawa interaction at the LHC.

- CP violation in the Higgs sector can be constrained by
  - demanding significant contribution to the baryon asymmetry (BAU)
  - electric dipole measurements,
  - collider measurements.









#### Collider constraints @ loop level

[HB et al., 2007.08542]

- Effective model:  $\mathcal{L}_{ ext{top-yuk}} = -\frac{y_t^{ ext{SM}}}{\sqrt{2}} \bar{t} \left( c_t + i \gamma_5 \tilde{c}_t \right) t H.$
- Probe top-Yukawa coupling at the loop-level via  $gg \rightarrow H, H \rightarrow \gamma\gamma$ :



#### Collider constraints @ tree level

- Tree-level constraints: top associated Higgs production
- Direct access to top-Yukawa interaction  $\rightarrow$  less model dependence.
- Three sub channels contribute:  $\overline{t}tH$ , tH (or tHq), tWH.



## Exploiting the kinematic information

[HB & Brass, 2110.10177]



How to best exploit the full available information to constraint top-Yukawa interaction?

 $\rightarrow$  Focused on top-associated Higgs production with  $H \rightarrow \gamma \gamma$  (demanding at least one lepton).

## Machine-learning based inference

[Brehmer et al., 1906.01578, 1805.12244, 1805.00013, 1805.00020, 1808.00973]



- Allows to extract the full available information (maximal sensitivity).
- Use implementation in public code MadMiner [Brehmer,Kling,Espejo,Cranmer,1907.10621] designed to work with MadGraph + Pythia + Delphes.
- Defined 47 observables as input for neural network. Averaged over ensemble of six neural networks to minimize ML uncertainty.

#### Expected limits at the (HL-)LHC



- Assumed here that Higgs–vector-boson coupling is SM-like ( $c_V = 1$ ).
- Additional variation of  $c_V$  (and of the renormalization scale) only slightly weakens bounds.

#### Comparison of constraints on CP-violating phase



• CP-violating phase  $\alpha_t$ :

 $\tan \alpha = \tilde{c}_t / c_t$ 

- Exploiting full kinematic information significantly strengthen limits.
- Including full-hadronic channel and other Higgs decay channels will allow to further improve sensitivity.

## Complementarity with eEDM and BAU [HB et al., 2202.11753]

#### **Electron EDM**

- Several EDMs are sensitive to CP violation in the Higgs sector.
- We consider only the electron EDM. [Brod et al., 13, 15, 18, 22; Panico et al., 18; Altmannshofer et al., 20]

• 
$$\frac{d_e}{d_e^{\text{ACME}}} \simeq 870c_e \tilde{c}_t + \tilde{c}_e (610c_t - 1082.6c_V) + \cdots$$

 Bounds strongly depend on assumptions about electron-Yukawa coupling.



#### BAU

• Different techniques used in the literature to calculate BAU  $Y_B$ : vev-insertion approach (VIA) and WKB approximation.

[Huet&Nelson, '95; Carena et al., '96; Riotto, '97; Lee et al., '04; Joecy et al., '94; Kainulainen et al., '01, '02; Prokopec et al., '03, '04; Konstandin et al., '13, '14; Basler, '21]

- VIA approach yields consistently higher results by orders of magnitude.
- We use VIA approach with bubble wall parameters close to optimal values for  $Y_B \rightarrow Y_B$  values should be regarded as upper bound on what is theoretically achievable. [de Vries et al., `18; Fuchs et al., `20; Shapira, `21] Henning Bahl

#### Constraints on top-Yukawa coupling



- EDM constraint strongly limits size of  $\tilde{c}_t$
- Only tiny amount of BAU can be generated via CP-violating top-Yukawa coupling.
- However, strong dependence on electron-Yukawa coupling

### Dependence on electron-Yukawa coupling



- Electron Yukawa-coupling only very weakly constrained ( $g_e \leq 268$  at 95% CL).
- If *c<sub>e</sub>* smaller, eEDM significantly weakened.
- Moreover, we can fine-tune CP-odd electron-Yukawa coupling such that  $d_e < d_e^{ACME}$ .
- Neutron EDM has similar dependence on firstgeneration quark-Yukawa couplings.

### Dependence on electron-Yukawa coupling



- Electron Yukawa-coupling only very weakly constrained ( $g_e \leq 268$  at 95% CL).
- If *c<sub>e</sub>* smaller, eEDM significantly weakened.
- Moreover, we can fine-tune CP-odd electron-Yukawa coupling such that  $d_e < d_e^{ACME}$ .
- Neutron EDM has similar dependence on firstgeneration quark-Yukawa couplings.

## Dependence on electron-Yukawa coupling



- Electron Yukawa-coupling only very weakly constrained ( $g_e \leq 268$  at 95% CL).
- If *c<sub>e</sub>* smaller, eEDM significantly weakened.
- Moreover, we can fine-tune CP-odd electron-Yukawa coupling such that  $d_e < d_e^{ACME}$ .
- Neutron EDM has similar dependence on firstgeneration quark-Yukawa couplings.



LHC bounds important since they do not depend on 1<sup>st</sup> gen. Yukawa couplings.

#### Conclusions

*Initial question*: how well can we constrain **CP violation in the Higgs–top-quark interaction**?

#### LHC constraints:

- $gg \rightarrow H$  and  $H \rightarrow \gamma \gamma$  tightly constrain CP violation in the **top-Yukawa couplings** indirectly.
- Top-associated Higgs production is prime candidate to reduce model dependence.
- Strong constraints from top-associated Higgs production can be expected if full kinematic information is exploited.



#### EDM and baryogenesis constraints:

- EDM bounds put very strong bounds on a CP-violating top-Yukawa interaction.
- Only very small contribution to BAU realizable
- EDM interpretation, however, strongly depends on first generation Yukawa couplings.

#### Thanks for your attention!

## Appendix

| observable                                                          | condition                                                                       |
|---------------------------------------------------------------------|---------------------------------------------------------------------------------|
| $\overline{N_{\gamma}}$                                             | $\geq 2 \text{ (with }  \eta  < 2.5 \text{ and } p_T > 25 \text{ GeV} \text{)}$ |
| $(p_{T,1}^\gamma, p_{T,2}^\gamma)$                                  | $\geq (35,25)~{ m GeV}$                                                         |
| $m_{\gamma\gamma}$                                                  | $[105-160]~{\rm GeV}$                                                           |
| $(p_{T,1}^\gamma/m_{\gamma\gamma},p_{T,2}^\gamma/m_{\gamma\gamma})$ | $\geq (0.35, 0.25)$                                                             |
| $N_\ell$                                                            | $\geq 1 \text{ (with }  \eta  < 2.5 \text{ and } p_T > 15 \text{ GeV})$         |
| $m_{\ell\ell}$                                                      | [80, 100] GeV vetoed if same flavour                                            |
| $N_{jet}$                                                           | $\geq 1 \text{ (with }  \eta  < 2.5 \text{ and } p_T > 25 \text{ GeV})$         |

 Table 1: Summary of preselection cuts.

#### Interpretation in terms of CP-violating angle



#### Variation of $c_V$ and renormalization scale



#### Limits in case of deviation from SM



• CP-mix: 
$$c_t = 1$$
,  $c_{\tilde{t}} = 0.5$ ,  $c_V = 1$ .

#### Experimental studies [ATLAS,2004.04545;CMS,2104.12152]





#### Which observables drive these constraints?

• Use Fisher matrix to evaluate information for different observables

$$I_{ij}(\theta) = \mathbb{E}\left[\frac{\partial \log p_{\text{full}}(\{x\}|\theta)}{\partial \theta_i} \frac{\partial \log p_{\text{full}}(\{x\}|\theta)}{\partial \theta_j}\Big|_{\theta}\right], \quad \text{with} \quad \operatorname{cov}(\hat{\theta}|\theta)_{ij} \ge I_{ij}^{-1}(\theta),$$

• E.g., for SM point we have

$$I_{ij}^{\text{full}}(\text{SM}) \simeq \begin{pmatrix} 91.4 & 13.7 & 0.1\\ 13.7 & 108.2 & -0.1\\ 0.1 & -0.1 & 0.004 \end{pmatrix}, \quad \text{with the parameter space spanned by} \quad \begin{pmatrix} c_V \\ c_t \\ c_{\tilde{t}} \end{pmatrix}$$

• Evaluate Fisher matrix for various 1D and 2D histograms, full likelihood, XS only, kinematics only.



- $c_{\tilde{t}}$  not constrained by rate.
- Use of kinematic information mandatory.
- No single observable able to capture information about c<sub>t̃</sub>.

#### Fisher information for CP-mixed scenario



#### Fisher information for CP-mixed scenario

