BSM at Run 3 and beyond — a theory perspective

Henning Bahl

LHCP, Belgrade, 24.5.2023

• Higgs boson discovery in 2012.

• Higgs boson discovery in 2012.

Many other precision measurements and searches.

• Higgs boson discovery in 2012.

Many other precision measurements and searches.

• Success!?

Nikola Tesla

Nikola Tesla

→ So far no evidence for BSM physics...

Nikola Tesla

But: motivation to search for BSM physics at the LHC is still unbroken.

Nikola Tesla

→ So far no evidence for BSM physics...

But: motivation to search for BSM physics at the LHC is still unbroken.

LHC Run-3 and beyond

Much more data will be collected in the next years.

LHC Run-3 and beyond

Much more data will be collected in the next years.

→ The LHC program has just started.

How should we exploit the increased luminosity?

Unexplored BSM signatures

What have we missed so far?

• Many examples of well-motivated BSM signatures which evade current searches.

 Many examples of well-motivated BSM signatures which evade current searches.

• Examples:

- Axion-like particle (ALP) with large couplings to vector bosons. [Bonilla et al. 2202.03450]
- Dark matter searches with a balanced $E_{T, {
 m miss}}$ distribution. [Adan, HB et al. 2112.12656,2302.04892]
- Electroweakino searches with soft photon + hard jet + $E_{T, miss}$. [Baum et al. 2303.01523]
- ...

 Many examples of well-motivated BSM signatures which evade current searches.

- Examples:
 - Axion-like particle (ALP) with large couplings to vector bosons. [Bonilla et al. 2202.03450]
 - Dark matter searches with a balanced $E_{T, {
 m miss}}$ distribution. [Adan, HB et al. 2112.12656,2302.04892]
 - Electroweakino searches with soft photon + hard jet + $E_{T,
 m miss}$. [Baum et al. 2303.01523]
 - ...

→ Discuss one further example here: bosonic charged Higgs boson decays.

Unexplored signatures — bosonic H^{\pm} boson decays

[HB, Wittbrodt, Stefaniak, 2103.07484]

2HDM: CP-even h, H, CP-odd A, and charged H^{\pm} boson Exemplary benchmark plane for $H^{\pm} \rightarrow W^{\pm}A$ decays:

- Large BR $(H^{\pm} \to W^{\pm}A, W^{\pm}H)$ expected if decay kinematically allowed.
- Also large production XS $\Rightarrow \mathcal{O}(1)$ pb signal rates possible.

But so far no comprehensive searches. (existing searches limited to specific mass configurations)

Other scenarios and signatures

- Various scenarios with distinct phenomenology can be constructed:
 - $H^{\pm} \rightarrow W^{\pm} h_{\mathrm{RSM}}$ or $H^{\pm} \rightarrow W^{\pm} A$ dominant,
 - light h_{BSM} ($m_{h_{\mathrm{BSM}}} < m_{h_{125}}$),
 - leptophilic $h_{
 m BSM}$,
 - fermiophobic $h_{\rm BSM}$,
 - •
- Different production mechanisms can be investigated.
- Lot of activities on the pheno side.
 [..., Krab et al. 2210.09416, Bhatia et al. 2212.14363, Kim et al. 2302.05457, Mondal et al. 2304.07719, Fu & Gao, 2304.07782, Moretti & Song 2304.12627, Sanyal & Wang 2305.00659, Li et al. 2305.05788]

Production process	Higgs decay processes	Final state particles
$pp o H^\pm tb$	$H^{\pm} \to W^{\pm} \phi$ and $\phi \to egin{cases} bb \\ au au \\ WW \\ ZZ \\ \gamma\gamma \end{cases}$	$tbW^{\pm} + egin{bmatrix} bb \ au au \ WW \ ZZ \ \gamma\gamma \end{bmatrix}$
	$H^{\pm} \to W^{\pm} \phi \text{ and } \phi \to \begin{cases} bb \\ \tau \tau \\ WW \\ ZZ \\ \gamma \gamma \end{cases}$	
	$H^{\pm} o W^{\pm} \phi \text{ and } \phi o egin{cases} bb \\ au au \\ WW \\ ZZ \\ \gamma\gamma \end{cases}$	

→ Rich phenomenology waiting to be explored experimentally!

Search for rare processes

BSM decays of SM particles

Top quarks are produced in large numbers at the LHC:

- $\sigma_{t\bar{t}}^{13.6\,\mathrm{TeV}}\simeq900\,\mathrm{pb}$
- $\rightarrow \sim 5 \cdot 10^8$ top quarks at the end of Run-3
- $\rightarrow \sim 5 \cdot 10^9$ top quarks at the end of HL-LHC
- ⇒ Unique opportunity to search FCNC via rare top-quark decays induced by BSM physics!

Top quarks are produced in large numbers at the LHC:

- $\sigma_{t\bar{t}}^{13.6\,\mathrm{TeV}}\simeq900\,\mathrm{pb}$
- $\rightarrow \sim 5 \cdot 10^8$ top quarks at the end of Run-3
- $\rightarrow \sim 5 \cdot 10^9$ top quarks at the end of HL-LHC
- ⇒ Unique opportunity to search FCNC via rare top-quark decays induced by BSM physics!

Existing experimental searches:

Top quarks are produced in large numbers at the LHC:

- $\sigma_{t\bar{t}}^{13.6\,\mathrm{TeV}}\simeq 900\,\mathrm{pb}$
- $\rightarrow \sim 5 \cdot 10^8$ top quarks at the end of Run-3
- $\rightarrow \sim 5 \cdot 10^9$ top quarks at the end of HL-LHC
- ⇒ Unique opportunity to search FCNC via rare top-quark decays induced by BSM physics!

\bar{t} \bar{b} \bar{b} $\bar{\ell}'$ \bar{u} , c [CMS 2201.07859]

Existing experimental searches:

• SM final states: $t \to Hq, Zq, \gamma q, \ell^+\ell^-q$

Top quarks are produced in large numbers at the LHC:

- $\sigma_{t\bar{t}}^{13.6\,\mathrm{TeV}}\simeq900\,\mathrm{pb}$
- $\rightarrow \sim 5 \cdot 10^8$ top quarks at the end of Run-3
- $\rightarrow \sim 5 \cdot 10^9$ top quarks at the end of HL-LHC
- ⇒ Unique opportunity to search FCNC via rare top-quark decays induced by BSM physics!

Existing experimental searches:

- SM final states: $t \to Hq, Zq, \gamma q, \ell^+\ell^-q$
- BSM final states: $t \to X (\to b\bar{b})q$ with X being a scalar

80

100

120

140

m_x [GeV]

160

11

Henning Bahl [ATLAS 2301.03902]

• Rare top-quark decays with SM final state can be parameterized using SMEFT (see e.g. [Bradshaw & Chang 2304.06063]).

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{i,n} \frac{c_n}{\Lambda^i} \mathcal{O}_i^n$$

 Rare top-quark decays with SM final state can be parameterized using SMEFT (see e.g. [Bradshaw & Chang 2304.06063]).

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{i,n} \frac{c_n}{\Lambda^i} \mathcal{O}_i^n$$

SMEFT

Dim 6
$\left(\bar{Q}_i u_j\right) \left(\bar{Q}_k d_\ell\right)$
$\left(\bar{Q}_i u_j\right) \left(\bar{L}_k e_\ell\right)$
$(\Phi^\dagger\Phi)(ar Q_iu_j ilde\Phi)$
$(\Phi^\dagger i \overset{\leftrightarrow}{D}_\mu \Phi) (ar{Q}_i^\dagger \gamma^\mu Q_j)$
$(ar{Q}_i\sigma^{\mu u} au^Au_j)\widetilde{\Phi}G^A_{\mu u}$
$(\bar{Q}_i \sigma^{\mu u} au^I u_j) \widetilde{\Phi} W^I_{\mu u}$
$(\bar{Q}_i\sigma^{\mu u}u_j)\widetilde{\Phi}B_{\mu u}$

 Rare top-quark decays with SM final state can be parameterized using SMEFT (see e.g. [Bradshaw & Chang 2304.06063]).

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{i,n} \frac{c_n}{\Lambda^i} \mathcal{O}_i^n$$

- Additionally, consider the possibility of light BSM particles:
 - scalar singlet S (e.g. ALP),
 - fermionic singlet *N* (e.g. sterile neutrino),
 - light gauge boson Z' (e.g. from gauging $B_3 L_3$),
 - not discussed here: light charged Higgs boson.

 \Rightarrow New operators and final states.

$\begin{array}{c} \text{SMEFT} \\ \text{Dim } 6 \\ \hline \\ \left(\bar{Q}_{i}u_{j}\right)\left(\bar{Q}_{k}d_{\ell}\right) \\ \left(\bar{Q}_{i}u_{j}\right)\left(\bar{L}_{k}e_{\ell}\right) \\ \left(\Phi^{\dagger}\Phi\right)\left(\bar{Q}_{i}u_{j}\tilde{\Phi}\right) \\ \left(\Phi^{\dagger}i\overset{\leftrightarrow}{D}_{\mu}\Phi\right)\left(\bar{Q}_{i}^{\dagger}\gamma^{\mu}Q_{j}\right) \\ \left(\bar{Q}_{i}\sigma^{\mu\nu}\tau^{A}u_{j}\right)\widetilde{\Phi}G_{\mu\nu}^{A} \\ \left(\bar{Q}_{i}\sigma^{\mu\nu}\tau^{I}u_{j}\right)\widetilde{\Phi}W_{\mu\nu}^{I} \\ \left(\bar{Q}_{i}\sigma^{\mu\nu}u_{j}\right)\widetilde{\Phi}B_{\mu\nu} \end{array}$

• Rare top-quark decays with SM final state can be parameterized using SMEFT (see e.g. [Bradshaw & Chang 2304.06063]).

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{i,n} \frac{c_n}{\Lambda^i} \mathcal{O}_i^n$$

- Additionally, consider the possibility of light BSM particles:
 - scalar singlet S (e.g. ALP),
 - fermionic singlet *N* (e.g. sterile neutrino),
 - light gauge boson Z' (e.g. from gauging $B_3 L_3$),
 - not discussed here: light charged Higgs boson.

 \Rightarrow New operators and final states.

SMEFT

Dim 6 $(\bar{Q}_{i}u_{j}) (\bar{Q}_{k}d_{\ell})$ $(\bar{Q}_{i}u_{j}) (\bar{L}_{k}e_{\ell})$ $(\Phi^{\dagger}\Phi)(\bar{Q}_{i}u_{j}\tilde{\Phi})$ $(\Phi^{\dagger}i\overset{\leftrightarrow}{D}_{\mu}\Phi)(\bar{Q}_{i}^{\dagger}\gamma^{\mu}Q_{j})$ $(\bar{Q}_{i}\sigma^{\mu\nu}\tau^{A}u_{j})\overset{\leftrightarrow}{\Phi}G^{A}_{\mu\nu}$ $(\bar{Q}_{i}\sigma^{\mu\nu}\tau^{I}u_{j})\overset{\leftrightarrow}{\Phi}W^{I}_{\mu\nu}$ $(\bar{Q}_{i}\sigma^{\mu\nu}u_{j})\overset{\leftrightarrow}{\Phi}B_{\mu\nu}$

BSM EFT

Dim 5
$S(ar{Q}_i ot\!\!/ Q_j)$
$S(\Phi^\dagger ar{Q}_i u_j)$
Dim 6
$\left(ar{Q}_i d_j ight) \left(ar{L}_k N_\ell ight)$
$\left \; \left(ar{Q}_i Q_j ight) \left(ar{N}_k N_\ell ight) ight.$
$S^2(ar{Q}_iD\!\!\!/Q_j)$
$S^2(\Phi^\daggerar Q_iu_j)$
$(\bar{Q}_i \sigma^{\mu\nu} u_j) \widetilde{\Phi} F'_{\mu\nu}$

Rare top-quark decays — expect BRs

[HB, Koren, Wang, work in progress]

- Investigate operators individually.
- Set $\Lambda=1$ TeV, $c_i^n=1$, and $m_S=m_N=m_{Z'}=10$ GeV as a benchmark.
- Calculate branching ratio for different final states.

Rare top-quark decays — expect BRs

[HB, Koren, Wang, work in progress]

- Investigate operators individually.
- Set $\Lambda=1$ TeV, $c_i^n=1$, and $m_S=m_N=m_{Z'}=10$ GeV as a benchmark.
- Calculate branching ratio for different final states.

Rare top-quark decays — expect BRs

[HB, Koren, Wang, work in progress]

- Investigate operators individually.
- Set $\Lambda=1$ TeV, $c_i^n=1$, and $m_S=m_N=m_{Z'}=10$ GeV as a benchmark.
- Calculate branching ratio for different final states.

- Sizeable branching ratios/number of events for various operators.
- Various final states which can be probed with current and future data.
- \Rightarrow Huge potential for future searches!

Rare top-quark decays II

- Decays of BSM particles can be parameterized by adding additional operators (not involving the top-quark):
 - e.g. $S \to b\overline{b}$, $\tau^+\tau^-$, $\gamma\gamma$ etc. (see e.g. [Banerjee et al. 1806.02836, Bhattacharyya et al. 2212.09061]),
 - potentially long-lived depending on size of Wilson coefficients (see e.g. discussion of $t \to ALP + q$ in [Carmona et al. 2202.09371]).

[Carmona et al. 2202.09371]

Rare top-quark decays II

- Decays of BSM particles can be parameterized by adding additional operators (not involving the top-quark):
 - e.g. $S \to b\bar{b}$, $\tau^+\tau^-$, $\gamma\gamma$ etc. (see e.g. [Banerjee et al. 1806.02836, Bhattacharyya et al. 2212.09061]),
 - potentially long-lived depending on size of Wilson coefficients (see e.g. discussion of $t \to ALP + q$ in [Carmona et al. 2202.09371]).
- In the minimal set-up including only operators involving the top quark the BSM particles can either be
 - stable if only operators involving two BSM particles are considered (e.g. due to \mathbb{Z}_2 symmetry) \rightarrow missing energy signature,
 - decay via loop-induced corrections: e.g. $N \to \nu b \bar b$ with N being potentially long-lived.

[Carmona et al. 2202.09371]

Rare top-quark decays II

- Decays of BSM particles can be parameterized by adding additional operators (not involving the top-quark):
 - e.g. $S \rightarrow b\bar{b}$, $\tau^+\tau^-$, $\gamma\gamma$ etc. (see e.g. [Banerjee et al. 1806.02836, Bhattacharyya et al. 2212.09061]),
 - potentially long-lived depending on size of Wilson coefficients (see e.g. discussion of $t \to ALP + q$ in [Carmona et al. 2202.09371]).
- In the minimal set-up including only operators involving the top quark the BSM particles can either be
 - stable if only operators involving two BSM particles are considered (e.g. due to \mathbb{Z}_2 symmetry) \rightarrow missing energy signature,
 - decay via loop-induced corrections: e.g. $N \to \nu b \bar{b}$ with N being potentially long-lived.

Many interesting signatures for prompt and long-lived searches.

[Carmona et al. 2202.09371]

Other searches for rare BSM decays

Also other SM particles could have rare BSM decays:

- rare Higgs boson decays (→ see Maxwell Chertok's on Friday),
- rare Z boson decays,

•

Going global

Exploiting different LHC channels and non-collider measurements

Complementarity with non-collider experiments — electroweak phase transitions

- Shape of the Higgs potential largely unconstrained.
- Zero-temperature potential can be probed e.g. via di-Higgs boson production.
- How can be probe the thermal development of the Higgs potential?
 - \rightarrow Has there been a strong first-order phase transition ($\xi_c > 1$)?

Complementarity with non-collider experiments — electroweak phase transitions

- Shape of the Higgs potential largely unconstrained.
- Zero-temperature potential can be probed e.g. via di-Higgs boson production.
- How can be probe the thermal development of the Higgs potential?
 - \rightarrow Has there been a strong first-order phase transition ($\xi_c > 1$)?

[Goncalves et al. 2108.05356; see also Biekötter et al. 2208.14466, ...]

Complementarity with non-collider experiments — electroweak phase transitions

- Shape of the Higgs potential largely unconstrained.
- Zero-temperature potential can be probed e.g. via di-Higgs boson production.
- How can be probe the thermal development of the Higgs potential?
 - \rightarrow Has there been a strong first-order phase transition ($\xi_c > 1$)?

[Goncalves et al. 2108.05356; see also Biekötter et al. 2208.14466, ...]

Exploit complementarity between different LHC channels + GW observatories.

— Higgs CP

[HB et al. 2202.11753; see also Brod et al. 2203.03736, Fuchs et al. 2003.00099, ...]

— Higgs CP

[HB et al. 2202.11753; see also Brod et al. 2203.03736, Fuchs et al. 2003.00099, ...]

Can CP-violating Higgs couplings help to explain the baryon asymmetry Y_B of the Universe?

— Higgs CP

[HB et al. 2202.11753; see also Brod et al. 2203.03736, Fuchs et al. 2003.00099, ...]

Can CP-violating Higgs couplings help to explain the baryon asymmetry Y_B of the Universe?

• CP-odd Higgs-fermion couplings can still be sizeable. Consider here $\mathcal{L}_{\tau} = \frac{y_{\tau}^{SM}}{\sqrt{2}} \bar{\tau} (c_{\tau} + i \gamma_5 \tilde{c}_{\tau}) \tau H.$

— Higgs CP

[HB et al. 2202.11753; see also Brod et al. 2203.03736, Fuchs et al. 2003.00099, ...]

Can CP-violating Higgs couplings help to explain the baryon asymmetry Y_B of the Universe?

- CP-odd Higgs-fermion couplings can still be sizeable. Consider here $\mathcal{L}_{ au} = \frac{y_{ au}^{SM}}{\sqrt{2}} \bar{ au}(c_{ au} + i\gamma_5 \tilde{c}_{ au}) au H$.
- Constraints arise from
 - LHC measurements and
 - electric dipole moment (EDM) measurements.

— Higgs CP

[HB et al. 2202.11753; see also Brod et al. 2203.03736, Fuchs et al. 2003.00099, ...]

Can CP-violating Higgs couplings help to explain the baryon asymmetry Y_B of the Universe?

- CP-odd Higgs-fermion couplings can still be sizeable. Consider here $\mathcal{L}_{\tau} = \frac{y_{\tau}^{SM}}{\sqrt{2}} \bar{\tau} (c_{\tau} + i \gamma_5 \tilde{c}_{\tau}) \tau H.$
- Constraints arise from
 - LHC measurements and
 - electric dipole moment (EDM) measurements.
 - ⇒ Exploit complementarity!

— Higgs CP

[HB et al. 2202.11753; see also Brod et al. 2203.03736, Fuchs et al. 2003.00099, ...]

Can CP-violating Higgs couplings help to explain the baryon asymmetry Y_B of the Universe?

- CP-odd Higgs-fermion couplings can still be sizeable. Consider here $\mathcal{L}_{ au} = \frac{y_{ au}^{SM}}{\sqrt{2}} \bar{ au}(c_{ au} + i\gamma_5 \tilde{c}_{ au}) au H$.
- Constraints arise from
 - LHC measurements and
 - electric dipole moment (EDM) measurements.
 - ⇒ Exploit complementarity!
- Global fit to LHC and EDM data.

— Higgs CP

[HB et al. 2202.11753; see also Brod et al. 2203.03736, Fuchs et al. 2003.00099, ...]

Can CP-violating Higgs couplings help to explain the baryon asymmetry Y_B of the Universe?

- CP-odd Higgs-fermion couplings can still be sizeable. Consider here $\mathcal{L}_{\tau} = \frac{y_{\tau}^{SM}}{\sqrt{2}} \bar{\tau} (c_{\tau} + i \gamma_5 \tilde{c}_{\tau}) \tau H$.
- Constraints arise from
 - LHC measurements and
 - electric dipole moment (EDM) measurements.
 - ⇒ Exploit complementarity!
- Global fit to LHC and EDM data.

— Higgs CP

[HB et al. 2202.11753; see also Brod et al. 2203.03736, Fuchs et al. 2003.00099, ...]

Can CP-violating Higgs couplings help to explain the baryon asymmetry Y_B of the Universe?

- CP-odd Higgs-fermion couplings can still be sizeable. Consider here $\mathcal{L}_{ au} = \frac{y_{ au}^{SM}}{\sqrt{2}} \bar{ au}(c_{ au} + i\gamma_5 \tilde{c}_{ au}) au H$.
- Constraints arise from
 - LHC measurements and
 - electric dipole moment (EDM) measurements.
 - ⇒ Exploit complementarity!
- Global fit to LHC and EDM data.

CP violation in tau-Yukawa coupling could give sizeable contribution to baryon asymmetry!

— Higgs CP

[HB et al. 2202.11753; see also Brod et al. 2203.03736, Fuchs et al. 2003.00099, ...]

Can CP-violating Higgs couplings help to explain the baryon asymmetry Y_B of the Universe?

- CP-odd Higgs-fermion couplings can still be sizeable. Consider here $\mathcal{L}_{\tau} = \frac{y_{\tau}^{SM}}{\sqrt{2}} \bar{\tau} (c_{\tau} + i \gamma_5 \tilde{c}_{\tau}) \tau H$.
- Constraints arise from
 - LHC measurements and
 - electric dipole moment (EDM) measurements.
 - ⇒ Exploit complementarity!
- Global fit to LHC and EDM data.

CP violation in tau-Yukawa coupling could give sizeable contribution to baryon asymmetry!

- → See talk by Marco Menen this afternoon for more details.
- → Dedicated LHC Higgs WG 2 effort.

Conclusions

BSM at Run-3 and beyond

Conclusions: objectives for Run-3 and beyond

Motivation to search for BSM physics is unbroken.

How to go forward?

- Improve upon existing searches/measurements using increased luminosities.
- Use new analysis methods to fully exploit data.
- Look out for uncovered signatures.
- Ensure reinterpretability of results.
- Going global: exploit complementarity between different channels and with non-collider measurements.

Conclusions: objectives for Run-3 and beyond

Motivation to search for BSM physics is unbroken.

How to go forward?

- Improve upon existing searches/measurements using increased luminosities.
- Use new analysis methods to fully exploit data.
- Look out for uncovered signatures.
- Ensure reinterpretability of results.
- channels and with non-collider measurements.

Going global: exploit complementarity between different

Thanks for your attention!

Unexplored signatures — bosonic H^{\pm} decays

- Charged Higgs bosons appear in many BSM extensions of the SM Higgs sector.
- Existing experimental searches:

Production process	Higgs decay	Final state	# of exp. searches	5
$pp ightarrow H^\pm tb$	$H^\pm o au u_ au$	$tb(au u_{ au})$	7	_
pp $ ightarrow$ $ extstyle H^\pm$ tb	${\it H}^{\pm} ightarrow {\it tb}$	tbtb	4	
$ ho ho ightarrow t t, t ightarrow extsf{H}^{\pm} extsf{b}$	$ extstyle H^\pm o c extstyle b$	tbcb	2	
$p p o t t, t o extstyle H^\pm b$	${\sf H}^\pm o {\sf cs}$	tbcs	3	
$pp o H^\pm qq'$ (VBF)	$H^\pm o W^\pm Z$	$W^\pm Zqq'$	4	
$pp o tt, t o H^\pm b$	$H^\pm o W^\pm A$	tb $W^\pm \mu^+ \mu^-$	3	Limits only for specific mas
$p p o t t, t o extstyle H^\pm b$	$H^\pm o W^\pm H$	tb $W^\pm au^+ au^-$	1	configurations
$pp o H o H^\pm W^\mp$	$H^{\pm} o W^{\pm} h$	$W^\pm W^\mp bb$	1	.

→ 16 searches in fermionic channels, 9 searches in boson channels (of which 4 only appear in triplet extension)

Unexplored signatures — bosonic H^{\pm} decays

- Charged Higgs bosons appear in many BSM extensions of the SM Higgs sector.
- Existing experimental searches:

Production process	Higgs decay	Final state	# of exp. searches	-
$p ho ightarrow H^\pm tb$	$H^{\pm} ightarrow au u_{ au}$	$tb(au u_{ au})$	7	_
pp $ ightarrow {\sf H}^\pm {\sf tb}$	${\it H}^{\pm} ightarrow {\it tb}$	tbtb	4	
$pp o tt, t o extstyle H^\pm extstyle b$	$ extstyle H^\pm o c extstyle b$	tbcb	2	
$pp o tt, t o extstyle H^\pm extstyle b$	$ extstyle H^\pm o cs$	tbcs	3	
$pp o H^\pm qq^\prime$ (VBF)	$H^\pm o W^\pm Z$	$W^\pm Zqq'$	4	
$pp o tt, t o H^\pm b$	$H^\pm o W^\pm A$	tb $W^\pm \mu^+ \mu^-$	3	Limits only for specific mass
$pp o tt, t o extstyle H^\pm extstyle b$	$H^\pm o W^\pm H$	tb $W^\pm au^+ au^-$	1	configurations
$pp o H o H^{\pm}W^{\mp}$	$H^{\pm} o W^{\pm} h$	$W^\pm W^\mp bb$	1	_

→ 16 searches in fermionic channels, 9 searches in boson channels (of which 4 only appear in triplet extension)

Are the bosonic channels theoretically less motivated?

CMS $H^{\pm} \rightarrow HW^{\pm}$ search ($m_H = 200$ GeV fixed) [CMS, 2207.01046]

• Radiative electroweak: $H^{\pm}H^{\mp}\gamma$, $H^{\pm}H^{\mp}Z$;

- Radiative electroweak: $H^{\pm}H^{\mp}\gamma$, $H^{\pm}H^{\mp}Z$;
- triple Higgs: $H^{\pm}H^{\mp}h_i$, $H^{\pm}H^{\mp}a_i$

- Radiative electroweak: $H^{\pm}H^{\mp}\gamma$, $H^{\pm}H^{\mp}Z$;
- triple Higgs: $H^{\pm}H^{\mp}h_i$, $H^{\pm}H^{\mp}a_i$
- mixed electroweak: $H^{\pm}W^{\mp}Z$, $H^{\pm}W^{\mp}\gamma$ (only in triplet extensions)

- Radiative electroweak: $H^{\pm}H^{\mp}\gamma$, $H^{\pm}H^{\mp}Z$;
- triple Higgs: $H^{\pm}H^{\mp}h_i$, $H^{\pm}H^{\mp}a_i$
- mixed electroweak: $H^{\pm}W^{\mp}Z$, $H^{\pm}W^{\mp}\gamma$ (only in triplet extensions)
- Higgs-electroweak: $H^{\pm}W^{\mp}h_i$, $H^{\pm}W^{\mp}a_i$

- Radiative electroweak: $H^{\pm}H^{\mp}\gamma$, $H^{\pm}H^{\mp}Z$;
- triple Higgs: $H^{\pm}H^{\mp}h_i$, $H^{\pm}H^{\mp}a_i$
- mixed electroweak: $H^{\pm}W^{\mp}Z$, $H^{\pm}W^{\mp}\gamma$ (only in triplet extensions)
- Higgs-electroweak: $H^{\pm}W^{\mp}h_i$, $H^{\pm}W^{\mp}a_i$

- Radiative electroweak: $H^{\pm}H^{\mp}\gamma$, $H^{\pm}H^{\mp}Z$;
- triple Higgs: $H^{\pm}H^{\mp}h_i$, $H^{\pm}H^{\mp}a_i$
- mixed electroweak: $H^{\pm}W^{\mp}Z$, $H^{\pm}W^{\mp}\gamma$ (only in triplet extensions)
- Higgs-electroweak: $H^{\pm}W^{\mp}h_i$, $H^{\pm}W^{\mp}a_i$

In the 2HDM, we have (with h_i being the CP-even Higgs bosons ordered by mass)

$$g(H^{\pm}W^{\mp}h_1) \propto \cos(\beta - \alpha)$$
, $g(H^{\pm}W^{\mp}h_2) \propto \sin(\beta - \alpha)$, $g(H^{\pm}W^{\mp}A) = -\frac{g}{2}$

Alignment limit: h_1 SM-like $\Rightarrow \cos(\beta - \alpha) \rightarrow 0$; h_2 SM-like $\Rightarrow \sin(\beta - \alpha) \rightarrow 0$

Alignment limit strongly motivated by h_{125} measurements \Rightarrow Charged Higgs boson couplings to W boson and $h_{\rm BSM}$ or A boson close to maximum!

Unexplored signatures — bosonic H^{\pm} boson decays

[HB, Wittbrodt, Stefaniak, 2103.07484]

2HDM parameter scan applying theoretical and experimental constraints:

Example scenario with $H^{\pm} \rightarrow W^{\pm}A$

$$\sin(\beta - \alpha) = 1,$$

 $\tan\beta = 3,$
 $m_{h_{BSM}} = m_{H^{\pm}}$

Large rates possible which are not constrained by existing searches!

Rare top decays — mass dependencies

S and Z' loop-induced decays

