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Unexplored BSM signatures
What have we missed so far?
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Uncovered BSM signatures

• Many examples of well-motivated BSM signatures which 
evade current searches.

• Examples:
• Axion-like particle (ALP) with large couplings to vector 

bosons. [Bonilla et al. 2202.03450]

• Dark matter searches with a balanced 𝐸!,#$%% 
distribution. [Adan, HB et al. 2112.12656,2302.04892]

• Electroweakino searches with soft photon + hard jet + 
𝐸!,#$%%. [Baum et al. 2303.01523]

• …
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→ Discuss one further example here: bosonic charged Higgs boson decays.



Unexplored signatures — bosonic 𝐻± boson decays
[HB, Wittbrodt, Stefaniak, 2103.07484]

• Large BR(𝐻± → 𝑊±𝐴,𝑊±𝐻) expected if decay kinematically allowed.
• Also large production XS ⇒ 𝒪(1) pb signal rates possible.

2HDM: CP-even ℎ, 𝐻, CP-odd 𝐴, and charged 𝐻± boson 
Exemplary benchmark plane for 𝐻± → 𝑊±𝐴 decays:

But so far no comprehensive searches. (existing searches limited to specific mass configurations)

sin 𝛽 − 𝛼 = 1,	
tan𝛽 = 3,	

𝑚!!"# = 𝑚"±  



Other scenarios and signatures

Henning Bahl 9

• Various scenarios with distinct phenomenology 
can be constructed:
• 𝐻± → 𝑊±ℎ'() or 𝐻± → 𝑊±𝐴 dominant,
• light ℎ'() (𝑚*!"# < 𝑚*$%&),
• leptophilic ℎ'(),
• fermiophobic ℎ'(),
• …

• Different production mechanisms can be 
investigated.

• Lot of activities on the pheno side.              
[…, Krab et al. 2210.09416, Bhatia et al. 2212.14363, Kim et al. 
2302.05457, Mondal et al. 2304.07719, Fu & Gao, 2304.07782, 
Moretti & Song 2304.12627, Sanyal & Wang 2305.00659, Li et 
al. 2305.05788]

→ Rich phenomenology waiting to be explored experimentally!



Search for rare processes
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Top quarks are produced in large numbers at the LHC:
• 𝜎+ ̅+

-..0	234 ≃ 900 pb 
• → ∼ 5 ⋅ 105 top quarks at the end of Run-3
• → ∼ 5 ⋅ 106 top quarks at the end of HL-LHC

⇒ Unique opportunity to search FCNC via rare top-quark decays induced by             
     BSM physics!

Existing experimental searches:

• SM final states: 𝑡 → 𝐻𝑞, 𝑍𝑞, 𝛾𝑞, ℓ7ℓ8𝑞

• BSM final states: 𝑡 → 𝑋(→ 𝑏<𝑏)𝑞 with 𝑋 being a scalar

Search for rare processes — top-quark decays

Henning Bahl 11



Top quarks are produced in large numbers at the LHC:
• 𝜎+ ̅+

-..0	234 ≃ 900 pb 
• → ∼ 5 ⋅ 105 top quarks at the end of Run-3
• → ∼ 5 ⋅ 106 top quarks at the end of HL-LHC

⇒ Unique opportunity to search FCNC via rare top-quark decays induced by             
     BSM physics!

Existing experimental searches:

• SM final states: 𝑡 → 𝐻𝑞, 𝑍𝑞, 𝛾𝑞, ℓ7ℓ8𝑞

• BSM final states: 𝑡 → 𝑋(→ 𝑏<𝑏)𝑞 with 𝑋 being a scalar

Search for rare processes — top-quark decays

Henning Bahl 11



Top quarks are produced in large numbers at the LHC:
• 𝜎+ ̅+

-..0	234 ≃ 900 pb 
• → ∼ 5 ⋅ 105 top quarks at the end of Run-3
• → ∼ 5 ⋅ 106 top quarks at the end of HL-LHC

⇒ Unique opportunity to search FCNC via rare top-quark decays induced by             
     BSM physics!

Existing experimental searches:

• SM final states: 𝑡 → 𝐻𝑞, 𝑍𝑞, 𝛾𝑞, ℓ7ℓ8𝑞

• BSM final states: 𝑡 → 𝑋(→ 𝑏<𝑏)𝑞 with 𝑋 being a scalar

Search for rare processes — top-quark decays

Henning Bahl 11

[CMS 2201.07859]



Top quarks are produced in large numbers at the LHC:
• 𝜎+ ̅+

-..0	234 ≃ 900 pb 
• → ∼ 5 ⋅ 105 top quarks at the end of Run-3
• → ∼ 5 ⋅ 106 top quarks at the end of HL-LHC

⇒ Unique opportunity to search FCNC via rare top-quark decays induced by             
     BSM physics!

Existing experimental searches:

• SM final states: 𝑡 → 𝐻𝑞, 𝑍𝑞, 𝛾𝑞, ℓ7ℓ8𝑞

• BSM final states: 𝑡 → 𝑋(→ 𝑏<𝑏)𝑞 with 𝑋 being a scalar

Search for rare processes — top-quark decays

Henning Bahl 11

[CMS 2201.07859]

[ATLAS 2301.03902]



• Rare top-quark decays with SM final state can be parameterized 
using SMEFT (see e.g. [Bradshaw & Chang 2304.06063]).

ℒ = ℒ() +@
9,:

𝑐:
Λ9
𝒪9:

• Additionally, consider the possibility of light BSM particles:
• scalar singlet 𝑆 (e.g. ALP),
• fermionic singlet 𝑁 (e.g. sterile neutrino),
• light gauge boson 𝑍; (e.g. from gauging 𝐵. − 𝐿.),
• not discussed here: light charged Higgs boson.

⇒ New operators and final states.

Rare top decays — EFT classification
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SMEFT
BSM EFT



Rare top-quark decays — expect BRs
[HB, Koren, Wang, work in progress]

Henning Bahl 13

• Investigate operators individually.
• Set Λ = 1 TeV, 𝑐9: = 1, and 𝑚< = 𝑚= = 𝑚>' = 10 GeV 

as a benchmark.
• Calculate branching ratio for different final states.
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• Investigate operators individually.
• Set Λ = 1 TeV, 𝑐9: = 1, and 𝑚< = 𝑚= = 𝑚>' = 10 GeV 

as a benchmark.
• Calculate branching ratio for different final states.

• Sizeable branching ratios/number of 
events for various operators.

• Various final states which can be 
probed with current and future data.

⇒ Huge potential for future searches!



Rare top-quark decays II
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• Decays of BSM particles can be parameterized by adding additional 
operators (not involving the top-quark):

• e.g. 𝑆 → 𝑏<𝑏, 𝜏7𝜏8, 𝛾𝛾 etc.                                                                             
(see e.g. [Banerjee et al. 1806.02836, Bhattacharyya et al. 2212.09061]),

• potentially long-lived depending on size of Wilson coefficients            
(see e.g. discussion of 𝑡 → ALP + 𝑞 in [Carmona et al. 2202.09371]).

• In the minimal set-up including only operators involving the top quark the 
BSM particles can either be

• stable if only operators involving two BSM particles are considered   
(e.g. due to ℤ? symmetry) → missing energy signature,

• decay via loop-induced corrections: e.g. 𝑁 → 𝜈𝑏<𝑏 with 𝑁 being 
potentially long-lived.

[Carmona et al. 2202.09371]
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• Decays of BSM particles can be parameterized by adding additional 
operators (not involving the top-quark):

• e.g. 𝑆 → 𝑏<𝑏, 𝜏7𝜏8, 𝛾𝛾 etc.                                                                             
(see e.g. [Banerjee et al. 1806.02836, Bhattacharyya et al. 2212.09061]),

• potentially long-lived depending on size of Wilson coefficients            
(see e.g. discussion of 𝑡 → ALP + 𝑞 in [Carmona et al. 2202.09371]).

• In the minimal set-up including only operators involving the top quark the 
BSM particles can either be
• stable if only operators involving two BSM particles are considered   

(e.g. due to ℤ? symmetry) → missing energy signature,

• decay via loop-induced corrections: e.g. 𝑁 → 𝜈𝑏<𝑏 with 𝑁 being 
potentially long-lived.

Many interesting signatures for prompt and long-lived searches.

[Carmona et al. 2202.09371]



Other searches for rare BSM decays

Henning Bahl 15

Also other SM particles could have rare BSM decays:

• rare Higgs boson decays (→ see Maxwell Chertok’s on Friday),

• rare 𝑍 boson decays,

• …

[Liu et al., 1712.07237]



Going global
Exploiting different LHC channels and non-collider measurements
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Complementarity with non-collider experiments 
— electroweak phase transitions
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• Shape of the Higgs potential largely 
unconstrained.

• Zero-temperature potential can be probed 
e.g. via di-Higgs boson production.

• How can be probe the thermal 
development of the Higgs potential?           

     → Has there been a strong first-order                 
          phase transition (𝜉@ > 1)?
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• Shape of the Higgs potential largely 
unconstrained.

• Zero-temperature potential can be probed 
e.g. via di-Higgs boson production.

• How can be probe the thermal 
development of the Higgs potential?           

     → Has there been a strong first-order                 
          phase transition (𝜉@ > 1)?

Exploit complementarity between different LHC 
channels + GW observatories.

[Goncalves et al. 2108.05356; see also Biekötter et al. 2208.14466, …]

2HDM
GW signal-to-noise ratio 

at LISA



Complementarity with non-collider experiments 
— Higgs CP
[HB et al. 2202.11753; see also Brod et al. 2203.03736, Fuchs et al. 2003.00099, …]
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• CP-odd Higgs–fermion couplings can still be 

sizeable. Consider here ℒA =
B()*

?
̅𝜏 𝑐A + 𝑖𝛾C𝑐̃A 𝜏𝐻.

• Constraints arise from
• LHC measurements and
• electric dipole moment (EDM) measurements.

      ⇒ Exploit complementarity!
• Global fit to LHC and EDM data.
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• CP-odd Higgs–fermion couplings can still be 

sizeable. Consider here ℒA =
B()*

?
̅𝜏 𝑐A + 𝑖𝛾C𝑐̃A 𝜏𝐻.

• Constraints arise from
• LHC measurements and
• electric dipole moment (EDM) measurements.

      ⇒ Exploit complementarity!
• Global fit to LHC and EDM data.

Can CP-violating Higgs couplings help to explain the 
baryon asymmetry 𝑌D of the Universe?

CP violation in tau-Yukawa coupling could give 
sizeable contribution to baryon asymmetry!

→ See talk by Marco Menen this afternoon for    
     more details.
→ Dedicated LHC Higgs WG 2 effort.
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Motivation to search for BSM physics is unbroken.

How to go forward?
• Improve upon existing searches/measurements using 

increased luminosities.
• Use new analysis methods to fully exploit data.
• Look out for uncovered signatures. 
• Ensure reinterpretability of results.
• Going global: exploit complementarity between different 

channels and with non-collider measurements.

Thanks for your attention!
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• Charged Higgs bosons appear in many BSM extensions of the SM Higgs sector.
• Existing experimental searches:

→ 16 searches in fermionic channels, 9 searches in boson channels (of which 4 only appear in triplet 
extension)

Limits only for specific mass 
configurations
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• Charged Higgs bosons appear in many BSM extensions of the SM Higgs sector.
• Existing experimental searches:

→ 16 searches in fermionic channels, 9 searches in boson channels (of which 4 only appear in triplet 
extension)

Are the bosonic channels theoretically less motivated?

Limits only for specific mass 
configurations
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CMS 𝐻± → 𝐻𝑊± search (𝑚Q = 200 GeV fixed) [CMS, 2207.01046]



Bosonic charged Higgs boson couplings

Henning Bahl 23

• Radiative electroweak: 𝐻±𝐻∓𝛾,	𝐻±𝐻∓𝑍;
• triple Higgs:𝐻±𝐻∓ℎ9 , 𝐻±𝐻∓𝑎9
• mixed electroweak: 𝐻±𝑊∓𝑍, 𝐻±𝑊∓𝛾 (only in triplet extensions)
• Higgs-electroweak: 𝐻±𝑊∓ℎ9, 𝐻±𝑊∓𝑎9

In the 2HDM, we have (with ℎ9  being the CP-even Higgs bosons ordered by mass)

𝑔 𝐻±𝑊∓ℎ- ∝ cos 𝛽 − 𝛼 , 𝑔 𝐻±𝑊∓ℎ? ∝ sin 𝛽 − 𝛼 , 𝑔 𝐻±𝑊∓𝐴 = −
𝑔
2

Alignment limit: ℎ- SM-like ⇒ cos 𝛽 − 𝛼 → 0; ℎ? SM-like ⇒ sin 𝛽 − 𝛼 → 0
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• Radiative electroweak: 𝐻±𝐻∓𝛾,	𝐻±𝐻∓𝑍;
• triple Higgs:𝐻±𝐻∓ℎ9 , 𝐻±𝐻∓𝑎9
• mixed electroweak: 𝐻±𝑊∓𝑍, 𝐻±𝑊∓𝛾 (only in triplet extensions)
• Higgs-electroweak: 𝐻±𝑊∓ℎ9, 𝐻±𝑊∓𝑎9

In the 2HDM, we have (with ℎ9  being the CP-even Higgs bosons ordered by mass)

𝑔 𝐻±𝑊∓ℎ- ∝ cos 𝛽 − 𝛼 , 𝑔 𝐻±𝑊∓ℎ? ∝ sin 𝛽 − 𝛼 , 𝑔 𝐻±𝑊∓𝐴 = −
𝑔
2

Alignment limit: ℎ- SM-like ⇒ cos 𝛽 − 𝛼 → 0; ℎ? SM-like ⇒ sin 𝛽 − 𝛼 → 0

Alignment limit strongly motivated by ℎ-?C measurements
 ⇒ Charged Higgs boson couplings to 𝑊 boson and ℎ'() or 𝐴 boson close to maximum! 



Unexplored signatures — bosonic 𝐻± boson decays
[HB, Wittbrodt, Stefaniak, 2103.07484]

2HDM parameter scan applying theoretical and experimental constraints:



Example scenario with 𝐻± → 𝑊±𝐴
sin 𝛽 − 𝛼 = 1,	

tan𝛽 = 3,	
𝑚*+)* = 𝑚F± 

Large rates possible which are not 
constrained by existing searches!



Rare top decays — mass dependencies

Henning Bahl 26



𝑆 and 𝑍" loop-induced decays
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