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What has happened in Run-1 and Run-27

Higgs boson discovery in 2012.

Many other precision measurements and searches.
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“We crave for new sensations but soon become
indifferent to them. The wonders of yesterday are
today common occurrences.”

Nikola Tesla
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LHC Run-3 and beyond

® Peak luminosity  =Integrated luminosity
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Much more data will be collected in the next years.
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LHC Run-3 and beyond

e Peak luminosity
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Much more data will be collected in the next years.

— The LHC program has just started.
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How should we exploit

the increased luminosity?
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Unexplored BSM signatures

What have we missed so far?
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Uncovered BSM signatures

* Many examples of well-motivated BSM signatures which

q1 q
evade current searches. \<.,1
* Examples:
* Axion-like particle (ALP) with large couplings to vector

bosons. [Bonilla et al. 2202.03450] See Victor M. 2
 Dark matter searches with a balanced E7 s Lozano’s talk on

distribution. [Adan, HB et al. 2112.12656,2302.04892] Monday T
* Electroweakino searches with soft photon + hard jet + %
ET miss- [Baum et al. 2303.01523] '
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Uncovered BSM signatures

* Many examples of well-motivated BSM signatures which ;

q1 q1
evade current searches. \<.'

* Examples:
* Axion-like particle (ALP) with large couplings to vector
bosons. [Bonilla et al. 2202.03450] See Victor M. g2 ¢
 Dark matter searches with a balanced E7 s Lozano’s talk on

distribution. [Adan, HB et al. 2112.12656,2302.04892] Monday T
* Electroweakino searches with soft photon + hard jet + L
ET miss- [Baum et al. 2303.01523] '

— Discuss one further example here: bosonic charged Higgs boson decays.
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Unexplored signatures — bosonic HX boson decays

[HB, Wittbrodt, Stefaniak, 2103.07484]

2HDM: CP-even h, H, CP-odd A4, and charged H* boson . _
sin(B —a) =1,

Exemplary benchmark plane for Hf — W*A decays: tanf = 3,
BR(H * W * A) o(pp-tbH * >tbW = A) Mhpsu = Mu*

300

L
~
e

W

80 100 120 140 160 180 200 80 100 120 140 160 180 200
ma [GeV] ma [GeV]

* Llarge BR(HT - W*A, W*H) expected if decay kinematically allowed.
* Also large production XS = O(1) pb signal rates possible.

# But so far no comprehensive searches. (existing searches limited to specific mass configurations)



Other scenarios and signatures

. . . L Production process Higgs decay processes Final state particles

e Various scenarios with distinct phenomenology -
can be constructed: - ot

e Hf > WihBSM orHXf - WA dominant, pp — H*tb H* 5 W*¢ and ¢ - WW W=+ |[WW

. 77 27
. ||ght hBSM (thSM < mhlzs), 1y |y
* leptophilic hggym, - _
« fermiophobic hggy, o fi f’;
o pp — HE¢ Hf* S WEpand g > {WW W+ |[WW| ® |WW
. . . YA YA

« Different production mechanisms can be 22 - o
. . 7Y N
investigated. :

oy . bb "

* Lot of activities on the pheno side. . .
[..., Krab et al. 2210.09416, Bhatia et al. 2212.14363, Kim et al. op — HEWTF H* 5 W and ¢ —» { WW WEWT + |lww
2302.05457, Mondal et al. 2304.07719, Fu & Gao, 2304.07782, 27 Z7
Moretti & Song 2304.12627, Sanyal & Wang 2305.00659, Li et vy 7Y

al. 2305.05788]

— Rich phenomenology waiting to be explored experimentally!
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Search for rare processes
BSM decays of SM particles
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Top quarks are produced in large numbers at the LHC:
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« — ~ 5107 top quarks at the end of HL-LHC

= Unique opportunity to search FCNC via rare top-quark decays induced by
BSM physics!
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Search for rare processes — top-quark decays

Top quarks are produced in large numbers at the LHC:

« — ~ 5-108 top quarks at the end of Run-3
« — ~ 5107 top quarks at the end of HL-LHC

= Unique opportunity to search FCNC via rare top-quark decays induced by
BSM physics!

[CMS 2201.07859]

|310_1E"""'"""""""""—
I . '? - ATLAS —e— 95% CL observed limit
Existing experimental searches: X [ ls=13Tev 130" 95% CL expected limit

m, A2 [ Expected + 16 |

. + p— X10 = [ ] Expected + 26 3
 SMfinalstates:t - Hq,Zq,yq, £t q <
_ 0
* BSM final states: t = X(— bb)q with X being a scalar @

_5 1 L L | 1 L Il | 1 L L I L L
10750

L l 1 L 1 l 1 L 1 I 1 1 L
40 60 80 100 120 140 160

m, [GeV]
[ATLAS 2301.03902]



Rare top decays — EFT classification

e Rare top-quark decays with SM final state can be parameterized
using SMEFT (see e.g. [Bradshaw & Chang 2304.06063]).

C
L= Lgy +Zﬁ0{l
Ln
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Rare top decays — EFT classification

e Rare top-quark decays with SM final state can be parameterized

using SMEFT (see e.g. [Bradshaw & Chang 2304.06063]). SMEFT
Dim 6
C
L=LSM+ZX';0? (Qiuz) (Qrde)
Ln (Qiuj) (Lree)
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Rare top decays — EFT classification

e Rare top-quark decays with SM final state can be parameterized
using SMEFT (see e.g. [Bradshaw & Chang 2304.06063]).

C
L= Lsy +Zﬁ0”
in

e Additionally, consider the possibility of light BSM particles:

* scalarsinglet S (e.g. ALP),

» fermionic singlet N (e.g. sterile neutrino),

* light gauge boson Z' (e.g. from gauging B; — L),
* not discussed here: light charged Higgs boson.

= New operators and final states.

Henning Bahl
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BSM EFT
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Rare top-quark decays — expect BRs

[HB, Koren, Wang, work in progress]

* |nvestigate operators individually.

* SetA=1TeV, ¢! =1,and mg = my = m, = 10 GeV
as a benchmark.

e Calculate branching ratio for different final states.



Rare top-quark decays — expect BRs

HB, Koren, Wang, work in progress] ‘ Nevents @ HL-LHC
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* |nvestigate operators individually.
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Rare top-quark decays — expect BRs

[HB, Koren, Wang, work in progress]

* |nvestigate operators individually.
* SetA=1TeV, ¢! =1,and mg = my = m, = 10 GeV

as a benchmark.
e Calculate branching ratio for different final states.

» -

* Sizeable branching ratios/number of
events for various operators.
* Various final states which can be

= Huge potential for future searches!

probed with current and future data.

Henning Bahl
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Rare top-quark decays ||

Decays of BSM particles can be parameterized by adding additional
operators (not involving the top-quark):

* eg.S—-bb1TT7,yy etc.

(see e.g. [Banerjee et al. 1806.02836, Bhattacharyya et al. 2212.09061]),

* potentially long-lived depending on size of Wilson coefficients
(see e.g. discussion of t = ALP + q in [Carmona et al. 2202.09371]).

Henning Bahl
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[Carmona et al. 2202.09371]
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1076 105 1 104 0.001
Rare top-quark decays | T ERA
P-G Y i i
SO A .
g /S
Decays of BSM particles can be parameterized by adding additional % 1= 5
operators (not involving the top-quark): = (
* eg.S—-bb1TT7,yy etc. &0l
(see e.g. [Banerjee et al. 1806.02836, Bhattacharyya et al. 2212.09061]),
« potentially long-lived depending on size of Wilson coefficients oot} £ =M
(see e.g. discussion of t —» ALP + q in [Carmona et al. 2202.09371]). 107 105

In the minimal set-up including only operators involving the top quark the

BSM particles can either be

» stable if only operators involving two BSM particles are considered
(e.g. due to Z, symmetry) = missing energy signature,

« decay via loop-induced corrections: e.g. N = vbb with N being

potentially long-lived.

Henning Bahl

Br(t — aq)
[Carmona et al. 2202.09371]
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Rare top-quark decays ||

10

e Decays of BSM particles can be parameterized by adding additional % : JE
operators (not involving the top-quark): = \
* eg.S—-bb1TT7,yy etc. &0l
(see e.g. [Banerjee et al. 1806.02836, Bhattacharyya et al. 2212.09061]),
« potentially long-lived depending on size of Wilson coefficients oot} £ =M
(see e.g. discussion of t —» ALP + q in [Carmona et al. 2202.09371]). 107 105

Br(t — aq)
[Carmona et al. 2202.09371]

* |In the minimal set-up including only operators involving the top quark the
BSM particles can either be

» stable if only operators involving two BSM particles are considered
(e.g. due to Z, symmetry) = missing energy signature,

« decay via loop-induced corrections: e.g. N = vbb with N being
potentially long-lived.

- Many interesting signatures for prompt and long-lived searches.

Henning Bahl 14



Other searches for rare BSM decays

Also other SM particles could have rare BSM decays:

rare Higgs boson decays (— see Maxwell Chertok’s on Friday),

rare Z boson decays,

Br{Z]
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[Liu et al., 1712.07237]
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Going global

Exploiting different LHC channels and non-collider measurements

Henning Bahl 16



Complementarity with non-collider experiments
— electroweak phase transitions

» Shape of the Higgs potential largely
unconstrained.

* Zero-temperature potential can be probed
e.g. via di-Higgs boson production.

* How can be probe the thermal
development of the Higgs potential?

— Has there been a strong first-order
phase transition ({, > 1)?



Complementarity with non-collider experiments
— electroweak phase transitions

Shape of the Higgs potential largely
unconstrained.

Zero-temperature potential can be probed
e.g. via di-Higgs boson production.

How can be probe the thermal
development of the Higgs potential?

— Has there been a strong first-order
phase transition ({, > 1)?

GW signal-to-noise ratio
2HDM at LISA

TypeIl & > 1 Type-II & > /
&

HL-LHC SNR > 10

=
o

X

4.42%

A(H) — ZH(A)

[Goncalves et al. 2108.05356; see also Biekotter et al. 2208.14466, ...]
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Complementarity with non-collider experiments
— electroweak phase transitions

GW signal-to-noise ratio
2HDM at LISA

Typell £ > 1 Typell £ > 1
* Shape of the Higgs potential largely

unconstrained. N

HL-LHC SNR > 10

=
.

X

e Zero-temperature potential can be probed
e.g. via di-Higgs boson production.

* How can be probe the thermal
development of the Higgs potential? 4499,

— Has there been a strong first-order A(H) — ZH(A)
phase transition ({, > 1)?

[Goncalves et al. 2108.05356; see also Biekotter et al. 2208.14466, ...]

- Exploit complementarity between different LHC
channels + GW observatories.

Henning Bahl 17



Complementarity with non-collider experiments

— Higgs CP
[HB et al. 2202.11753; see also Brod et al. 2203.03736, Fuchs et al. 2003.00099, ...] 4@ \
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Can CP-violating Higgs couplings help to explain the

baryon asymmetry Yy of the Universe?

* CP-odd Higgs—fermion couplings can still be
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sizeable. Consider here L, = T(c; + iysC)TH.

* Constraints arise from
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e electric dipole moment (EDM) measurements.
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Complementarity with non-collider experiments
— Higgs CP

[HB et al. 2202.11753; see also Brod et al. 2203.03736, Fuchs et al. 2003.00099, ...] @

s (CT, 6T§) fre(?

Can CP-violating Higgs couplings help to explain the

[ LHC 90% CL 4 —15
baryon asymmetry Y of the Universe? N v N N O
I : 4 —10
: : : . 0.5
* CP-odd Higgs—fermion couplings can still be :
SM " B
sizeable. Consider here L, = y\% T(c; + iys€)TH. T 007
* Constraints arise from =05 fr 5 | | B
+ LHC measurements and T e
* electric dipole moment (EDM) measurements. L ]
; s . é . - J15
: iy B ) SIS BN S SN S B
= Bxploit complementarity! °I5 10 —05 00 05 10 15
* Global fit to LHC and EDM data. Cr
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Complementarity with non-collider experiments
— Higgs CP

[HB et al. 2202.11753; see also Brod et al. 2203.03736, Fuchs et al. 2003.00099, ...] @
(¢, ¢;) free
Can CP-violating Higgs couplings help to explain the e é 3 _15
. [ —— eEDM 90% CL : : : : y
baryon asymmetry Yy of the Universe? Y il R SUNURROL SRR SO ]
ol T ] -10

0.5

* CP-odd Higgs—fermion couplings can still be :
SM " i
sizeable. Consider here L, = y\% T(c; + iys€)TH. T 007
* Constraints arise from —0.5 : : : ' '
 LHC measurements and 3 110
) i —1.0 e e e e o s ]
* electric dipole moment (EDM) measurements. : :
I : s : : : 115
. itvl . NP BRI B BT PR BN
= Exploit complementarity! 1§1.5 10 ol D 05 10 15
* Global fit to LHC and EDM data. Cr

CP violation in tau-Yukawa coupling could give
sizeable contribution to baryon asymmetry!

Henning Bahl 18



Complementarity with non-collider experiments
— Higgs CP

[HB et al. 2202.11753; see also Brod et al. 2203.03736, Fuchs et al. 2003.00099, ...]

Can CP-violating Higgs couplings help to explain the 1.5
baryon asymmetry Yy of the Universe? Lol
0.5

CP-odd Higgs—fermion couplings can still be

SM
sizeable. Consider here L, = y\% T(c; + iysC)TH.

Constraints arise from —0.5

 LHC measurements and
e electric dipole moment (EDM) measurements.

-1.0

= Exploit complementarity! —1.§1'

Global fit to LHC and EDM data.

(cry €r) free

[ —— LHC 90% CL :
[ — cEDM 90% CL :

- YgIA/ngs

5 0.0F

115

410

5 -1.0 =05 00 O

Cr

5

1.0

1.5

— See talk by Marco Menen this afternoon for

CP violation in tau-Yukawa coupling could give
sizeable contribution to baryon asymmetry!

Henning Bahl

more details.
— Dedicated LHC Higgs WG 2 effort.
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Conclusions
BSM at Run-3 and beyond

Henning Bahl
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Conclusions: objectives for Run-3 and beyond

Motivation to search for BSM physics is unbroken. L\\\ ‘

(-

How to go forward?

O
Y A 7o
/

* Improve upon existing searches/measurements using >
increased luminosities.

* Use new analysis methods to fully exploit data. -
* Look out for uncovered signatures.
* Ensure reinterpretability of results. L. -

* Going global: exploit complementarity between different
channels and with non-collider measurements.



Conclusions: objectives for Run-3 and beyond

Motivation to search for BSM physics is unbroken. L\\\ |

(-

How to go forward?

;_‘,
. Y4
/ iy

* Improve upon existing searches/measurements using >
increased luminosities.

* Use new analysis methods to fully exploit data. N
* Look out for uncovered signatures.
* Ensure reinterpretability of results. o N

* Going global: exploit complementarity between different
channels and with non-collider measurements.

Thanks for your attention!



Unexplored signatures — bosonic HE decays

* Charged Higgs bosons appear in many BSM extensions of the SM Higgs sector.

* Existing experimental searches:

} Limits only for specific mass
configurations

Production process Higgs decay Final state = # of exp. searches
pp — HEtb H* = ru, th(rv.) 7
pp — H*th H* — tb thtb 4

pp — tt,t — HTb H* — cb tbch 2

pp — tt, t = HTb H* — ¢s tbcs 3

pp — H*qq' (VBF) H* - w*Zz W+*Zqq' 4

pp — tt,t > H b  H* > WTA tbWEputp~ 3

pp — tt,t > H b HT* > WEH tbWErtr~ 1

pp— H— H*WFT  H* 5> W*h  WEWThb 1

— 16 searches in fermionic channels, 9 searches in boson channels (of which 4 only appear in triplet

extension)

Henning Bahl
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Unexplored signatures — bosonic HE decays

* Charged Higgs bosons appear in many BSM extensions of the SM Higgs sector.
e Existing experimental searches:

Production process Higgs decay Final state = # of exp. searches
pp — H*th H* = rv. tb(Tv,) 7
pp — H*th H* — tb thtb 4
pp — tt,t = Hb H* — cb tbch 2
pp — tt, t = HTb H* — cs tbcs 3
pp — H*qq' (VBF) H* - w*Zz W+*Zqq' 4
pp — tt,t > HEb  HT - WA tbW*utpu~ 3 Limits only for specific mass
pp — tt,t — H*b H* - W*H tbWErtr~ 1 } configurations
pp— H— H*WFT  H* 5> W*h  WEWThb 1

— 16 searches in fermionic channels, 9 searches in boson channels (of which 4 only appear in triplet
extension)

Are the bosonic channels theoretically less motivated?

Henning Bahl 21



CMS I_Ii — I_II/Vi Seéd rCh (my = 200 GeV fixed) [cMvs, 2207.01046]

1 CMS 138 b (13 TeV)
N _IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII_
8 [ my=200Gev 95% CL upper limits
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g |
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I
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Bosonic charged Higgs boson couplings
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Bosonic charged Higgs boson couplings

« Radiative electroweak: HtHYy, HtHYZ;

« triple Higgs:HTH h;,, HEHY q;

 mixed electroweak: HEW*Z, HEW ¥y (only in triplet extensions)
* Higgs-electroweak: HfW*h,, HfW*q,



Bosonic charged Higgs boson couplings

* Radiative electroweak: H*HYy, H* HY Z;
* triple Higgs:H*H " h;, H*H )
« mixed electroweak: HEW*Z, HEW ™y (only in triplet extensions)
* Higgs-electroweak: HEW*h;, HtW *q;
In the 2HDM, we have (with h; being the CP-even Higgs bosons ordered by mass)
g(HE*W™*hy) « cos(f — a), g(HE*W™*h;) « sin(f — a), g(HX*WT*A) = —%
Alignment limit: h; SM-like = cos(f — a) — 0; h, SM-like = sin(f —a) - 0

Alignment limit strongly motivated by h;,s measurements

= Charged Higgs boson couplings to W boson and hggy or A boson close to maximum!

Henning Bahl 23



Unexplored signatures — bosonic HX boson decays

[HB, Wittbrodt, Stefaniak, 2103.07484]

2HDM parameter scan applying theoretical and experimental constraints:

min max
1000 1.0
800 A 0.8 .=
< z
%) 600 - 0.6 +
O S
H T
T 0.4 +
g 400- h
d
. 02 @
0.0

0O 200 400 600 800 1000 O 200 400 600 800 1000
Mpg., [GEV] Mpg., [GEV]



sin(f — a) =1,
tanf = 3,

Example scenario with HX - W*A Mg = T

my [GeV]
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Large rates possible which are not
constrained by existing searches!



Rare top decays — mass dependencies
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_t — BSM (3-body)
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S and Z' loop-induced decays

A=1TeV,c=1

50

mg [GeV]

100
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Loop-induced Z’ decay
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