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So, everything left to do is to confirm the SM with even more precision?
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• Existing measurements already provide strong guidance for BSM model 
building.

• Many types of BSM physics can be linked to the Higgs.

⇒ Strong motivation for on-going and future Higgs precision programs.

Henning Bahl 4



Motivation for future Higgs measurements

So, everything left to do is to confirm the SM with even more precision? 

• Most couplings are measured with ∼ 10% precision.                                                                    
→ BSM effects could be hidden within the uncertainties.

• Some Higgs properties are only weakly constrained.

• Existing measurements already provide strong guidance for BSM model 
building.

• Many types of BSM physics can be linked to the Higgs.

⇒ Strong motivation for on-going and future Higgs precision programs.

Henning Bahl 4

→ No!



Motivation for future Higgs measurements

So, everything left to do is to confirm the SM with even more precision? 

• Most couplings are measured with ∼ 10% precision.                                                                    
→ BSM effects could be hidden within the uncertainties.

• Some Higgs properties are only weakly constrained.

• Existing measurements already provide strong guidance for BSM model 
building.

• Many types of BSM physics can be linked to the Higgs.

⇒ Strong motivation for on-going and future Higgs precision programs.

Henning Bahl 4

→ No!



Motivation for future Higgs measurements

So, everything left to do is to confirm the SM with even more precision? 

• Most couplings are measured with ∼ 10% precision.                                                                    
→ BSM effects could be hidden within the uncertainties.

• Some Higgs properties are only weakly constrained.

• Existing measurements already provide strong guidance for BSM model 
building.

• Many types of BSM physics can be linked to the Higgs.

⇒ Strong motivation for on-going and future Higgs precision programs.

Henning Bahl 4

→ No!



Motivation for future Higgs measurements

So, everything left to do is to confirm the SM with even more precision? 

• Most couplings are measured with ∼ 10% precision.                                                                    
→ BSM effects could be hidden within the uncertainties.

• Some Higgs properties are only weakly constrained.

• Existing measurements already provide strong guidance for BSM model 
building.

• Many types of BSM physics can be linked to the Higgs.

⇒ Strong motivation for on-going and future Higgs precision programs.

Henning Bahl 4

→ No!



Motivation for future Higgs measurements

So, everything left to do is to confirm the SM with even more precision? 

• Most couplings are measured with ∼ 10% precision.                                                                    
→ BSM effects could be hidden within the uncertainties.

• Some Higgs properties are only weakly constrained.

• Existing measurements already provide strong guidance for BSM model 
building.

• Many types of BSM physics can be linked to the Higgs.

⇒ Strong motivation for on-going and future Higgs precision programs.

Henning Bahl 4

→ No!

[Snowmass 2209.07510]



Motivation for future Higgs measurements

So, everything left to do is to confirm the SM with even more precision? 

• Most couplings are measured with ∼ 10% precision.                                                                    
→ BSM effects could be hidden within the uncertainties.

• Some Higgs properties are only weakly constrained.

• Existing measurements already provide strong guidance for BSM model 
building.

• Many types of BSM physics can be linked to the Higgs.

⇒ Strong motivation for on-going and future Higgs precision programs.

Henning Bahl 4

→ No!

[Snowmass 2209.07510]



What can we learn from existing 
measurements?

Henning Bahl 5



What can we learn from Higgs precision 
measurements?

Henning Bahl 6

• Higgs precision measurements put stringent 
constraints on many BSM scenarios.

Simplified scaling analysis:

• 1% precision level can constrain BSM particles 
with mass from 100 GeV to several TeV
(within reach of the LHC or future colliders).
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• Higgs precision measurements put stringent 
constraints on many BSM scenarios.

Simplified scaling analysis:

• 1% precision level can constrain BSM particles 
with mass from 100 GeV to several TeV
(within reach of the LHC or future colliders).

[Snowmass 2209.07510]

We also shouldn’t forget about the interplay with direct searches!



Interplay with direct searches

Henning Bahl 7

• Important interplay between Higgs precision 
measurements and direct searches for BSM 
particles.

• Cannot be captured in EFT framework                        
→ use 2HDM here as a benchmark model.

• Searches for BSM scalars 𝜙:
a) CMS: 𝑝𝑝 → 𝜙 → ℎ!"#ℎ!"#
b) CMS: 𝑝𝑝 → 𝜙! → ℎ!"#𝜙" → 𝑏𝑏𝜏𝜏
c) CMS: 𝑝𝑝 → 𝜙 → 𝑍ℎ!"#
d) ATLAS: 𝑝𝑝 → 𝜙 → 𝑊𝑊,𝑍𝑍,𝑊𝑍
e) ATLAS: 𝑝𝑝 → 𝜙 → ℎ!"#ℎ!"#
f) ATLAS: 𝑝𝑝 → 𝜙 → 𝑉𝑉, 𝑉ℎ!"#
g) ATLAS: 𝑝𝑝 → 𝜙 → 𝜏𝜏
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What is still left to explore?
Have we found the SM Higgs?
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What we don’t know about the Higgs (yet)

Many Higgs properties only weakly constrained, e.g.:

• Higgs width/BSM decay channels,                                                                     

SM: Γ$ ≃ 4.1 MeV,

• Higgs potential,                                                      

SM: 𝑉 Φ = − !
"
𝑚$
"Φ%Φ+ &!

"

"'"
Φ%Φ "

,

• light Yukawas,                                                                     

SM: 𝑦( ∝ 𝑚(/𝑣,

• Higgs CP properties,                                              

SM: Higgs is CP-even (at least almost).          
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We should test all these 
predictions!



What do we know about the Higgs potential?

• After the Higgs discovery, we know 
• the location of the EW minimum: 𝑣 = 246 GeV,
• the curvature of the potential close to the minimum: 
𝑚$ = 125 GeV.

• Away from the minimum, the shape of the potential is, 
however, unknown so far.

→ Determination of trilinear Higgs coupling 𝜆$$$ crucial.

• 𝜆$$$ closely linked to
• stability of EW vacuum
• nature of EW phase transition (→ EW baryogenesis?).

[figure by J. Braathen]
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Is the Higgs trilinear also a discovery tool?
Henning Bahl 10
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• Large deviations induced by loop corrections 
possible in the 2HDM.

• Additional enhancement by 2L corrections.

• Maximal size bounded by perturbative 
unitarity.

• Currently strongest experimental limit on 𝜅):

−0.4 < 𝜅) < 6.3 at 95% CL [ATLAS, 2211.01216]

[HB,Braathen,Weiglein, 2202.03453]
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possible in the 2HDM.

• Additional enhancement by 2L corrections.

• Maximal size bounded by perturbative 
unitarity.

• Currently strongest experimental limit on 𝜅):

−0.4 < 𝜅) < 6.3 at 95% CL

Already current experimental limits on 𝜅) probe 
so-far unconstrained BSM parameter space!

[ATLAS, 2211.01216]

[HB,Braathen,Weiglein, 2202.03453]
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Consider toy model:
• Introduce unspecified new Higgs decay mode 𝐻 → NP.
• Compensate for suppression of Higgs BRs by rescaling 

all SM Higgs couplings by 𝑐*++ > 1.
• Without constraining Γ$ this scenario is very difficult to 

exclude.

[ATLAS-CONF-2022-068]
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Consider toy model:
• Introduce unspecified new Higgs decay mode 𝐻 → NP.
• Compensate for suppression of Higgs BRs by rescaling 

all SM Higgs couplings by 𝑐*++ > 1.
• Without constraining Γ$ this scenario is very difficult to 

exclude.

[ATLAS-CONF-2022-068]

• 𝒪(MeV) constraints on Γ,.
• But depends on assumption that there is no 

other BSM contribution to 𝐻 → 𝑍𝑍 production.

[HB et al. 2210.09332]
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• Also first evidence for 2nd generation muon 

coupling.
• Constraining the other Yukawa couplings to their 

SM values will be difficult even in the future.
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Future collider? Not yet, but soonFuture collider? • Established existence of 3rd generation Yukawas.
• Also first evidence for 2nd generation muon 

coupling.
• Constraining the other Yukawa couplings to their 

SM values will be difficult even in the future.

Ideas?Ideas?

CP provides an ”additional dimension”
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The CP nature of the Higgs boson

• Motivation: new sources of CP violation are necessary to explain the baryon asymmetry of the Universe.

• We know the Higgs boson is not a CP-odd state but it could be a CP-admixed state.

• Parameterize CP-odd interactions using EFT framework by adding dimension-6 operators to the SM:

• Gauge boson interactions: 𝛷%𝛷𝑊-. Q𝑊-. , 𝛷%𝛷𝐵-. S𝐵-., 𝛷%𝛷𝑊-. S𝐵-., 𝛷%𝛷𝐺-. S𝐺-.

• Fermion interactions: 𝛷%𝛷 𝑄𝑢Q𝛷 ,𝛷%𝛷 𝑄𝑑Φ ,𝛷%𝛷 𝑄𝑒𝛷 with complex Wilson coefficients
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What is the current status?
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Which CP structures are accessible at the LHC?
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Fermions

• CP structure of 𝐻𝑊𝑊, 𝐻𝑍𝑍 interactions is comparably well-
constrained. [ATLAS,CMS:..,2002.05315, 2104.12152,2109.13808,2202.06923,2205.05120] 

• The CP structure of the 𝐻𝑓 ̅𝑓, 𝐻𝛾𝛾, 𝐻𝑔𝑔 interactions is far less 
known.

• Most BSM theories predict largest CP violation in 
𝐻𝑓 ̅𝑓, 𝐻𝛾𝛾, 𝐻𝑔𝑔 couplings.
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known.
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𝐻𝑓 ̅𝑓, 𝐻𝛾𝛾, 𝐻𝑔𝑔 couplings.
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[Snowmass Higgs CP report, 2205.07715]
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Limits set on:

New ideas/techniques are needed to make the most of current and future data!

[Snowmass Higgs CP report, 2205.07715]



Constraining CP violation

• Pure CP-odd observables:
• Unambiguous markers for CP violation: e.g. 

• EDM measurements,
• decay angle in 𝐻 → 𝜏!𝜏".

• Typically requires to access polarization of 
particles coupling to the Higgs.

• Experimentally difficult for many LHC processes 
(i.e., top-associated Higgs production).

• Almost impossible for 𝐻 → 𝑏%𝑏 or 𝐻 → 𝜇!𝜇"

Henning Bahl 18

CP violation in the Higgs sector can be constrained using:



Constraining CP violation

• Pure CP-even observables:
• Many rate measurements are indirectly sensitive: e.g. 
𝑔𝑔𝐻.

• Decay rates: e.g., Γ,→010 ∝ 𝑐0" + �̃�0".
• Subtle effects in kinematic distributions  of CP-even 

observables (e.g. 𝑝2,, in 𝑡 ̅𝑡𝐻).

• Deviations from SM need not be due to CP violation                                                                      
→ degeneracies with non-CPV BSM effects.

Henning Bahl 19

CP violation in the Higgs sector can be constrained using:

[HB et al., 2007.08542]

[HB et al., to appear]



Constraining CP violation

• Multivariate analyses:
• Exploit full kinematic information 

using machine learning.
• Often mixes CP-even and CP-odd 

observables.
• High sensitivity.
• Can be difficult to reinterpret.

Henning Bahl 20

CP violation in the Higgs sector can be constrained using:

Exploit and combine all three complementary approaches to learn 
as much as possible!

[e.g. simulation-based inference, Brehmer et al.,1805.00013, …]



Improving LHC CP measurements I
CP-sensitive STXS extension for 𝑡 ̅𝑡𝐻
[HB,Carnelli,Deliot,Fuchs,Kotsokechagia,Marsault,Menen,Schoeffel,Saimpert; to appear]

Henning Bahl 21



Current 𝑡 ̅𝑡𝐻 STXS binning

• STXS is a common framework to provide differential 
results for various Higgs production channels 
combining different decay modes.

• Current 𝑡 ̅𝑡𝐻 STXS binning: six bins in 𝑝2,,.

Henning Bahl 22

• Many CP-sensitive observables have been proposed 
in the literature.

• Test them against each other for
• 𝐻 → 𝛾𝛾
• 𝐻 → 𝑏%𝑏
• 𝐻 → multi-lepton
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Investigated observables

• Tested 11 observables (1D) in different reference frames and 
their 2D combinations.

• In total, 465 different combinations
• Apply channel-specific smearing factors and reconstruction 

efficiencies to mimic existing experimental analysis.
• Removed rate information for 𝐻 → 𝑏_𝑏,multi-lepton because of 

large backgrounds.
• Parameterize top Yukawa as 

Henning Bahl 23
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Use significance 𝑆 to exclude 𝛼4 = 35∘ as performance metric.



Significance tables

Henning Bahl 24

𝐻 → 𝛾𝛾 𝐻 → 𝑏_𝑏 𝐻 → multi-lepton



Significance tables

Henning Bahl 25

• Most sensitive combination:    
(Δ𝜙4 ̅4

789, 𝑏"4
̅4) with 𝑆 = 1.67

• Most sensitive combination with 𝑝2,,:    
(𝑝2,,789 , 𝑏"4

̅4) with 𝑆 = 1.65



Significance tables

Henning Bahl 25

• Most sensitive combination:    
(Δ𝜙4 ̅4

789, 𝑏"4
̅4) with 𝑆 = 1.67

• Most sensitive combination with 𝑝2,,:    
(𝑝2,,789 , 𝑏"4

̅4) with 𝑆 = 1.65

Extending the current STXS by a 
second dimension provides near 

optimal sensitivity!



Expected limits

Henning Bahl 26

𝛼4 < 60∘ 𝛼4 < 48∘ 𝛼4 < 42∘

Adding second dimension helps to boost sensitivity!
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Improving LHC CP measurements
Classifying the CP nature of Higgs + 2 jet production
[HB,Hannig,Menen,Fuchs,2309.03146]

Henning Bahl 27



Higgs + 2jet production (ggF2j)

Why is ggF2j production interesting for Higgs CP tests? [Hankele, Klamke, Zeppenfeld `06,`07, …]

• Gluon fusion is the largest Higgs production channel → wealth of data.

• Two additional jets in the final state allow to construct CP-odd observables                                                    

→ direct CP test.

• Allows for indirect constraint of CP character of top-Yukawa interaction.

Henning Bahl 3
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Higgs + 2jet production (ggF2j)

Why is ggF2j production interesting for Higgs CP tests? [Hankele, Klamke, Zeppenfeld `06,`07, …]

• Gluon fusion is the largest Higgs production channel → wealth of data.

• Two additional jets in the final state allow to construct CP-odd observables                                                    

→ direct CP test.

• Allows for indirect constraint of CP character of top-Yukawa interaction.

Henning Bahl 3

heavy-top limit



ggF2j— amplitude structure

• Effective Lagrangian (after integrating out the top quark, SM: 𝑐: = 1, �̃�: = 0):

ℒ,:: = − !
;'
𝐻 − <#

=>
𝑐:𝐺-.? 𝐺?,-. +

<#
">
�̃�:𝐺-.? S𝐺?,-. (heavy top limit enforced by 𝑝2 cut)

• Amplitude splits up into three pieces:

• Existing measurements focus on CP-odd Δ𝜙@@ observable to constrain interference term.
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Analysis flow

• Focus on 𝐻 → 𝛾𝛾 decay channel.
• Two signal regions: ggF2j-SR, VBF-SR
• For each signal region: train classifier to distinguish signal (ggF2j) from Higgs background (𝑉𝐵𝐹, 𝑉𝐻).
• Then, train two classifiers to distinguish 

• ℳ*D*E
" vs. ℳFGG

" → 𝑃( ℳ*D*E
" ), and 

• (positive intf.) vs (negative intf) → 𝑃(Interf. ).
• Build two observables: CP-even 𝑃(𝑐:") and CP-odd 𝑃I − 𝑃J.
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ggF2j signal region

• ggF2j signal region outperforms VBF signal region (not shown),
• Δ𝜙@@ limit is significantly worse.

Henning Bahl 5



Complementarity with EDM 
measurements
What do EDM measurements tell us about the Higgs CP nature?
[HB et al., 2202.11753; see also Brod et al., 2203.03736]

Henning Bahl 32



Complementarity with EDM constraints

• Several EDMs are sensitive to CP violation in the Higgs sector.

• Consider here only constraints from theoretically cleanest EDM: the electron EDM.                                     
[Brod et al.,1310.1385,1503.04830, 1810.12303, 2203.03736;Panico et al.,1810.09413;Altmannshofer et al.,2009.01258] 

• Limit by ACME collaboration: 𝑑#$%&' = 1.1 ⋅ 10"()𝑒 cm at 90% CL. [ACME, Nature 562 (2018) 7727, 355-360]

•

*!
*!"#$%

≃ 𝑐# 870.0�̃�+ + 3.9�̃�, + 3.4�̃�- +⋯ + �̃�#(610.1𝑐+ + 3.1𝑐, + 2.8𝑐- − 1082.6𝑐. +⋯)

• Bounds strongly depend on assumptions about electron-Yukawa coupling.
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Complementarity with EDM constraints: 𝑡 and 𝜏

Henning Bahl 34

Very strong constraints on CP-odd 
top-Yukawa coupling.

Ratio of baryon asymmetry to 
observation 

(optimistic upper bound)
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Complementarity with EDM constraints: 𝑡 and 𝜏

Henning Bahl 34

Very strong constraints on CP-odd 
top-Yukawa coupling.

CP-odd 𝜏 coupling can contribute significantly 
to baryon asymmetry.

→ updated EDM measurement almost 
completely excludes green area

[Roussy et al., 2212.11841]

Ratio of baryon asymmetry to 
observation 

(optimistic upper bound)



EDM > LHC?
[see also Fuchs et al.,1911.08495]
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EDM > LHC?
[see also Fuchs et al.,1911.08495]
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EDM > LHC?
[see also Fuchs et al.,1911.08495]

Henning Bahl 35

CP-insensitive 𝐻 → 𝜇I𝜇J rate 
measurement outperforms EDM 

constraint.

No.



Dependence on electron-Yukawa coupling

Henning Bahl 36
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• Electron Yukawa-coupling only very weakly 
constrained (𝑔# ≤ 268 at 95% CL).

• If 𝑐# smaller, eEDM significantly weakened.

• Moreover, we can fine-tune CP-odd electron-
Yukawa coupling such that 𝑑# < 𝑑#$%&'.

• Neutron EDM has similar dependence on first-
generation quark-Yukawa couplings.
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• Electron Yukawa-coupling only very weakly 
constrained (𝑔# ≤ 268 at 95% CL).

• If 𝑐# smaller, eEDM significantly weakened.

• Moreover, we can fine-tune CP-odd electron-
Yukawa coupling such that 𝑑# < 𝑑#$%&'.

• Neutron EDM has similar dependence on first-
generation quark-Yukawa couplings.

LHC bounds important since they do not 
depend on 1st gen. Yukawa couplings.
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• The Higgs is not the last missing puzzle piece of the SM but 
could be the link to many BSM scenarios.

• Many Higgs properties still need to be determined:
• Light Yukawas,
• Higgs CP structure,
• Higgs potential,
• Higgs width,
• …

• Higgs CP nature:
• The Higgs boson could be a CP-admixed state.
• Exploit multi-dimensional kinematic information to 

improve existing bounds.
• Important interplay between LHC and EDM 

measurements.



Conclusions

Henning Bahl 38

• The Higgs is not the last missing puzzle piece of the SM but 
could be the link to many BSM scenarios.

• Many Higgs properties still need to be determined:
• Light Yukawas,
• Higgs CP structure,
• Higgs potential,
• Higgs width,
• …

• Higgs CP nature:
• The Higgs boson could be a CP-admixed state.
• Exploit multi-dimensional kinematic information to 

improve existing bounds.
• Important interplay between LHC and EDM 

measurements.



Conclusions

Henning Bahl 38

• The Higgs is not the last missing puzzle piece of the SM but 
could be the link to many BSM scenarios.

• Many Higgs properties still need to be determined:
• Light Yukawas,
• Higgs CP structure,
• Higgs potential,
• Higgs width,
• …

• Higgs CP nature:
• The Higgs boson could be a CP-admixed state.
• Exploit multi-dimensional kinematic information to 

improve existing bounds.
• Important interplay between LHC and EDM 

measurements.



Conclusions

Henning Bahl 38

• The Higgs is not the last missing puzzle piece of the SM but 
could be the link to many BSM scenarios.

• Many Higgs properties still need to be determined:
• Light Yukawas,
• Higgs CP structure,
• Higgs potential,
• Higgs width,
• …

• Higgs CP nature:
• The Higgs boson could be a CP-admixed state.
• Exploit multi-dimensional kinematic information to 

improve existing bounds.
• Important interplay between LHC and EDM 

measurements.

The Higgs will keep us busy for many decades to come!
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Case study: real singlet extension of the SM
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𝑉 Φ, 𝑆 = 𝑉KL Φ +
1
2𝜇M

"𝑆" +
1
4! 𝜆M𝑆

; + 𝜆MN𝑆"Φ%Φ

If 𝑆 does not get a vev, 𝜆,,, = 𝜆,,,KL at the tree-level (𝑚M
" = 𝜇M" + 𝜆MN𝑣").

The 1L correction to 𝜆,,, scales like (𝜆!"# ∼ 0.25)

𝜅) ≡
)$$$
)$$$
%& =1 + !

;> "
&'
(

'())
%& 1 − -'

"

&'
"

=

whereas the dominant correction to other Higgs couplings scale like

𝜅: ≡
:

:%&
=1 + !

;> "
&'
"

'"
1 − -'

"

&'
"

"

Deviation in 𝜆,,, enhanced by a factor &'
"

'"))
%& 1 − -'

"

&'
" w.r.t. to other Higgs couplings!



Interlude: HiggsTools [HB et al., 2210.09332]
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HiggsTools is a complete and extended rewrite of HiggsBounds and HiggsSignals in modern C++.

HiggsPredictions-1 HiggsBounds-6 HiggsSignals-3

• Handles user input (model predictions).
• Provides tabulated cross sections and BRs.
• Common process definitions and clustering.

C++ interface for high performance; Python and Mathematica interfaces for ease of use.

current status: 258 limits current status: 131 measurements



Baryon asymmetry of the Universe

• Different techniques used in the literature to calculate BAU 𝑌/: 
• Vev-insertion approach (VIA),

[Huet&Nelson,9504427,9506477;Carena et al., 9603420;Riotto, 9712221;Lee et al.,0412354;Postma et al.,2206.01120]

• WKB (or FH) approximation.
[Joecy et al.,9410282;Kainulainen et al.,0105295, 0202177;Prokopec et al., 0312110, 0406140;Konstandin et al.,1302.6713, 1407.3132]

• VIA approach yields consistently higher results by orders of magnitude.

• We use VIA approach with bubble wall parameters close to optimal values for 𝑌/:                                
[de Vries,1811.11104;Fuchs et al.,2003.00099,2007.06940;Shapira,2106.05338]

𝑌/
𝑌/012

≃ 28�̃�+ − 0.2�̃�, − 11�̃�- +⋯

Henning Bahl 42

𝜂 ≡ 𝑌! [Basler et al.,2108.03580]

𝑌/ values should be regarded as upper bound on what is theoretically achievable.



Case study: real singlet extension of the SM
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𝑉 Φ, 𝑆 = 𝑉KL Φ +
1
2𝜇M

"𝑆" +
1
4! 𝜆M𝑆

; + 𝜆MN𝑆"Φ%Φ

If 𝑆 does not get a vev, 𝜆,,, = 𝜆,,,KL at the tree-level (𝑚M
" = 𝜇M" + 𝜆MN𝑣").

The 1L correction to 𝜆,,, scales like

𝜆,,,!O ∝ :$''
-

;> " 𝐶P … ∝ :$''
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" ∝

!
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&'
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=

whereas the dominant correction to other Higgs couplings scale like

𝑔!O ∝ :$''
"

;> "𝐵PQ … ⋅ 𝑔RS** ∝
!
;> "

&'
"

'"
1 − -'

"

&'
"

"
⇒ 𝜅: ≡

:
:%&

=1 + !
;> "

&'
"

'"
1 − -'

"

&'
"

"

Deviation in 𝜆,,, enhanced by a factor &'
"

'"))
%& 1 − -'

"

&'
" w.r.t. to other Higgs couplings!



Calculating BSM corrections to 𝜅!
• Need to calculate Higgs three-point function:

• Alternatively, employ zero momentum approximation and then use effective potential:

• Using 𝑉,--, 1L and 2L corrections have been calculated in various BSM Higgs models (see e.g. 
[Braathen,Kanemura,1911.11507]).



Calculating BSM corrections to 𝜅! [Braathen,Kanemura,1911.11507]

𝛿𝑅 = 𝜅) − 1

• Large non-decoupling corrections found in several 
BSM models.

• Analysis assumed that all BSM masses are equal 𝑀N.
• No phenomenological analysis has been performed.

Idea of this work:

Can we constrain these models based on the large 
corrections to 𝜅)?



2HDM parameter scan

• We checked for
• vacuum stability and boundedness-from-below,
• NLO perturbative unitarity, [Grinstein et al., 1512.04567; Cacchio et al., 1609.01290]

• electroweak precision observables (calculated at the 2L level using THDM_EWPOS), 
[Hessenberger & Hollik,1607.04610,2207.03845]

• SM-like Higgs measurements via HiggsSignals, [Bechtle et al., 2012.09197]

• direct searches for BSM scalars via HiggsBounds, [Bechtle et al., 2006.06007]

• b-physics constraints.

• Most constraints checked using ScannerS. [Mühlleitner et al., 2007.02985]

• For each point passing the constraints, we calculate 𝜅) at the 1L and 2L level (𝜅)
(!) and 𝜅)

(")). [Braathen,Kanemura,1911.11507]



2HDM parameter scan — results 
(showing only points passing all constraints mentioned on previous slide)

• Largest corrections for 𝑚V ≃ 𝑚,±, 𝑚, < 𝑚,± and 𝑚, ≃ 𝑚,±, 𝑚V < 𝑚,± (𝜅) of up to 9). 
• 2L corrections have sizeable impact (up to 70%).



Can we apply the experimental constraints on 𝜅!?
Assumptions of experimental bound:

• All other Higgs couplings are SM-like. 

Ø 2HDM in the alignment limit with heavy BSM masses.

• Higgs-boson pair production only deviates from the SM via a modified trilinear Higgs coupling.

Ø No resonant contribution because 𝐻ℎℎ coupling is zero in alignment limit.

Ø Other BSM contributions to ℎℎ production?

Ø We include the all corrections leading in the large coupling 𝑔$$NN at the NLO and NNLO level.

∝ 𝒪(𝑦4"𝑔$$NN" ) (not included) ∝ 𝒪(𝑦4𝑔$$NN= ) (included)



Constraints on 𝜅! — benchmark scenario
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Other extension of SM Higgs sector
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• Large loop corrections to 𝜅) possible in 
various models.

• 𝜅) very sensitive to BSM scalar couplings.

• Automatized calculation of 𝜅) available in 
Python package anyH3.

• See also [1704.01953,1902.05936,2209.00666] for 
other models/more discussion.

Strong motivation for the experimental 
di-Higgs program!



Momentum dependence



Smearing and reconstruction efficiencies
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Interpretation in terms of top-Yukawa coupling
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• Effective Lagrangian (SM: 𝑐4 = 1, �̃�4 = 0)

• If no colored BSM particles at low energies:        
𝑐: ≃ 𝑐4, �̃�: ≃ �̃�4


