Flat-space limit of defect correlators and stringy AdS form factors

- Luis F. Alday, Xinan Zhou
 - 2411.04378

HOLOGRAPHIC CORRELATORS

CONFORMAL BOOTSTRAP

AdS/CFT

(Symmetry + Consistency conditions)

- Flat-space limit
 - [Penedones, '10]
- Integrated correlators
 - [Alday, Chester, Green, Pufu, ...]

HOLOGRAPHIC DEFECT CORRELATORS

DEFECT CONFORMAL BOOTSTRAP

(Symmetry + Consistency conditions)

AdS/CFT

- Flat-space limit
- Integrated correlators

HOLOGRAPHIC DEFECT CORRELATORS

DEFECT CONFORMAL BOOTSTRAP

(Symmetry + Consistency conditions)

AdS/CFT

• Flat-space limit

• Integrated correlators [Billò, Dorigoni, Drukker, Gromov, ...]

HOLOGRAPHIC DEFECT CORRELATORS

DEFECT CONFORMAL BOOTSTRAP

(Symmetry + Consistency conditions)

AdS/CFT

• Flat-space limit

• Integrated correlators [Billò, Dorigoni, Drukker, Gromov, ...]

Mellin amplitude: $\mathcal{M}(s_{ij}) \propto \int_0^\infty d\beta \beta^{\frac{1}{2}} \Sigma_i$

[Penedones, '10]

$$_{i} \Delta_{i} - \frac{d}{2} - 1 e^{-\beta} \mathcal{A} \left(S_{ij} = \frac{2\beta}{R^{2}} s_{ij} \right) , \quad R \to \infty$$

Mellin amplitude: $\mathcal{M}(s_{ij}) \propto \int_0^\infty d\beta \beta^{\frac{1}{2}} \Sigma_i$

[Penedones, '10]

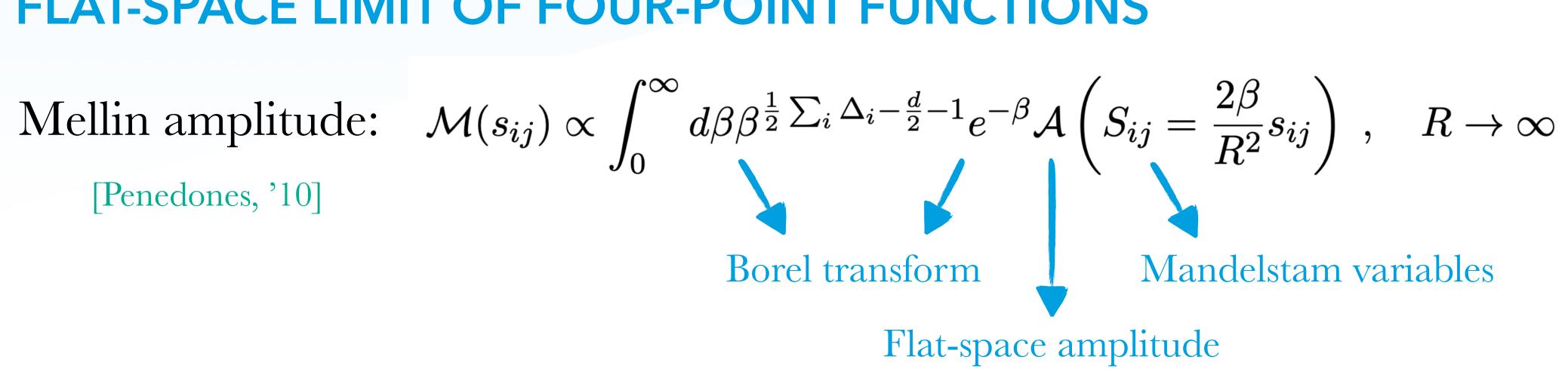
$${}^{i} \Delta_{i} - \frac{d}{2} - 1} e^{-\beta} \mathcal{A} \left(S_{ij} = \frac{2\beta}{R^{2}} s_{ij} \right) , \quad R \to \infty$$

Flat-space amplitude

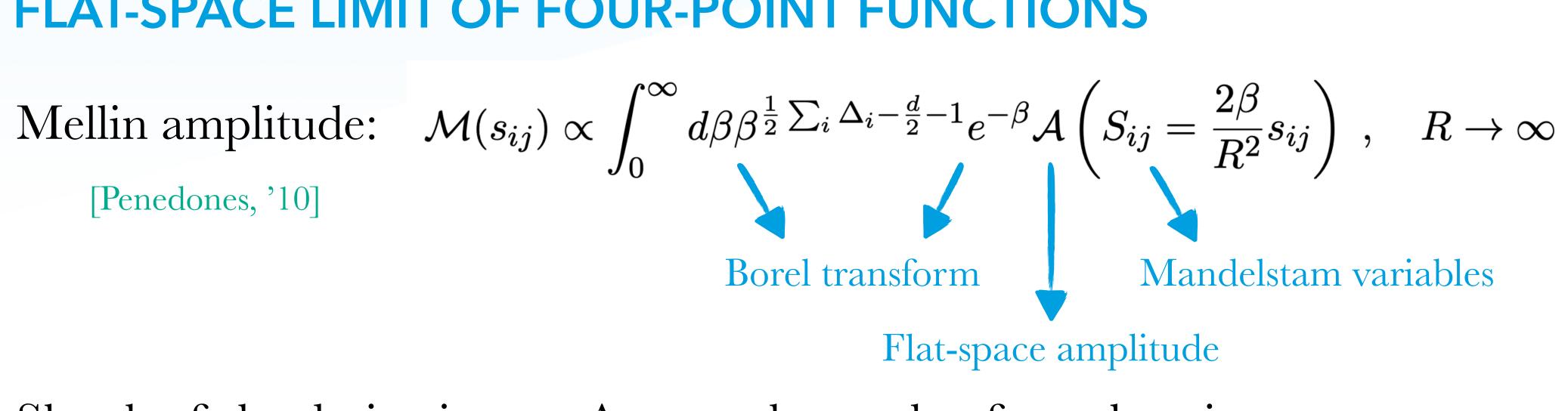
rial-space amplitude

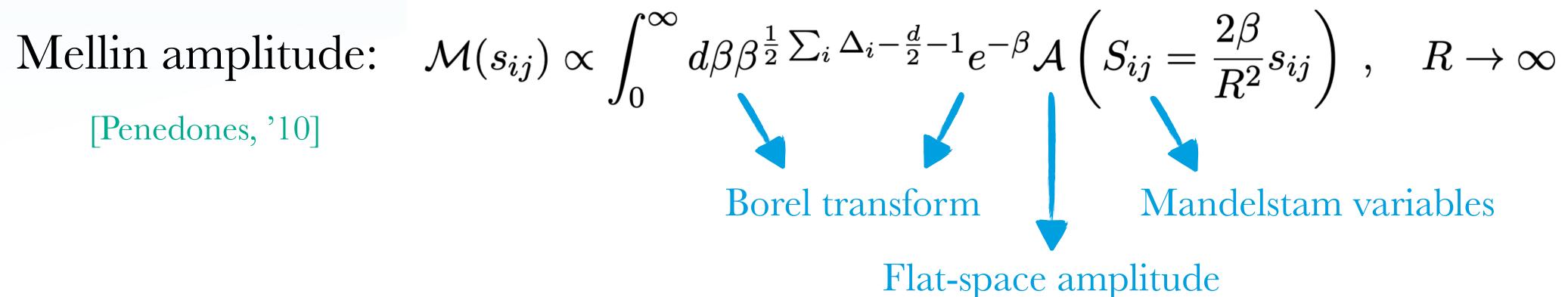
Mellin amplitude: $\mathcal{M}(s_{ij}) \propto \int_0^\infty d\beta \beta^{\frac{1}{2}\sum_i \Delta_i - \frac{d}{2} - 1} e^{-\beta} \mathcal{A}\left(S_{ij} = \frac{2\beta}{R^2} s_{ij}\right), \quad R \to \infty$ Penedones '10] Mandelstam variables Flat-space amplitude

[Penedones, '10]



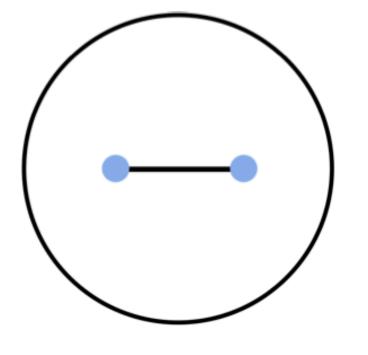
Sketch of the derivation: • Assume that such a formula exists

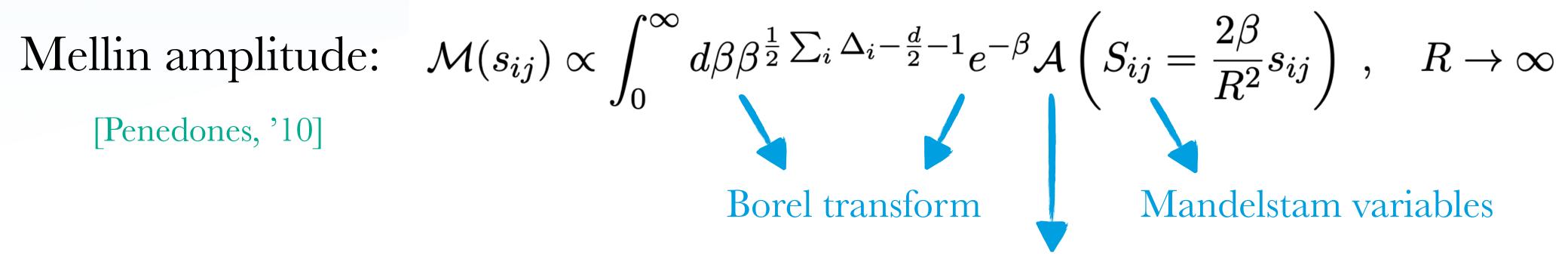




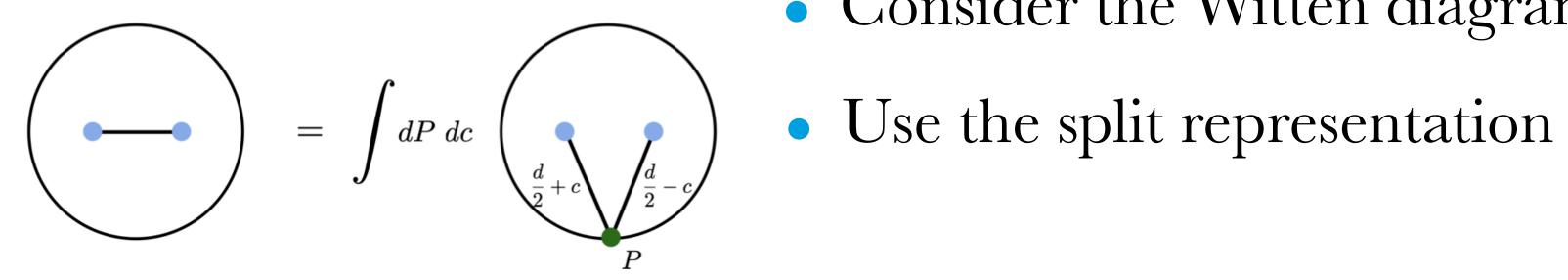
Sketch of the derivation: • Assume that such a formula exists

• Consider the Witten diagram of a propagator

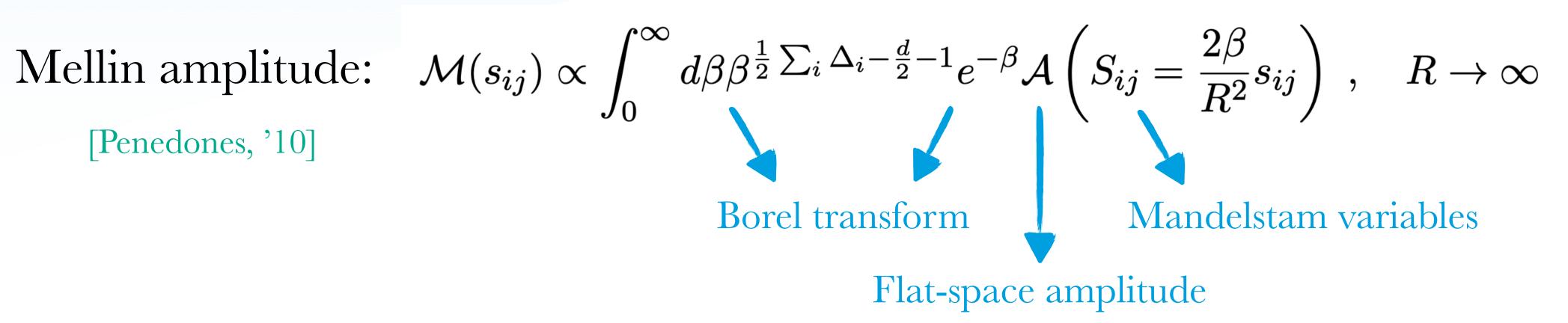




- Sketch of the derivation: Assume that such a formula exists
 - Consider the Witten diagram of a propagator

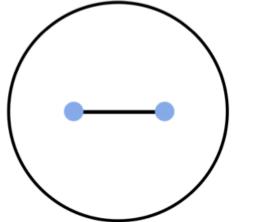


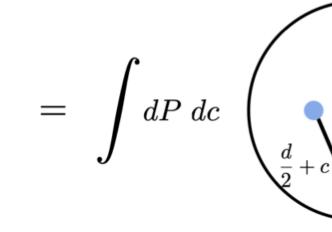
Flat-space amplitude



Sketch of the derivation: • Assume that such a formula exists

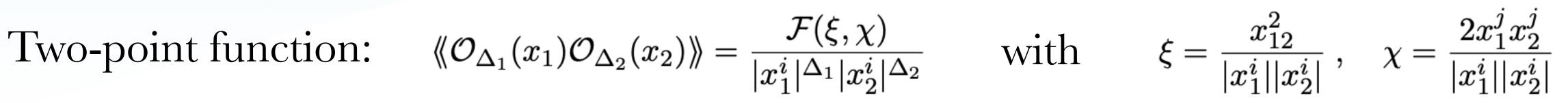
- Consider the Witten diagram of a propagator
- $\left(\bullet \bullet \right) = \int dP \, dc \left(\left(\bullet \right)_{\frac{d}{2} + c} \right) = 0 \quad \text{Use the split representation}$
 - Massage to make the flat propagator appear:





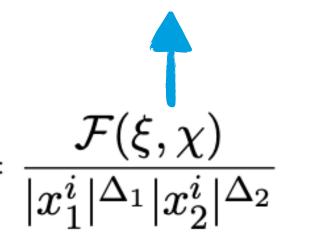
 $\mathcal{M}(s) \approx \frac{R^{3-d}}{\Gamma(\frac{\sum_{i}\Delta_{i}-d}{2})} \int_{0}^{\infty} \frac{dK}{K} \left(-\frac{K^{2}R^{2}}{2s}\right)^{\frac{\sum_{i}\Delta_{i}-a}{2}} e^{\frac{K^{2}R^{2}}{2s}} \frac{1}{\Delta^{2}/R^{2}+K^{2}}$

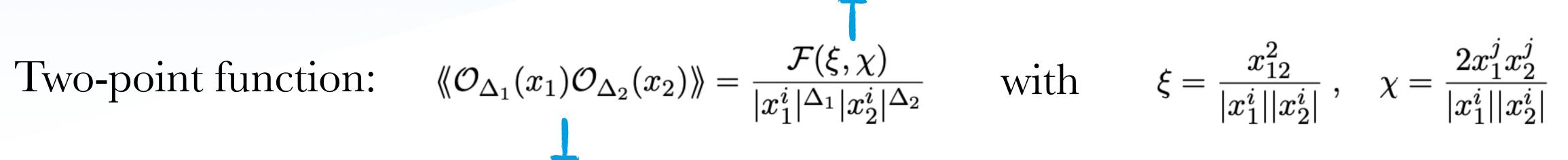
DEFECT CORRELATORS



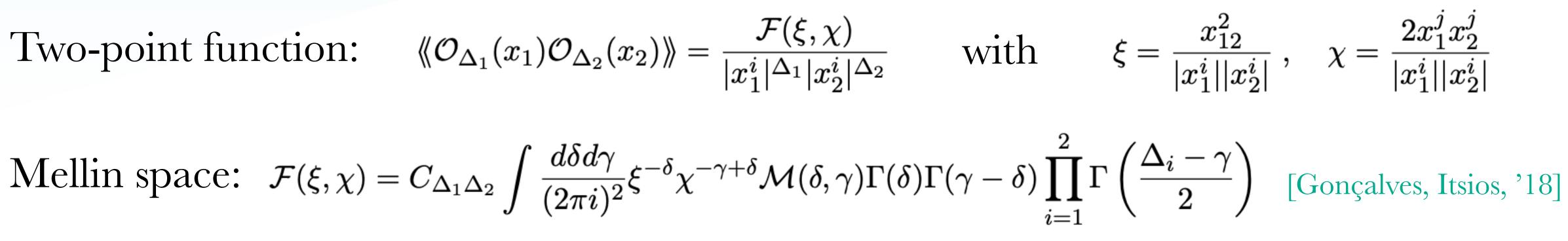
DEFECT CORRELATORS

Two local operators in presence of a defect

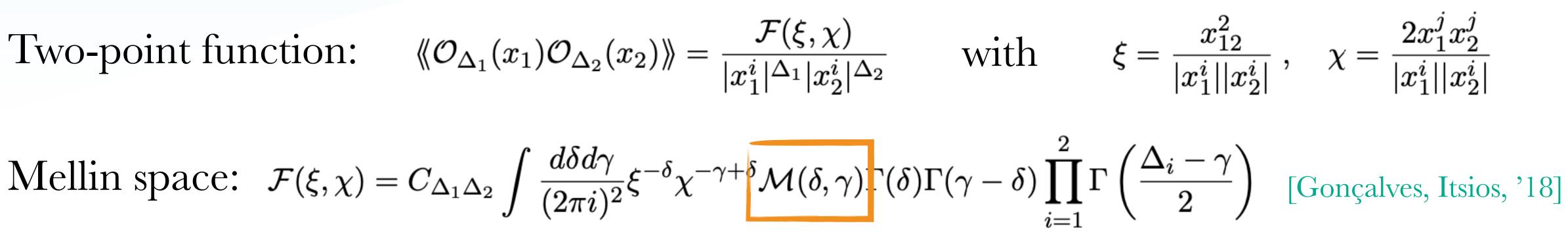




DEFECT CORRELATORS

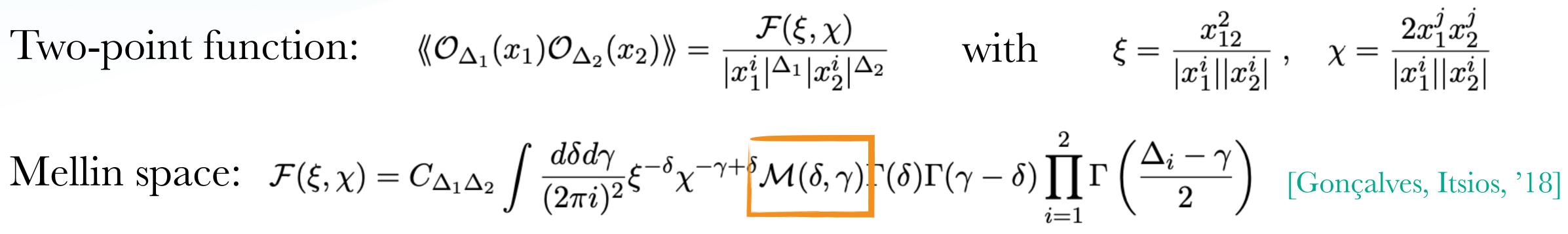


DEFECT CORRELATORS



DEFECT CORRELATORS

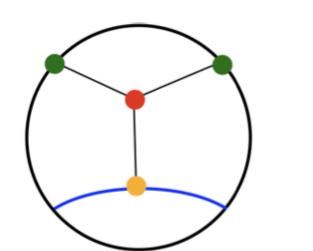
Main idea: Conjecture a defect flat-space limit from tree-level Witten diagrams



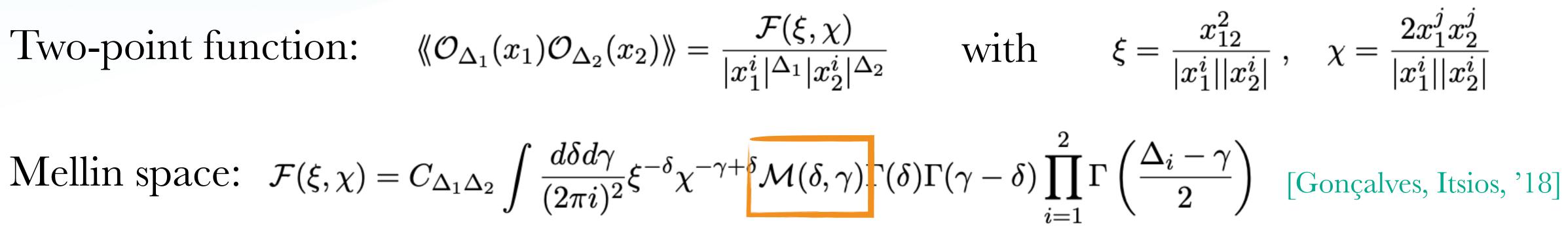
DEFECT CORRELATORS

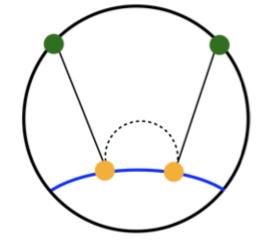
Main idea: Conjecture a defect flat-space limit from tree-level Witten diagrams

Tree-level Witten diagrams:

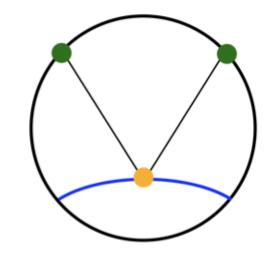


(a) Bulk channel exchange Witten diagrams

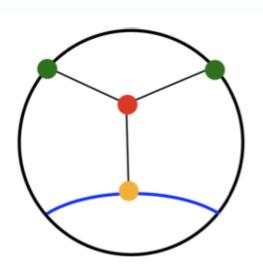


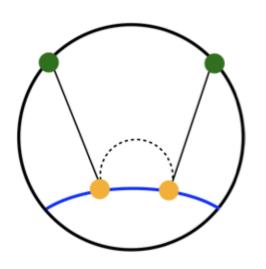


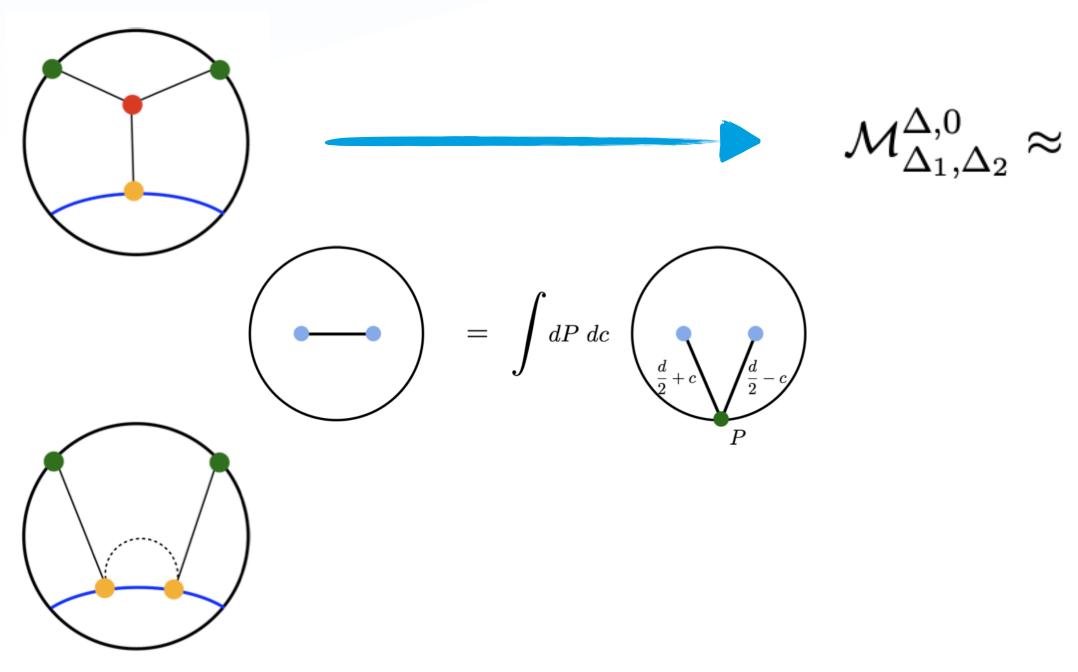
(b) Defect channel exchange Witten diagrams



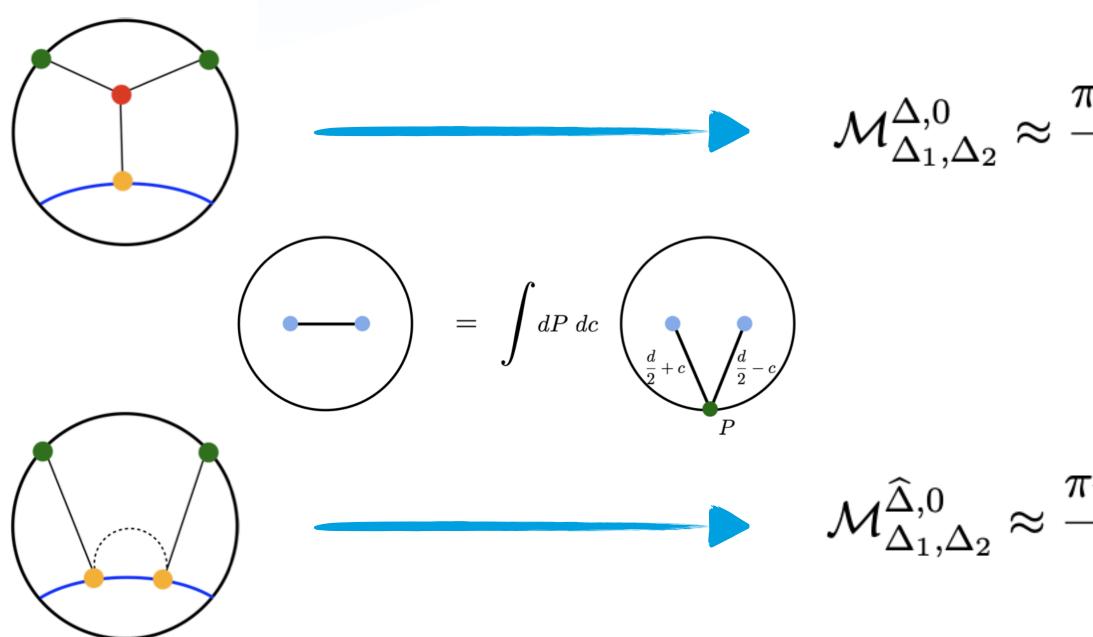
Contact Witten dia-(c) grams





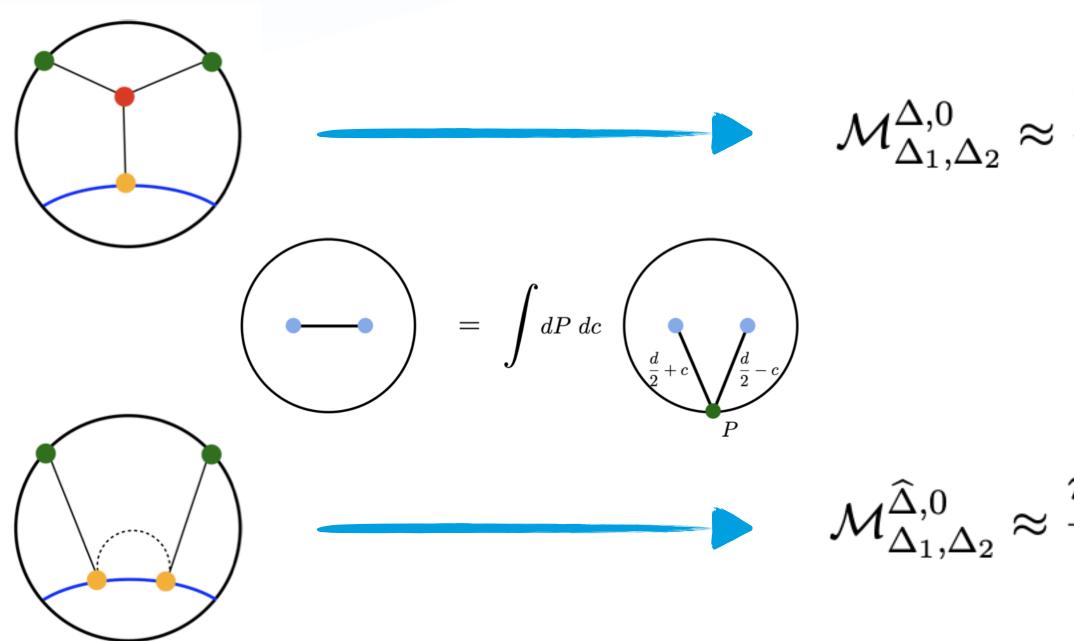


$$\frac{\pi^{p/2} R^{p-d+2} C_{\Delta_1 \Delta_2}^{-1}}{4\Gamma(\Delta_1) \Gamma(\Delta_2)} \int_0^\infty d\beta \beta^{\frac{1}{2}(\Delta_1 + \Delta_2) - \frac{p}{2} - 1} e^{-\beta} \frac{1}{\mu^2 + 4\delta\beta/R^2}$$



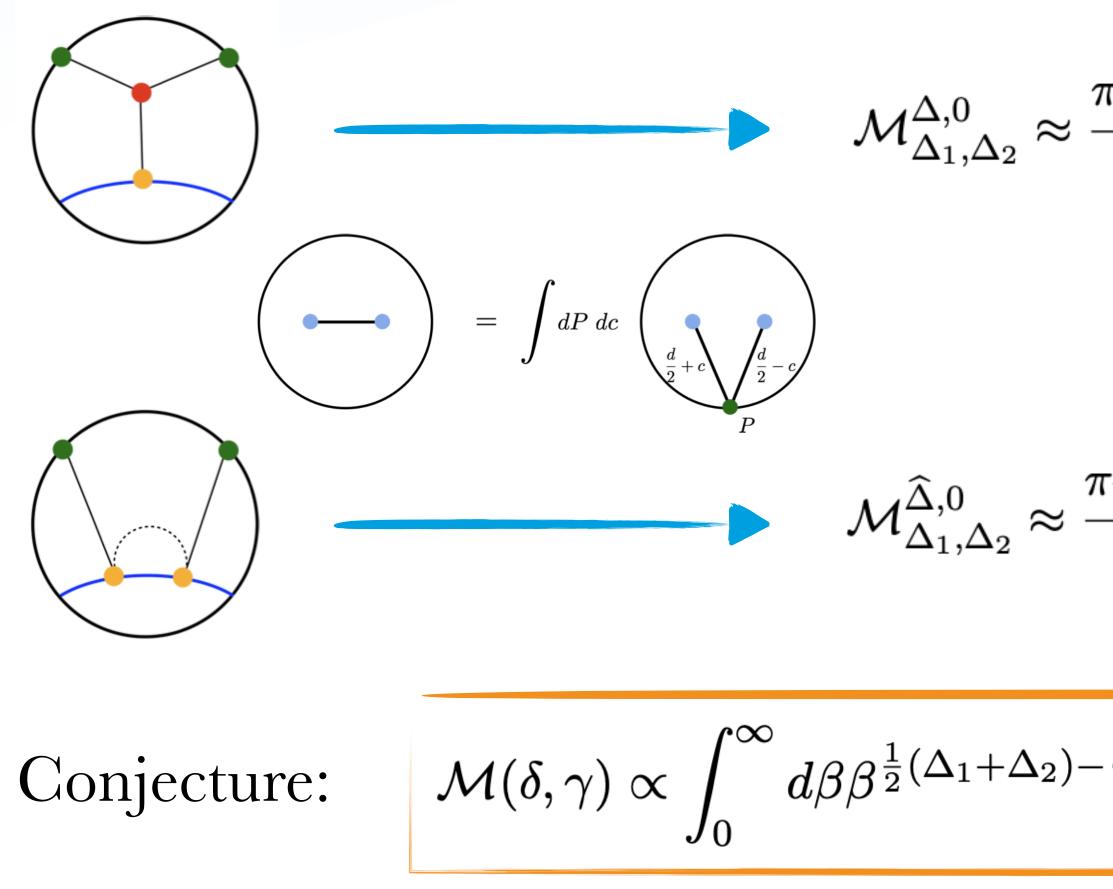
$$\frac{\pi^{p/2} R^{p-d+2} C_{\Delta_1 \Delta_2}^{-1}}{4\Gamma(\Delta_1) \Gamma(\Delta_2)} \int_0^\infty d\beta \beta^{\frac{1}{2}(\Delta_1 + \Delta_2) - \frac{p}{2} - 1} e^{-\beta} \frac{1}{\mu^2 + 4\delta\beta/R^2}$$

$$\frac{\pi^{p/2}R^{p-d+2}C_{\Delta_1\Delta_2}^{-1}}{4\Gamma(\Delta_1)\Gamma(\Delta_2)}\int_0^\infty d\beta\beta^{\frac{1}{2}(\Delta_1+\Delta_2)-\frac{p}{2}-1}e^{-\beta}\frac{1}{\hat{\mu}^2-2\gamma\beta/R^2}$$



$$\frac{\pi^{p/2} R^{p-d+2} C_{\Delta_1 \Delta_2}^{-1}}{4\Gamma(\Delta_1) \Gamma(\Delta_2)} \int_0^\infty d\beta \beta^{\frac{1}{2}(\Delta_1 + \Delta_2) - \frac{p}{2} - 1} e^{-\beta} \frac{1}{\mu^2 + 4\delta\beta/R^2}$$

$$\frac{\pi^{p/2}R^{p-d+2}C_{\Delta_1\Delta_2}^{-1}}{4\Gamma(\Delta_1)\Gamma(\Delta_2)}\int_0^\infty d\beta\beta^{\frac{1}{2}(\Delta_1+\Delta_2)-\frac{p}{2}-1}e^{-\beta}\frac{1}{\widehat{\mu}^2-2\gamma\beta/R^2}$$



$$\frac{\pi^{p/2} R^{p-d+2} C_{\Delta_1 \Delta_2}^{-1}}{4\Gamma(\Delta_1) \Gamma(\Delta_2)} \int_0^\infty d\beta \beta^{\frac{1}{2}(\Delta_1 + \Delta_2) - \frac{p}{2} - 1} e^{-\beta} \frac{1}{\mu^2 + 4\delta\beta/R^2}$$

$$\frac{\pi^{p/2} R^{p-d+2} C_{\Delta_1 \Delta_2}^{-1}}{4\Gamma(\Delta_1) \Gamma(\Delta_2)} \int_0^\infty d\beta \beta^{\frac{1}{2}(\Delta_1 + \Delta_2) - \frac{p}{2} - 1} e^{-\beta} \frac{1}{\hat{\mu}^2 - 2\gamma \beta / R^2}$$

$$^{-rac{p}{2}-1}e^{-eta}\mathcal{A}\left(S=-rac{2\deltaeta}{R^2},Q=rac{2\gammaeta}{R^2}
ight)\;,\quad R
ightarrow\infty$$

FLAT-SPACE LIMIT OF DEFECT CORRELATORS

Conjecture: $\mathcal{M}(\delta,\gamma) \propto \int_0^\infty d\beta \beta^{\frac{1}{2}(\Delta_1+\Delta_2)}$

CHECKS

$$^{-rac{p}{2}-1}e^{-eta}\mathcal{A}\left(S=-rac{2\deltaeta}{R^2},Q=rac{2\gammaeta}{R^2}
ight)\;,\quad R
ightarrow\infty$$

FLAT-SPACE LIMIT OF DEFECT CORRELATORS

Conjecture:

$$\mathcal{M}(\delta,\gamma) \propto \int_0^\infty deta eta^{rac{1}{2}(\Delta_1+\Delta_2)-rac{p}{2}-1} e^{-eta} \mathcal{A}\left(S=-rac{2\deltaeta}{R^2}, Q=rac{2\gammaeta}{R^2}
ight) \ , \quad R o\infty$$

CHECKS

• Higher-derivative contact diagrams

FLAT-SPACE LIMIT OF DEFECT CORRELATORS

Conjecture:

$$\mathcal{M}(\delta,\gamma) \propto \int_0^\infty deta eta^{rac{1}{2}(\Delta_1+\Delta_2)-rac{p}{2}-1} e^{-eta} \mathcal{A}\left(S=-rac{2\deltaeta}{R^2}, Q=rac{2\gammaeta}{R^2}
ight) \ , \quad R o\infty$$

CHECKS

- Higher-derivative contact diagrams
- Exchange diagrams of spinning fields

FLAT-SPACE LIMIT OF DEFECT CORRELATORS

Conjecture:

$$\mathcal{M}(\delta,\gamma) \propto \int_0^\infty deta eta^{rac{1}{2}(\Delta_1+\Delta_2)-rac{p}{2}-1} e^{-eta} \mathcal{A}\left(S=-rac{2\deltaeta}{R^2}, Q=rac{2\gammaeta}{R^2}
ight) \ , \quad R o\infty$$

CHECKS

- Higher-derivative contact diagrams
- Exchange diagrams of spinning fields
- One-loop amplitude (6d $\mathcal{N} = (2, 0)$ with a 1/2-BPS surface defect)

TWO 20' IN PRESENCE OF A 'T HOOFT LINE

TWO 20' IN PRESENCE OF A 'T HOOFT LINE

Correlator: $\langle\!\langle S(x_1, u_1) S(x_2, u_2) \rangle\!\rangle = \frac{(u_1)}{(u_1)}$

$$rac{|\cdot heta)^2 (u_2 \cdot heta)^2}{|x_1^i|^2 |x_2^i|^2} \mathcal{F}(\zeta,\eta;\sigma)$$

TWO 20' IN PRESENCE OF A 'T HOOFT LINE

Correlator: $\langle\!\langle S(x_1, u_1) S(x_2, u_2) \rangle\!\rangle = \frac{(u_1)}{(u_1)}$ 20' operators

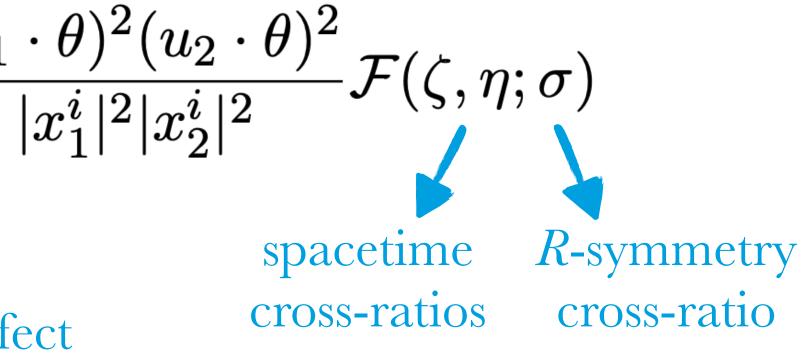
't Hooft line defect

$$rac{|\cdot heta)^2 (u_2 \cdot heta)^2}{|x_1^i|^2 |x_2^i|^2} \mathcal{F}(\zeta,\eta;\sigma)$$

TWO 20' IN PRESENCE OF A 'T HOOFT LINE

Correlator: $\langle\!\langle S(x_1, u_1) S(x_2, u_2) \rangle\!\rangle = \frac{(u_1 \cdot \theta)^2 (u_2 \cdot \theta)^2}{|x_1^i|^2 |x_2^i|^2} \mathcal{F}(\zeta, \eta; \sigma)$ 20' operators

't Hooft line defect



TWO 20' IN PRESENCE OF A 'T HOOFT LINE

Correlator: $\langle\!\langle S(x_1, u_1) S(x_2, u_2) \rangle\!\rangle = \frac{(u_1)}{(u_1)}$

ANSATZ

 $\mathcal{M} = \mathcal{M}_{\text{sugra}} f(\lambda) + \lambda^{-1} \mathcal{M}_{L=2}^{\text{h.d.}} + \lambda^{-\frac{3}{2}} \mathcal{M}_{L=3}^{\text{h.d.}} + \lambda^{-2} \mathcal{M}_{L=4}^{\text{h.d.}} + \dots$

$$rac{|\cdot heta)^2 (u_2 \cdot heta)^2}{|x_1^i|^2 |x_2^i|^2} \mathcal{F}(\zeta,\eta;\sigma)$$

TWO 20' IN PRESENCE OF A 'T HOOFT LINE

Correlator: $\langle\!\langle S(x_1, u_1) S(x_2, u_2) \rangle\!\rangle = \frac{(u_1)}{(u_1)}$

ANSATZ

 $\mathcal{M} = \mathcal{M}_{\mathrm{sugra}} f(\lambda) +$

$$\mathcal{F}_{L}^{ ext{h.d.}} = \sum_{j=0}^{2} \sum_{M=0}^{L} \sum_{A=0}^{M} c_{j}$$

$$rac{|\cdot heta)^2 (u_2 \cdot heta)^2}{|x_1^i|^2 |x_2^i|^2} \mathcal{F}(\zeta,\eta;\sigma)$$

$$\lambda^{-1} \mathcal{M}_{L=2}^{\text{h.d.}} + \lambda^{-\frac{3}{2}} \mathcal{M}_{L=3}^{\text{h.d.}} + \lambda^{-2} \mathcal{M}_{L=4}^{\text{h.d.}} + \dots$$

 $_{j,M,A}\sigma^{j}\mathcal{B}_{M,A}$

TWO 20' IN PRESENCE OF A 'T HOOFT LINE

Correlator: $\langle\!\langle S(x_1, u_1) S(x_2, u_2) \rangle\!\rangle = \frac{(u_1)}{(u_1)}$

ANSATZ

$$\mathcal{F}_{L}^{ ext{h.d.}} = \sum_{j=0}^{2} \sum_{M=0}^{L} \sum_{A=0}^{M} c_{j}$$

$$rac{|\cdot heta)^2 (u_2 \cdot heta)^2}{|x_1^i|^2 |x_2^i|^2} \mathcal{F}(\zeta,\eta;\sigma)$$

$\mathcal{M} = \mathcal{M}_{\text{sugra}} f(\lambda) + \lambda^{-1} \mathcal{M}_{L=2}^{\text{h.d.}} + \lambda^{-\frac{3}{2}} \mathcal{M}_{L=3}^{\text{h.d.}} + \lambda^{-2} \mathcal{M}_{L=4}^{\text{h.d.}} + \dots$

$\mathcal{B}_{j,M,A} \sigma^{j} \mathcal{B}_{M,A}$ (L(L+1)/2 open coefficients)

TWO 20' IN PRESENCE OF A 'T HOOFT LINE

Correlator: $\langle\!\langle S(x_1, u_1) S(x_2, u_2) \rangle\!\rangle = \frac{(u_1)}{(u_1)}$

ANSATZ

 $\mathcal{M} = \mathcal{M}_{\text{sugra}} f(\lambda) +$

SUSY

 $\mathcal{M}_{L=2}^{ ext{h.d.}} = rac{\mathcal{N}_{ ext{sugra}}^{\mathbb{T}}}{\pi} c_1^{(2)} M_{L=2}^{(1)}$

$$rac{|\cdot heta)^2 (u_2 \cdot heta)^2}{|x_1^i|^2 |x_2^i|^2} \mathcal{F}(\zeta,\eta;\sigma)$$

$$\lambda^{-1} \mathcal{M}_{L=2}^{\text{h.d.}} + \lambda^{-\frac{3}{2}} \mathcal{M}_{L=3}^{\text{h.d.}} + \lambda^{-2} \mathcal{M}_{L=4}^{\text{h.d.}} + \dots$$

$$\mathcal{M}_{L=3}^{\text{h.d.}} = \frac{\mathcal{N}_{\text{sugra}}^{\mathbb{T}}}{\pi} (c_1^{(3)} M_{L=3}^{(1)} + c_2^{(3)} M_{L=3}^{(2)} + c_3^{(3)} M_{L=2}^{(1)})$$

 $\mathcal{M}_{L=4}^{\text{h.d.}} = \frac{\mathcal{N}_{\text{sugra}}^{\mathbb{T}}}{\pi} (c_1^{(4)} M_{L=4}^{(1)} + c_2^{(4)} M_{L=4}^{(2)} + c_3^{(4)} M_{L=4}^{(3)} + c_4^{(4)} M_{L=3}^{(1)} + c_5^{(4)} M_{L=3}^{(2)} + c_6^{(4)} M_{L=2}^{(1)})$

TWO 20' IN PRESENCE OF A 'T HOOFT LINE

Correlator: $\langle\!\langle S(x_1, u_1) S(x_2, u_2) \rangle\!\rangle = \frac{(u_1)}{|x_1|}$

ANSATZ

 $\mathcal{M} = \mathcal{M}_{\text{sugra}} f(\lambda) +$

SUSY

 $\mathcal{M}_{L=2}^{ ext{h.d.}} = rac{\mathcal{N}_{ ext{sugra}}^{\mathbb{T}} c_1^{(2)} \mathcal{M}_{L=2}^{(1)}}{\pi} c_1^{(1)} \mathcal{M}_{L=2}^{(1)}$ $\mathcal{M}_{L=4}^{ ext{h.d.}} = rac{\mathcal{N}_{ ext{sugra}}^{\mathbb{T}} c_1^{(4)} \mathcal{M}_{L=4}^{(1)} + c_2^{(4)} \mathcal{M}_{L=4}^{(4)} + c_2^{(4)} + c_2^$

$$\frac{(- \cdot \theta)^{2} (u_{2} \cdot \theta)^{2}}{|x_{1}^{i}|^{2} |x_{2}^{i}|^{2}} \mathcal{F}(\zeta, \eta; \sigma)$$

$$\lambda^{-1} \mathcal{M}_{L=2}^{\text{h.d.}} + \lambda^{-\frac{3}{2}} \mathcal{M}_{L=3}^{\text{h.d.}} + \lambda^{-2} \mathcal{M}_{L=4}^{\text{h.d.}} + \dots$$

$$\mathcal{M}_{L=3}^{\text{h.d.}} = \frac{\mathcal{N}_{\text{sugra}}^{\mathbb{T}}}{\pi} (c_{1}^{(3)} M_{L=3}^{(1)} + c_{2}^{(3)} M_{L=3}^{(2)} + c_{3}^{(3)} M_{L=2}^{(1)})$$

$$c_{2}^{(4)} M_{L=4}^{(2)} + c_{3}^{(4)} M_{L=4}^{(3)} + c_{4}^{(4)} M_{L=3}^{(1)} + c_{5}^{(4)} M_{L=3}^{(2)} + c_{6}^{(4)} M_{L=2}^{(1)})$$

TWO 20' IN PRESENCE OF A 'T HOOFT LINE

Correlator: $\langle\!\langle S(x_1, u_1) S(x_2, u_2) \rangle\!\rangle = \frac{(u_1)}{|x_1|}$

ANSATZ

 $\mathcal{M} = \mathcal{M}_{\text{sugra}} f(\lambda) +$

SUSY

 $\mathcal{M}_{L=2}^{ ext{h.d.}} = rac{\mathcal{N}_{ ext{sugra}}^{\mathbb{T}}}{\pi} c_1^{(2)} M_{L=2}^{(1)}$ $\mathcal{M}_{L=4}^{ ext{h.d.}} = rac{\mathcal{N}_{ ext{sugra}}^{\mathbb{T}}}{\pi} (c_1^{(4)} M_{L=4}^{(1)} + c_2^{(4)})$

$$\frac{(-\theta)^{2}(u_{2}\cdot\theta)^{2}}{|x_{1}^{i}|^{2}|x_{2}^{i}|^{2}}\mathcal{F}(\zeta,\eta;\sigma)$$

$$\lambda^{-1}\mathcal{M}_{L=2}^{\text{h.d.}} + \lambda^{-\frac{3}{2}}\mathcal{M}_{L=3}^{\text{h.d.}} + \lambda^{-2}\mathcal{M}_{L=4}^{\text{h.d.}} + \dots$$

$$\mathcal{M}_{L=3}^{\text{h.d.}} = \frac{\mathcal{N}_{\text{sugra}}^{\mathbb{T}}}{\pi}(c_{1}^{(3)}M_{L=3}^{(1)} + c_{2}^{(3)}M_{L=3}^{(2)} + c_{3}^{(3)}M_{L=2}^{(1)})$$

$$c_{2}^{(4)}M_{L=4}^{(2)} + c_{3}^{(4)}M_{L=4}^{(3)} + c_{4}^{(4)}M_{L=3}^{(1)} + c_{5}^{(4)}M_{L=3}^{(2)} + c_{6}^{(4)}M_{L=2}^{(1)})$$

TWO 20' IN PRESENCE OF A 'T HOOFT LINE

Correlator: $\langle\!\langle S(x_1, u_1) S(x_2, u_2) \rangle\!\rangle = \frac{(u_1)}{(u_2)}$

ANSATZ

 $\mathcal{M} = \mathcal{M}_{sugra} f(\lambda) +$

SUSY

 $\mathcal{M}_{L=4}^{ ext{h.d.}} = rac{\mathcal{N}_{ ext{sugra}}^{\mathbb{T}}}{\pi} (c_1^{(4)} \mathcal{M}_{L=4}^{(1)} + c_2^{(4)})$

$$\begin{split} u_1)S(x_2, u_2)\rangle &= \frac{(u_1 \cdot \theta)^2 (u_2 \cdot \theta)^2}{|x_1^i|^2 |x_2^i|^2} \mathcal{F}(\zeta, \eta; \sigma) \\ \mathcal{M} &= \mathcal{M}_{\text{sugra}} f(\lambda) + \lambda^{-1} \mathcal{M}_{L=2}^{\text{h.d.}} + \lambda^{-\frac{3}{2}} \mathcal{M}_{L=3}^{\text{h.d.}} + \lambda^{-\frac{2}{2}} \mathcal{M}_{L=4}^{\text{h.d.}} + \dots \\ \mathcal{M}_{L=2}^{\text{h.d.}} &= \frac{\mathcal{N}_{\text{sugra}}^{\mathbb{T}} c_1^{(2)} \mathcal{M}_{L=2}^{(1)}}{\pi} \mathcal{M}_{L=2}^{\text{h.d.}} = \frac{\mathcal{N}_{\text{sugra}}^{\mathbb{T}} (c_1^{(3)} \mathcal{M}_{L=3}^{(1)} + c_2^{(3)} \mathcal{M}_{L=3}^{(2)} + c_3^{(3)} \mathcal{M}_{L=2}^{(1)}) \end{split}$$

$$\pi^{(4)} i I_{L=4}^{(2)} - c_3^{(4)} I_{L=4}^{(3)} - c_4^{(4)} i I_{L=3}^{(1)} - c_5^{(4)} i I_{L=3}^{(2)} - c_6^{(4)} I_{L=2}^{(1)})$$

TWO 20' IN PRESENCE OF A 'T HOOFT LINE

Correlator: $\langle\!\langle S(x_1, u_1) S(x_2, u_2) \rangle\!\rangle = \frac{(u_1)}{(u_1)}$

ANSATZ

 $\mathcal{M} = \mathcal{M}_{\mathrm{sugra}} f(\lambda) +$

SUSY

 $\mathcal{M}_{L=2}^{ ext{h.d.}} = rac{\mathcal{N}_{ ext{sugra}}^{\mathbb{T}}}{\pi} c_1^{(2)} M_{L=2}^{(1)}$ $\mathcal{M}_{L=4}^{ ext{h.d.}} = rac{\mathcal{N}_{ ext{sugra}}^{\mathbb{T}}}{\pi} (c_1^{(4)} M_{L=4}^{(1)} + c_2^{(4)})$

CONSTRAINTS

- Flat-space limit
- Integrated correlators

$$rac{|\cdot heta)^2 (u_2 \cdot heta)^2}{|x_1^i|^2 |x_2^i|^2} \mathcal{F}(\zeta,\eta;\sigma)$$

$$\lambda^{-1} \mathcal{M}_{L=2}^{\text{h.d.}} + \lambda^{-\frac{3}{2}} \mathcal{M}_{L=3}^{\text{h.d.}} + \lambda^{-2} \mathcal{M}_{L=4}^{\text{h.d.}} + \dots$$

$$\mathcal{M}_{L=3}^{\text{h.d.}} = \frac{\mathcal{N}_{\text{sugra}}^{\mathbb{T}}}{\pi} (c_1^{(3)} M_{L=3}^{(1)} + c_2^{(3)} M_{L=3}^{(2)} + c_3^{(3)} M_{L=2}^{(1)})$$

 $\mathcal{M}_{L=4}^{\text{h.d.}} = \frac{\mathcal{N}_{\text{sugra}}^{\mathbb{T}}}{\pi} (c_1^{(4)} M_{L=4}^{(1)} + c_2^{(4)} M_{L=4}^{(2)} + c_3^{(4)} M_{L=4}^{(3)} + c_4^{(4)} M_{L=3}^{(1)} + c_5^{(4)} M_{L=3}^{(2)} + c_6^{(4)} M_{L=2}^{(1)})$

TWO 20' IN PRESENCE OF A 'T HOOFT LINE

Correlator: $\langle\!\langle S(x_1, u_1) S(x_2, u_2) \rangle\!\rangle = \frac{(u_1)}{(u_1)}$

ANSATZ

SUSY

 $\mathcal{M} = \mathcal{M}_{\text{sugra}} f(\lambda) +$

 $\mathcal{M}_{L=2}^{ ext{h.d.}} = rac{\mathcal{N}_{ ext{sugra}}^{\mathbb{T}}}{\pi} c_1^{(2)} M_{L=2}^{(1)}$ $\mathcal{M}_{L=4}^{ ext{h.d.}} = rac{\mathcal{N}_{ ext{sugra}}^{\mathbb{T}}}{\pi} (c_1^{(4)} M_{L=4}^{(1)} + c_2^{(4)})$

 $c_1^{(2)} = \frac{5\pi^2}{4}$ $c_1^{(3)} =$

$$\begin{split} c_1^{(4)} &= \frac{21\pi^4}{4} \;, \quad c_2^{(4)} = -\frac{21\pi^4}{32} \;, \quad c_3^{(4)} = \frac{21\pi^4}{16} \\ 14c_4^{(4)} &- 6c_5^{(4)} + 21c_6^{(4)} = \frac{2093\pi^4}{80} \;, \quad 20c_4^{(4)} + 21c_6^{(4)} = -\frac{1099\pi^4}{24} \end{split}$$

Flat-space limit

Integrated correlators

CONSTRAINTS

$$rac{|\cdot heta)^2 (u_2 \cdot heta)^2}{|x_1^i|^2 |x_2^i|^2} \mathcal{F}(\zeta,\eta;\sigma)$$

$$\lambda^{-1} \mathcal{M}_{L=2}^{\text{h.d.}} + \lambda^{-\frac{3}{2}} \mathcal{M}_{L=3}^{\text{h.d.}} + \lambda^{-2} \mathcal{M}_{L=4}^{\text{h.d.}} + \dots$$

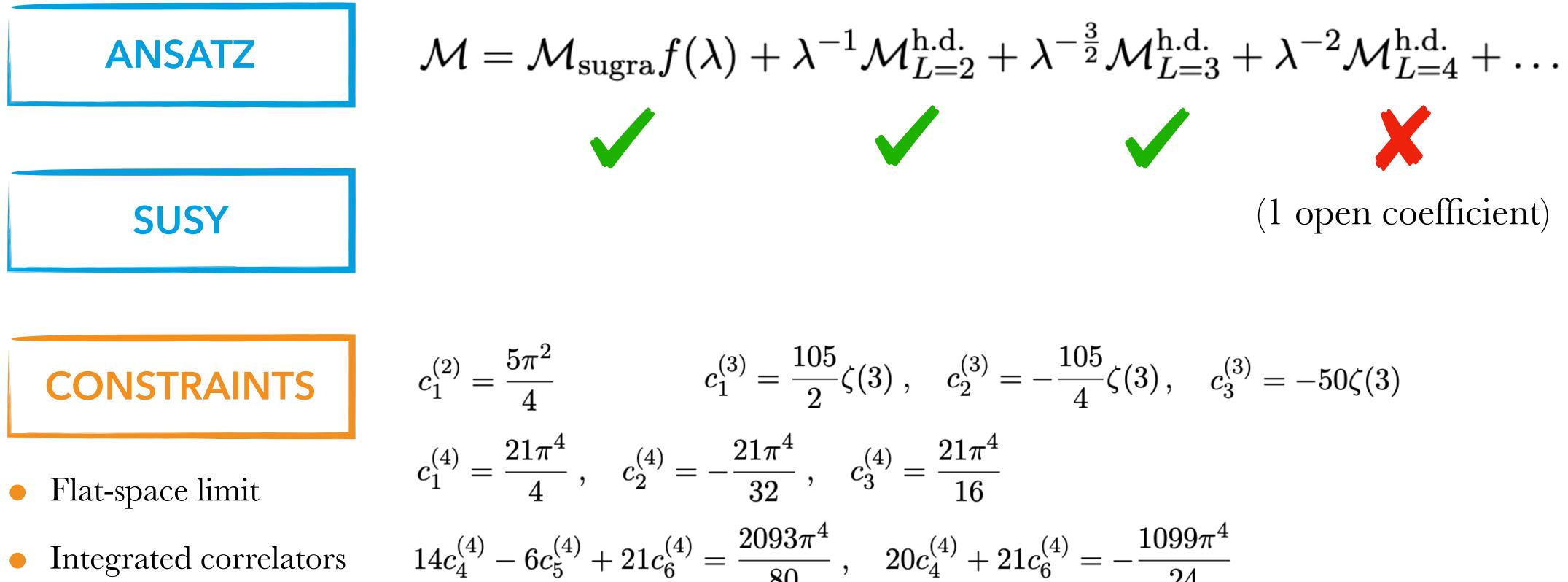
$$\mathcal{M}_{L=3}^{\text{h.d.}} = \frac{\mathcal{N}_{\text{sugra}}^{\mathbb{T}}}{\pi} (c_1^{(3)} M_{L=3}^{(1)} + c_2^{(3)} M_{L=3}^{(2)} + c_3^{(3)} M_{L=2}^{(1)})$$

$$c_{2}^{(4)}M_{L=4}^{(2)} + c_{3}^{(4)}M_{L=4}^{(3)} + c_{4}^{(4)}M_{L=3}^{(1)} + c_{5}^{(4)}M_{L=3}^{(2)} + c_{6}^{(4)}M_{L=2}^{(1)})$$

$$rac{105}{2}\zeta(3)\;,\quad c_2^{(3)}=-rac{105}{4}\zeta(3)\,,\quad c_3^{(3)}=-50\zeta(3)$$

TWO 20' IN PRESENCE OF A 'T HOOFT LINE

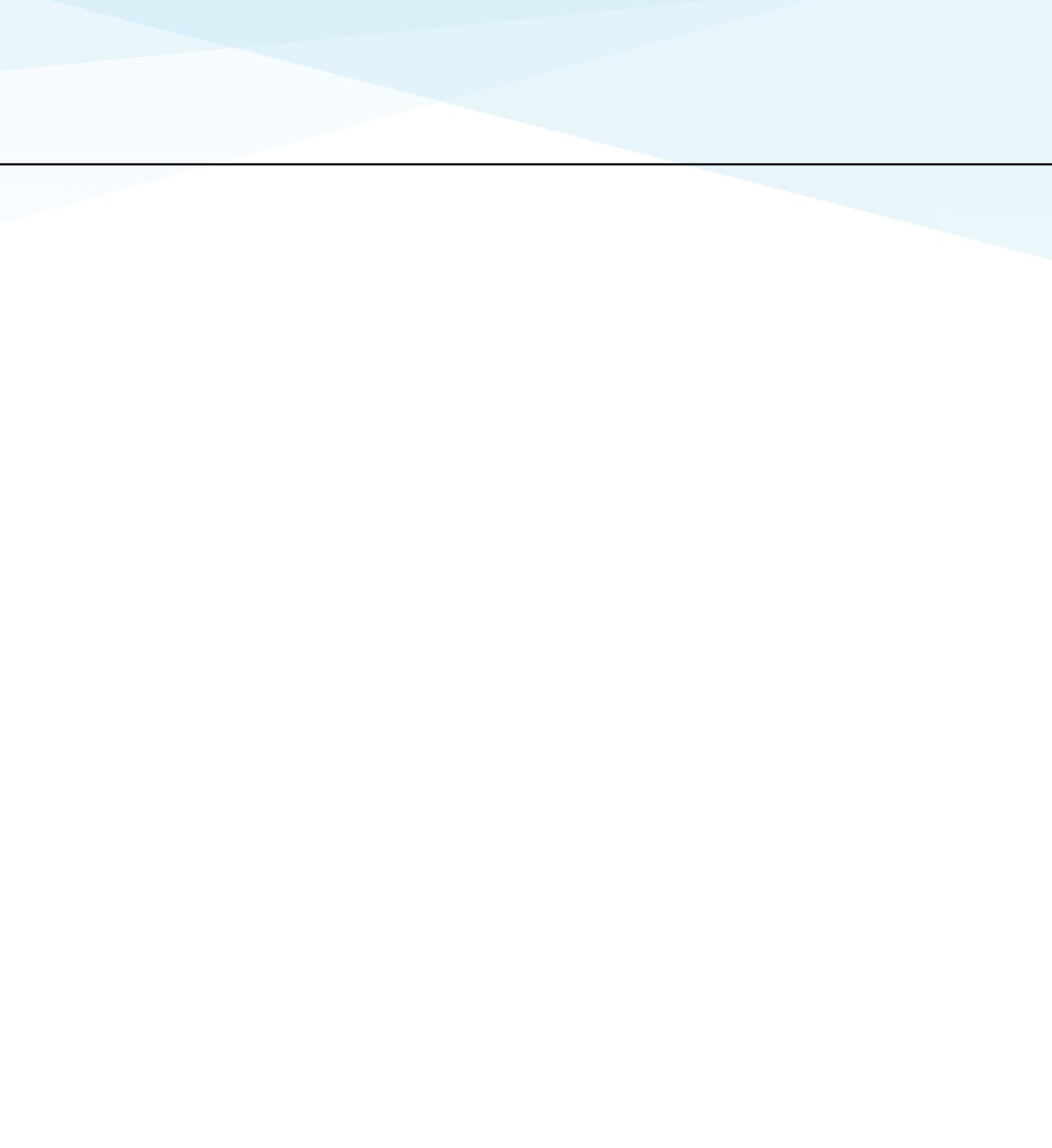
Correlator: $\langle\!\langle S(x_1, u_1) S(x_2, u_2) \rangle\!\rangle = \frac{(u_1)}{(u_1)}$



$$rac{|\cdot heta)^2 (u_2 \cdot heta)^2}{|x_1^i|^2 |x_2^i|^2} \mathcal{F}(\zeta,\eta;\sigma)$$

$$\begin{aligned} &\frac{105}{2}\zeta(3) \ , \quad c_2^{(3)} = -\frac{105}{4}\zeta(3) \ , \quad c_3^{(3)} = -50\zeta(3) \\ &\frac{4}{2} \ , \quad c_3^{(4)} = \frac{21\pi^4}{16} \\ &\frac{3\pi^4}{30} \ , \quad 20c_4^{(4)} + 21c_6^{(4)} = -\frac{1099\pi^4}{24} \end{aligned}$$

CONCLUSIONS



CONCLUSIONS

- Conjectured a flat-space formula for defect correlators
- Performed non-trivial checks of the conjecture
- Obtained new results using this constraint for a 't Hooft line

CONCLUSIONS

- Conjectured a flat-space formula for defect correlators
- Performed non-trivial checks of the conjecture
- Obtained new results using this constraint for a 't Hooft line

CONCLUSIONS

- Conjectured a flat-space formula for defect correlators
- Performed non-trivial checks of the conjecture
- Obtained new results using this constraint for a 't Hooft line

OUTLOOK

• Generalization to mixed bulk-defect correlators should be straightforward

CONCLUSIONS

- Conjectured a flat-space formula for defect correlators
- Performed non-trivial checks of the conjecture
- Obtained new results using this constraint for a 't Hooft line

- Generalization to mixed bulk-defect correlators should be straightforward
- Flat-space limit in position space? [Maldacena, Simmons-Duffin, Zhiboedov, '17]

CONCLUSIONS

- Conjectured a flat-space formula for defect correlators
- Performed non-trivial checks of the conjecture
- Obtained new results using this constraint for a 't Hooft line

- Generalization to mixed bulk-defect correlators should be straightforward
- Flat-space limit in position space? [Maldacena, Simmons-Duffin, Zhiboedov, '17]
- Used single-valuedness to fix more coefficients [Alday, Hansen, Silva, '22, '23]

CONCLUSIONS

- Conjectured a flat-space formula for defect correlators
- Performed non-trivial checks of the conjecture
- Obtained new results using this constraint for a 't Hooft line

- Generalization to mixed bulk-defect correlators should be straightforward
- Flat-space limit in position space? [Maldacena, Simmons-Duffin, Zhiboedov, '15]
- Used single-valuedness to fix more coefficients [Alday, Hansen, Silva, '22, '23]

