Abstract

Effective string theory describes the physics of long confining strings in theories, like Yang-Mills theory, where the mass gap M_{gap}^2 is of the same order as the string tension T. In 2+1 dimensions, there is a class of confining theories, including massive QED₃ as first analyzed by Polyakov, for which $M_{gap}^2 \ll T$. These theories are weakly coupled at low energies of order M_{gap} , and may be analyzed perturbatively. In this paper, we analyze the physics of strings in such theories, focusing on QED₃, at energies of order M_{gap} (but still well below \sqrt{T}). We argue that the width of the string in these theories should be of order $1/M_{gap}$ independently of its length, as long as the string is not exponentially long. We also compute at leading order in perturbation theory the ground state energy of a confining string on a circle, and the scattering of Nambu-Goldstone bosons on the string worldsheet.

Abstract

Effective string theory describes the physics of long confining strings in theories, like Yang-Mills theory, where the mass gap M_{gap}^2 is of the same order as the string tension T. In 2+1 dimensions, there is a class of confining theories, including massive QED₃ as first analyzed by Polyakov, for which $M_{gap}^2 \ll T$. These theories are weakly coupled at low energies of order M_{gap} , and may be analyzed perturbatively. In this paper, we analyze the physics of strings in such theories, focusing on QED₃, at energies of order M_{gap} (but still well below \sqrt{T}). We argue that the width of the string in these theories should be of order $1/M_{gap}$ independently of its length, as long as the string is not exponentially long. We also compute at leading order in perturbation theory the ground state energy of a confining string on a circle, and the scattering of Nambu-Goldstone bosons on the string worldsheet.

1. QED3 and Effective String Theory

Abstract

Effective string theory describes the physics of long confining strings in theories, like Yang-Mills theory, where the mass gap M_{gap}^2 is of the same order as the string tension T. In 2+1 dimensions, there is a class of confining theories, including massive QED₃ as first analyzed by Polyakov, for which $M_{gap}^2 \ll T$. These theories are weakly coupled at low energies of order M_{gap} , and may be analyzed perturbatively. In this paper, we analyze the physics of strings in such theories, focusing on QED₃, at energies of order M_{gap} (but still well below \sqrt{T}). We argue that the width of the string in these theories should be of order $1/M_{gap}$ independently of its length, as long as the string is not exponentially long. We also compute at leading order in perturbation theory the ground state energy of a confining string on a circle, and the scattering of Nambu-Goldstone bosons on the string worldsheet.

1. QED3 and Effective String Theory 2. The regime of interest

Abstract

Effective string theory describes the physics of long confining strings in theories, like Yang-Mills theory, where the mass gap M_{gap}^2 is of the same order as the string tension T. In 2+1 dimensions, there is a class of confining theories, including massive QED₃ as first analyzed by Polyakov, for which $M_{gap}^2 \ll T$. These theories are weakly coupled at low energies of order M_{gap} , and may be analyzed perturbatively. In this paper, we analyze the physics of strings in such theories, focusing on QED₃, at energies of order M_{gap} (but still well below \sqrt{T}). We argue that the width of the string in these theories should be of order $1/M_{gap}$ independently of its length, as long as the string is not exponentially long. We also compute at leading order in perturbation theory the ground state energy of a confining string on a circle, and the scattering of Nambu-Goldstone bosons on the g worldsheet.

1. QED3 and Effective String Theory 2. The regime of interest

3. Applications

QED in d=2+1 and topological symmetry

• d=2+1 QFTs are important: Wick rotation \rightarrow d=3 lab. experiments!

QED3: lab for confinement

$$\mathcal{L} = -\frac{1}{4e^2} F_{\mu\nu}^2 + \bar{\psi} (i\gamma^{\mu} D_{\mu} - m_e) \psi.$$

QED in d=2+1 and topological symmetry

• d=2+1 QFTs are important: Wick rotation \rightarrow d=3 lab. experiments!

QED3: lab for confinement

$$\mathcal{L} = -\frac{1}{4e^2} F_{\mu\nu}^2 + \bar{\psi} (i\gamma^{\mu} D_{\mu} - m_e) \psi$$

$$m_e \gg e^2$$

«Coulomb phase»: the theory is always weakly coupled

 QED3 + heavy electrons: below the electron mass, only photons propagate.

QED in d=2+1 and topological symmetry

• The EFT below the electron mass scale will be a theory of:

$$F_{\mu\nu} = e\epsilon_{\mu\nu\rho}\partial^{\rho}\phi.$$

• QED3 has a topological symmetry $U(1)_{top}$ as well:

$$J_{m{\mu}} = \epsilon_{m{\mu}m{
u}m{
ho}} F^{m{
u}m{
ho}} \qquad Q_{ ext{top}} = \int d^2x \; J_{ ext{top}}^0 = rac{1}{2\pi} \int d^2x \; B$$

After integrating out the heavy electrons:

$$Z = \int \mathcal{D}A_{\mu} \exp\left(-\int d^3x - \frac{1}{4e^2} F_{\mu\nu} F^{\mu\nu}\right) \longrightarrow \left(Z = \exp\left(-\int d^3x \frac{e^2}{8\pi^2} \partial_{\mu}\sigma \partial^{\mu}\sigma\right)\right)$$

$$U(1)_{\text{top}}: \sigma \mapsto \sigma + \alpha$$

Magnetic monopoles

• We can introduce magnetic monopoles $\mathcal{M}(x)$ such that:

$$U(1)_{\text{top}}: \mathcal{M}(x) \mapsto e^{i\alpha} \mathcal{M}(x)$$

$$\frac{1}{2\pi} \int d^2x \ B = 1$$

• Inserting a monopole in the EFT means inserting in the P.I.:

$$\mathcal{M}(x) \sim e^{i\sigma(x)}$$

Effect of a «dilute» gas of monopoles:

$$S_{\text{sg}} = \int dx dy dt \left(\frac{1}{2} (\partial \phi)^2 - \frac{m^2}{\beta^2} \left(1 - \cos(\beta \phi) \right) \right)$$

Magnetic monopoles

• We can introduce magnetic monopoles $\mathcal{M}(x)$ such that:

$$U(1)_{\text{top}}: \mathcal{M}(x) \mapsto e^{i\alpha} \mathcal{M}(x)$$

$$\frac{1}{2\pi} \int d^2x \ B = 1$$

• Inserting a monopole in the EFT means inserting in the P.I.:

$$\mathcal{M}(x) \sim e^{i\sigma(x)}$$

• Effect of a «dilute» gas of monopoles:

$$\beta \equiv 2\pi/e$$

$$M \ll e^2$$

$$S_{sg} = \int dx dy dt \left(\frac{1}{2}(\partial \phi)^2 - \frac{m^2}{\beta^2} \left(1 - \cos(\beta \phi)\right)\right)$$

- Non-perturbative correction to the EFT
- 2. The (dual) photon becomes massive with mass *m*

The physics of the dual photon

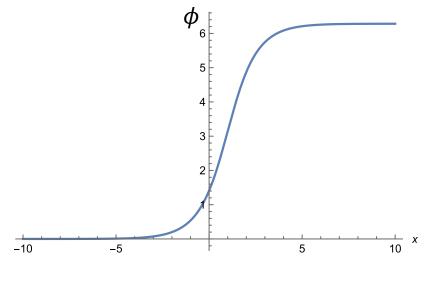
 At the end of the day, working with QED3(+monopoles) in the low energy limit means working with

$$S_{\text{sg}} = \int dx dy dt \left(\frac{1}{2} (\partial \phi)^2 - \frac{m^2}{\beta^2} \left(1 - \cos(\beta \phi) \right) \right) \qquad \beta \equiv 2\pi/e \quad m \ll e^2$$

• e^-e^+ pair at $x=x_0$, at infinite y distance in the plane:

$$\phi_{\rm cl} = \frac{4}{\beta} \arctan\left(e^{m(x-x_0)}\right)$$

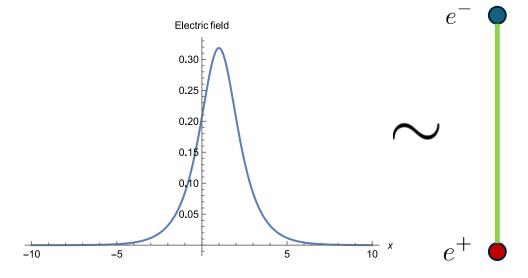
«Domain wall» solitonic solution: x-axis translations spontaneously broken! → NGB

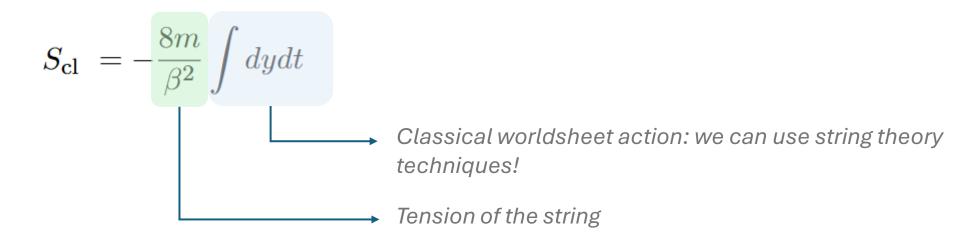


The flux tube, a.k.a. the effective string

$$E_y = F_{ty} = e\partial_x \phi_{cl} = \frac{e^2 m}{\pi} \frac{1}{\cosh(m(x - x_0))}$$

«Tube» of collimated electric field connecting the pair of particles





Effective string theory (EST)

- We have a classical, stable string configuration with $m \ll \sqrt{T}$
- The worldsheet action rules the NGB behaviour. It is universal below the scale \sqrt{T} , in absence of other scales.

$$S_{\text{EST}} = \int d^2\sigma [-T\sqrt{-\det(g)} + c\sqrt{-\det(g)}R[g]^2 + \text{higher derivative terms}],$$

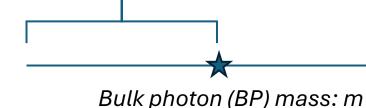
Flux tubes as strings

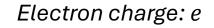
Effective string theory (EST)

- We have a classical, stable string configuration with $m \ll \sqrt{T}$
- The worldsheet action rules the NGB behaviour. It is universal below the scale \sqrt{T} .

$$S_{\text{EST}} = \int d^2\sigma [-T\sqrt{-\det(g)} + c\sqrt{-\det(g)}R[g]^2 + \text{higher derivative terms}],$$

EST: universal description of the NGB



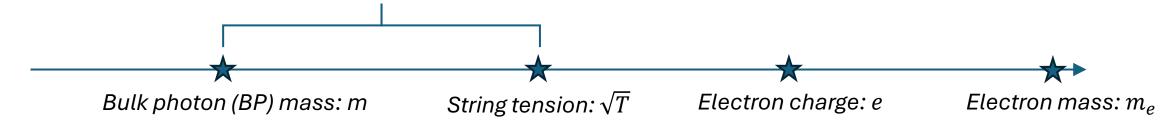


Effective string theory (EST)

- We have a classical, stable string configuration with $m \ll \sqrt{T}$
- The worldsheet action rules the NGB behaviour. It is universal below the scale \sqrt{T} .

$$S_{\text{EST}} = \int d^2\sigma [-T\sqrt{-\det(g)} + c\sqrt{-\det(g)}R[g]^2 + \text{higher derivative terms}],$$

THIS PAPER! String (NGBs) interacting with the bulk photons



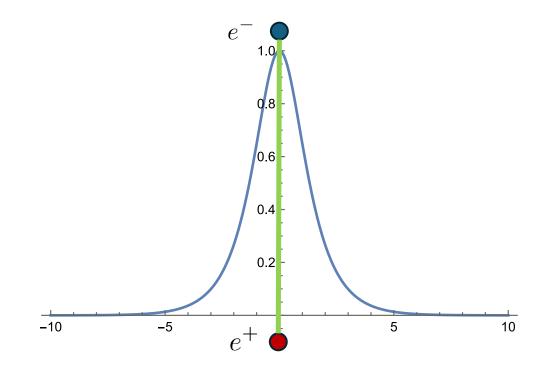
The string and the photons: semiclassical

Perturbing the classical configuration:

$$\phi(x, y, t) = \phi_{cl}(x) + \delta\phi(x, y, t) = \frac{4}{\beta}\arctan(e^{mx}) + \delta\phi(x, y, t)$$

• The NGB solution:

$$\phi_0(x) \equiv \sqrt{\frac{m}{2}} \operatorname{sech}(mx)$$



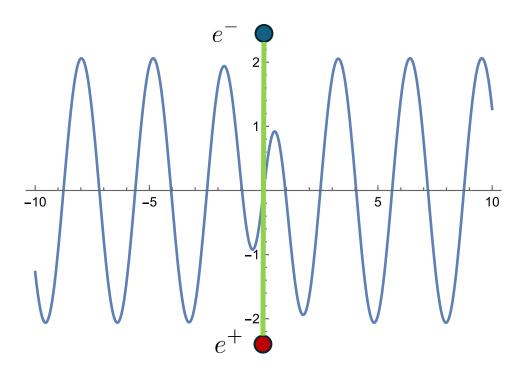
The string and the photons: semiclassical

• Perturbing the classical configuration:

$$\phi(x, y, t) = \phi_{cl}(x) + \delta\phi(x, y, t) = \frac{4}{\beta}\arctan(e^{mx}) + \delta\phi(x, y, t)$$

• The BP solution:

$$c_1 e^{-ipx} \left(\frac{ip}{m} + \tanh(mx) \right) + c_2 e^{ipx} \left(-\frac{ip}{m} + \tanh(mx) \right)$$



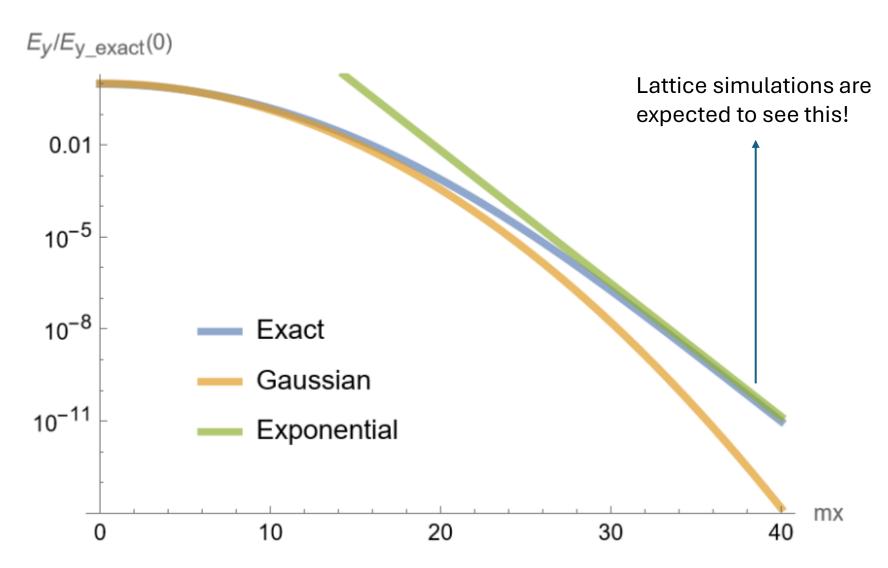
The width of the string

How «thick» is the string?

- ►EST predicts a Gaussian profile, with a width $\propto \log(length) \times T^{-1}$
- > The classical solution predicts an exponential decay, independent of the length, with a width $\propto m^{-1}$

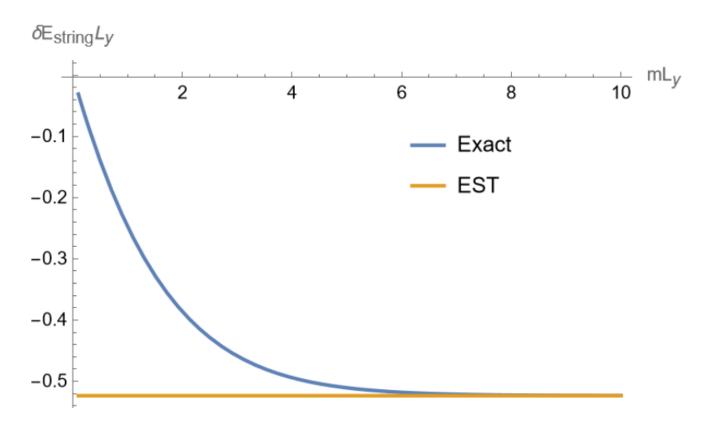
Solution: convolution!

The width of the string



The energy of the ground state

 For a finite-sized string, the corrections to the ground state energy can be computed perturbatively



The scattering NGB+NGB→BP

position of the

string)

• It is possible to study many scattering processess involving NGBs and BPs.

$$\mathcal{V}_{1} \equiv \frac{m\beta}{4} \int d^{2}\sigma (\partial_{a}X_{0})^{2} \int dx \operatorname{sech}(mx) \tanh(mx) \delta\phi_{\text{bulk}}.$$

$$\mathcal{V}_{2} \equiv \frac{\beta^{2}}{16m} \int d^{2}\sigma (\partial_{a}X_{0})^{2} \int dx \left(\partial_{x}\delta\phi_{\text{bulk}}\right)^{2}$$

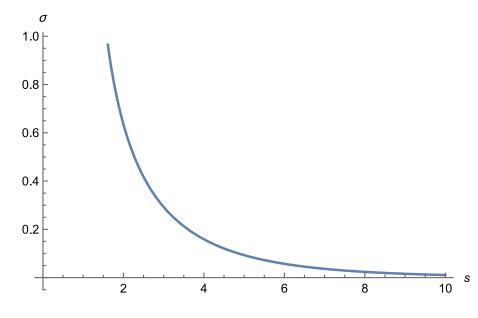
$$\mathcal{V}_{3} \equiv -\frac{\beta}{\sqrt{8m}} \int d^{2}\sigma \partial_{a}\overline{X_{0}} \int dx \partial_{x}\delta\phi_{\text{bulk}} \partial_{a}\overline{\delta\phi_{\text{bulk}}}$$

$$NGB (transverse)$$
Bulk photon

The scattering NGB+NGB→BP

$$\langle X_0(-k_1)X_0(-k_2)\delta\phi_{\text{bulk}}(p,k_3)\rangle_{\text{tree}} = \begin{pmatrix} (p,k_3) \\ k_1 \end{pmatrix} v_1$$

$$\sigma_{1\text{BP}} = \frac{\pi^2 \beta^2 s^2}{128m^2 \sqrt{s - m^2}} \operatorname{sech} \left(\frac{\pi \sqrt{s - m^2}}{2m} \right)^2$$



Take-home message

• Theories with confinement allow for classical solutions where flux tubes connect particle-antiparticle pairs.

The flux tubes can be studied using string theory.

• In QED3, an interesting regime exists where the string coexist with a bulk massive photon.

The paper studies many aspects of this interaction.