String Journal Club 18-03-2025

ABSTRACT: We explore the connection between super \mathcal{W} -algebras (\mathcal{SW} -algebras) and G-structures with torsion. The former are realised as symmetry algebras of strings with $\mathcal{N} = (1,0)$ supersymmetry on the worldsheet, while the latter are associated with generic string backgrounds with non-trivial Neveu–Schwarz flux H. In particular, we focus on manifolds featuring Spin(7), G₂, SU(2), and SU(3)-structures. We compare the full quantum algebras with their classical limits, obtained by studying the commutators of superconformal and \mathcal{W} -symmetry transformations—which preserve the action of the (1,0) non-linear σ -model. We show that, at first order in the string length scale ℓ_s , the torsion deforms some of the OPE coefficients corresponding to special holonomy through a scalar torsion class.

Bootstrapping W-algebras (1985)

INFINITE ADDITIONAL SYMMETRIES IN TWO-DIMENSIONAL CONFORMAL QUANTUM FIELD THEORY

A.B. Zamolodchikov

Additional symmetries in two-dimensional conformal field theory generated by spin $s = \frac{1}{2}, 1, \ldots, 3$ currents are investigated. For spins s = 5/2 and s = 3, the generators of the symmetry form associative algebras with quadratic determining relations. "Minimal models" of conformal field theory with such additional symmetries are considered.

- Symmetries: Virasoro + *new primaries*.
- How does the new algebra close?

Bootstrapping SW-algebras

- SW-algebras are simply supersymmetric W-algebras.
- Symmetry algebras of the worldsheet theory of $\mathcal{N}=(1,0)$ strings.
- Adopting superspace conventions:

$$\mathcal{T}(Z_1)\mathcal{T}(Z_2) \sim \frac{c}{6} \frac{1}{Z_{12}^3} + \frac{3}{2} \frac{\theta_{12}}{Z_{12}^2} \mathcal{T}(Z_2) + \frac{\theta_{12}}{Z_{12}} \partial \mathcal{T}(Z_2) + \frac{1}{2Z_{12}} D \mathcal{T}(Z_2) + \dots$$

$$\mathcal{T}(Z_1)\mathcal{J}_h(Z_2) \sim \frac{h\,\theta_{12}}{Z_{12}^2}\mathcal{J}_h(Z_2) + \frac{\theta_{12}}{Z_{12}}\partial\mathcal{J}_h(Z_2) + \frac{1}{2\,Z_{12}}D\mathcal{J}_h(Z_2) + \dots$$

G-structures

- Why G-structures?
 - In supergravity, we want the compactification to preserve susy
 - This requires the existence of at least one globally defined spinor field η
 - Spinor bilinears:

$$\omega_p = \bar{\eta} \gamma_{\mu_1 \dots \mu_p} \eta$$

• Roughly, more in general:

G-structures \rightarrow A set of globally defined, no-where vanishing p-forms

G-structures

G-struct. O(d-n) $(\sigma_1,\ldots,\sigma_n)$ Spin(7) (Ψ) G_2 $(arphi,\psi)$ SU(2) (ω, Ω^{\pm}) SU(3) (ω, Ω^{\pm})

• Example: SU(3)-structure (includes CY 3-folds)

$$\Omega \wedge \omega = 0 \,, \qquad \frac{1}{6} \,\omega \wedge \omega \wedge \omega = \frac{i}{8} \,\Omega \wedge \overline{\Omega}$$

• Torsion (or: NS 3-flux) *H*:

$$\mathrm{d}\omega = -\frac{3}{4} \operatorname{Im}(W_0 \overline{\Omega}) + W_1 \wedge \omega + W_3$$

 $\mathrm{d}\Omega = W_0 \,\omega \wedge \omega + W_2 \wedge \omega + \bar{\vartheta} \wedge \Omega$

G-structures

G-struct. O(d-n) $(\sigma_1,\ldots,\sigma_n)$ Spin(7) (Ψ) G_2 $(arphi,\psi)$ SU(2) (ω, Ω^{\pm}) SU(3) (ω, Ω^{\pm})

• Example: SU(3)-structure (includes CY 3-folds)

$$\Omega \wedge \omega = 0 \,, \qquad \frac{1}{6} \,\omega \wedge \omega \wedge \omega = \frac{i}{8} \,\Omega \wedge \overline{\Omega}$$

• Torsion (or: NS 3-flux) *H*:

```
\label{eq:alpha} \begin{split} \mathrm{d} \omega &= 0 & \qquad \qquad \text{Special Holonomy!} \\ \mathrm{d} \Omega &= 0 & \qquad \qquad \text{(CY 3-folds)} \end{split}
```

Worldsheet CFT and special holonomy

- These algebras are well understood.
- They rely on free-fields realizations.
- Usually affected by «pathologies» (e.g. closure up to null fields ideals).

Introducing a generic torsion

• Consider the classical worldsheet action:

$$S[X,\Lambda] = \int_{\mathbb{Z}} \frac{\mathrm{d}^{2|1}\zeta}{2\,\ell_s^2} \quad M_{ij}(X)\bar{\partial}X^i DX^j \qquad \qquad M_{ij}(X) = G_{ij}(X) + B_{ij}(X)$$

• The action is sensitive to the G-structure via W-symmetry:

$$\delta^{\Phi} X^{i} = \frac{\epsilon(\zeta)}{(p-1)!} \Phi^{i}{}_{i_{2}...i_{p}}(X) DX^{i_{2}...i_{p}}$$

$$G\text{-structure } (p+1)\text{-formation}$$

W-symmetries

• For each *p*-form, we obtain a Noether current

• We can write commutators which translate into classical OPEs

$$\begin{bmatrix} \delta^{\Phi}_{\epsilon_{1}}, \delta^{\Psi}_{\epsilon_{2}} \end{bmatrix} X^{i} = \delta^{U}_{\epsilon_{U}} X^{i} + \delta^{N}_{\epsilon_{N}} X^{i} + \delta^{\mathcal{T}V}_{\epsilon_{\mathcal{T}V}} X^{i}$$
$$\downarrow$$
$$\mathcal{J}^{\Phi}_{\text{cl.}}(Z_{1}) \mathcal{J}^{\Psi}_{\text{cl.}}(Z_{2}) \sim (-1)^{p+1} c_{U} \frac{\mathcal{J}^{U}_{\text{cl.}}(Z_{2})}{Z_{12}} + (-1)^{p+1} c_{U} \left(\frac{p-1}{p+q-2}\right) \frac{\theta_{12}}{Z_{12}} D \mathcal{J}^{U}_{\text{cl.}}(Z_{2})$$
$$+ (-1)^{p} c_{N} \frac{\theta_{12}}{Z_{12}} \mathcal{J}^{N}_{\text{cl.}}(Z_{2}) + c_{V} \left(\frac{2}{d-(p+q-4)}\right) \frac{\theta_{12}}{Z_{12}} \mathcal{T}_{\text{cl.}}(Z_{2}) \mathcal{J}^{V}_{\text{cl.}}(Z_{2}) + \dots$$

The broad picture

Example: a bunch of vector fields

- The string background is endowed with an O(d n)structure, so we have n vector fields and a generic torsion H.
- To each vector field we associate a covariantly constant 1-form:

$$\nabla_i^+ \sigma_{I,j} = 0$$

• So we have *n* new W-symmetry Noether currents

$$\mathcal{J}_{I,\mathrm{cl.}}^{\sigma} = \sigma_I^i(X) D X_i$$

• The classical OPE reads:

$$\mathcal{J}_{\mathrm{cl.},I}^{\sigma}(Z_1)\mathcal{J}_{\mathrm{cl.},J}^{\sigma}(Z_2) \sim -\frac{\sigma_I \cdot \sigma_J}{Z_{12}} - \ell_s \frac{\theta_{12}}{Z_{12}} \mathcal{J}_{\mathrm{cl.}}^{i_{\sigma_J}i_{\sigma_I}(H)} + \dots$$

Example: a bunch of vector fields

• We add a current for each vector field.

• The SW-algebra is generated by:

$$\langle \mathbb{1}, \mathcal{T}, \mathcal{J}_1^{\sigma}, \dots, \mathcal{J}_n^{\sigma} \rangle$$

• The OPE Ansatz is:

$$\mathcal{J}_{I}^{\sigma}(Z_{1})\mathcal{J}_{J}^{\sigma}(Z_{2}) \sim \frac{C_{IJ}}{Z_{12}} + C_{IJ}^{K} \frac{\theta_{12}}{Z_{12}} \mathcal{J}_{K}^{\sigma} + \dots$$

• We interpret this OPE as the all-loops completion of the classical OPE.

Example: a bunch of vector fields

State of the art

G-struct.	H = 0	$H \neq 0$	Par.	Constraints found
O(d-n)	S Vir \oplus Free ⁿ	$SW(\frac{3}{2} \frac{1}{2} \frac{1}{2})$	C_{IJ}	$C_{IJ} = -\sigma_I \cdot \sigma_J + O(\ell_s^2)$
$(\sigma_1,\ldots,\sigma_n)$		$(2, 2, \dots, 2)$	f_{IJK}	$f_{IJK} = -\ell_s H_{ijk} \sigma^i_I \sigma^j_J \sigma^k_K + O(\ell_s^2)$
Spin(7)	$\mathrm{SV}^{\mathrm{Spin}(7)}$ [6]	FS [23]	с	
(Ψ)				
G ₂	CUG2 [c]	$EC [16] \subset D[97]$	la la	$\sqrt{2} 7k-4 1 = 0 + O(0^2)$
$(arphi,\psi)$	$\mathbf{SV} = [0]$	$\Gamma G_k [10] \subset DI [27]$	К	$\sqrt{\frac{1}{k}} \frac{1}{49k-24} = \frac{1}{6}\tau_0 \ell_s + O(\ell_s)$
SU(2)	Od(2) [4]	$\mathcal{SW}\left(rac{3}{2},1,1,1 ight)$	с	$c = 6 + O(\ell_s^2)$
(ω, Ω^{\pm})				
SU(3)	Od(3) [4]	$\mathrm{Od}^{\varepsilon}(3) \subset \mathcal{SW}(\tfrac{3}{2}, \tfrac{3}{2}, \tfrac{3}{2}, 1)$	v_{\pm}	$v_{\pm} = 4 w_0^{\pm} \ell_s + O(\ell_s^2)$
(ω, Ω^{\pm})				$W_0^{\pm} = \varepsilon w_0^{\pm} + O(\varepsilon^2, \ell_s^2)$

Take-home message

- Some geometrical features of the string background are encoded in the G-structure and in the torsion.
- These geometrical features are encoded at the CFT level as a symmetry enhancement of Virasoro to a W-algebra.
- The details of this connection are difficult to track down.
 - 1. Engineer a torsion for exact computations (ex. WZW models)
 - 2. Work perturbatively in ℓ_s using W-symmetries (ex. this paper)