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Abstract

These are the notes to a lecture given on October 24, 2024 at the ZMP seminar at the university

of Hamburg on the topic of Liouville integrability and Lax connections applied to the example of the

closed Toda chain.

1 Reminder: classical mechanics

Definition 1.1. (i) Let (M,ω) be a symplectic manifold with symplectic (closed, non-degenerate) 2-

form ω. Any f ∈ C∞(M) defines df ∈ Ω1(M), which by non-degeneracy of ω defines Xf ∈ Γ(TM).

The Poisson bracket is

{f, g} := ω(Xf , Xg).

This is a Lie bracket and a derivation in both arguments, making C∞(M) into a Poisson algebra.

(ii) Suppose ω =
∑

i dpi ∧ dqi. Then

df(Y ) = ω(Y,Xf ) =
∑
i

(Xf (qi)Y (pi)−Xf (pi)Y (qi)),

so Xf (pi) = − ∂f
∂qi

and Xf (qi) =
∂f
∂pi

(→ Hamilton equations). It follows that

{f, g} =
∑
i

(
∂f

∂pi

∂g

∂qi
− ∂f

∂qi

∂g

∂pi

)
, {qi, qj} = {pi, pj} = 0, {qi, pj} = δij .

(iii) A classical system is a symplectic manifold (M,ω) together with a choice of Hamiltonian H ∈
C∞(M). The time evolution is generated by the vector field XH and observables f ∈ C∞(M)

satisfy

ḟ = XH(f) = df(Xh) = ω(XH , Xf ) = {H, f}.

(iv) Observables h ∈ C∞(M) that Poisson-commute with the Hamiltonian {H,h} = 0 are conserved

quantities.

Remark. Generically, classical systems are impossible to solve exactly. However if we have a conserved

quantity h, say with constant value c, then the system never leaves h−1(c), which generically has codi-

mension one. Conclusion: Gathering conserved quantities cuts down on the effective dimension of the

phase space, simplifying the problem.
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2 Liouville-Arnold theorem

Theorem 2.1 (Liouville-Arnold). Let (M,ω) be a symplectic manifold of dimension 2N . Suppose there

exists h = (h1, ..., hN ) : M → RN with {hi, hj} = 0 and dhi linearly independent. Let c ∈ RN .

(i) If the level set h−1(c) is connected then h−1(c) ∼= RN−K × (S1)K for some K. If we choose a

Hamiltonian H = f(h1, ..., hN ) and let θ1, ..., θN be the standard coordinates of RN−K × (S1)K ,

then the EOMs reduce to

θ̇i = ωi(c),

where ωi(c) depend only on c and we call (M,ω,H) Liouville integrable.

(ii) Suppose ω = dα, α = pi ∧ dqi. Then there exists a canonical transformation (pi, qi) → (hi, θi). In

particular, choosing a Hamiltonian H = f(h1, ..., hN ), the EOMs reduce to

ḣi = {H,hi} = 0, θ̇i =
∂H

∂hi
.

Proof. (i) By the Frobenius theorem, h−1(c) is a smooth submanifold. Further, if the flows are com-

plete, we have an action of the abelian Lie group RN on h−1(c):

RN × h−1(c) → h−1(c), (t1, ..., tN , x) 7→ (Φ
Xh1
t1 ◦ · · · ◦ ΦXhN

tN )(p)

This action is locally free by linear independence of dhi. For dimension reasons, it follows that the

action is transitive with discrete stabilizer (picture). The discrete subgroups of RN are lattices of

the form ZK . It follows that h−1(c) ∼= RN/ZK ∼= RN−K × (S1)K .

(ii) To exhibit the canonical transformation, we define the generating function S(x) :=
∫
γx

α where γx

is a curve in h−1(c) going from a fixed point x0 to x. Assuming that q1, ..., qN parametrize h−1(c),

we find
∂S

∂qi
=
∑
j

∫ q

q0

∂pj
∂qi

dqj = pi

Defining θi :=
∂S
∂hi

gives

dS =
∑
i

(
∂S

∂qi
dqi +

∂S

∂hi
dhi

)
= α+

∑
i

θidhi.

It follows that ω = dα = d(α − dS) =
∑

i dhi ∧ dθi, so S defines a canonical transformation. It

remains to show that S(x) is independent under homotopy of γx (generally has monodromy). By

Stokes’ theorem (picture), it needs to be shown that dα|Th−1(c) = ω|Th−1(c) = 0. But this is true

because the tangent space of h−1(c) is generated by Xhi
and ω(Xhi

, Xhj
) = {hi, hj} = 0.

Definition 2.2. Let (M,ω) be a Liouville integrable system with compact connected level sets, canonical

1-form α =
∑

i pidqi and generating function S(p) =
∫
γp

α. The level sets have the form (S1)N , with

fundamental cycles γ1, ..., γN . Define the action-angle variables

Ii :=
1

2π

∮
γi

α, θi :=
∂S

∂Ii
.

Proposition 2.3. The angle variables satisfy∮
γi

dθj = 2πδij .
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Proof. ∮
γi

dθj =
∂

∂Ij

∮
γi

dS =
∂

∂Ij

∮
γi

∑
k

(
∂S

∂qk
dqk +

∂S

∂Ik
dIk

)
=

∂

∂Ij

∮
γi

α = 2πδij ,

where we have used that dIk|Th−1(c) = 0.

Example. (i) The easiest example is the harmonic oscillator with phase space (R2, dp∧dq) and Hamil-

tonian H = 1
2 (p

2 + q2). At a fixed energy H = a2

2 , the EOMs reduce to the circular orbit θ̇ = 1

with p = a cos θ, q = a sin θ. Here θ parametrizes a circle → confinement.

(ii) Another example is the Hamiltonian H = 1
2 (p

2 + q−2). At fixed energy H = a2

2 , the EOMs reduce

to θ̇ = 1 with p = ±a2θ(a2θ2 + a−2)−1/2, q = ±(a2θ2 + a−2)1/2. Here θ parametrizes a line →
scattering.

(iii) These are the two archetypal integrable systems. A more complicated example is the closed Toda

chain with Hamiltonian

H =
1

2

N∑
i=0

p2i +

N∑
i=0

eqi−qi+1 , N + 1 ≡ 0.

→ cosh-type confinement.

3 Lax connections

While the Liouville-Arnold theorem essentially gives a complete classification of Liouville integrable sys-

tems, it does not give a procedure for finding conserved quantities. A common method of obtaining

conserved quantities is from Lax connections.

Definition 3.1. A Lax connection on R× S1 is a matrix-valued 1-form A(λ) that is meromorphic in λ

and flat away from its poles, i.e.

∂tAx(λ)− ∂xAt(λ) = [At(λ), Ax(λ)].

Proposition 3.2. Let γ be a curve in R×S1 winding once around S1, starting at (t0, x0) and ending at

(t1, x1) with x0 = x1 = 0 and t0 = t1. Letting

L(λ) := P exp

∮
γ

A(λ), M(λ) := At|x=0(λ),

Then L̇(λ) = M(λ)L(λ)− L(λ)M(λ).

Proof. The defining equations of the holonomy imply

L̇(λ) =
∂

∂t0
P exp

∮
γ

A(λ) +
∂

∂t1
P exp

∮
γ

A(λ)

= −P exp

∮
γ

A(λ)At|x=0(λ) +At|x=0(λ)P exp

∮
γ

A(λ)

= M(λ)L(λ)− L(λ)M(λ).

Corollary 3.3. Letting T (λ) := trL(λ), we have Ṫ (λ) = 0.
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Lemma 3.4. Define a discrete Lax connection along the closed Toda chain with components

Li(λ) =

(
0 eqi

−e−qi λ− pi

)
, Mi(λ) =

(
0 −eqi−1

e−qi −λ

)
.

Then

L̇i(λ) = Mi+1(λ)Li(λ)− Li(λ)Mi(λ),

or (
0 q̇ie

qi

q̇ie
−qi −ṗi

)
=

(
0 pie

qi

pie
−qi eqi−qi+1 − eqi−1−qi

)
which is equivalent to the equations of motion.

Proposition 3.5. Define L(N)(λ) := LN (λ) · · ·L0(λ) and T (λ) := trL(N)(λ). Then Ṫ (λ) = 0.

Proof.

Ṫ (λ) =

N∑
i=0

trLN (λ) · · ·Li+1(λ)L̇i(λ)Li−1(λ) · · ·L0(λ)

=

N∑
i=0

trLN (λ) · · ·Li+1(λ)(Mi+1(λ)Li(λ)− Li(λ)Mi(λ))Li−1(λ) · · ·L0(λ) = 0.

Remark. Writing T (λ) =
∑N+1

i=0 hiλ
i, it follows that hi are conserved quantities. In particular hN+1 = 1,

hN =
∑N

i=0 pi, and H = 1
2h

2
N − hN−1.

4 Poisson structure

Lax connections provide conserved quantities, but do not ensure that they Poisson-commute. Indeed, the

definition of Lax connections never references a Poisson structure.

Proposition 4.1. For the closed Toda chain, we have

{Li(λ)⊗ 1, 1⊗ Li(µ)} = [r(λ− µ), Li(λ)⊗ Li(µ)]

with the classical r-matrix r(λ) = −P/λ, where P = 1
2 (1 + σx ⊗ σx + σy ⊗ σy + σz ⊗ σz) and σx, σy, σz

are the Pauli matrices.

Proof. The LHS becomes

(
0 {eqi , Li(µ)}

{−e−qi , Li(µ)} {λ− pi, Li(µ)}

)
=


0 0 0 0

0 0 0 −{eqi , pi}
0 0 0 −{pi, eqi}
0 {e−qi , pi} {pi, e−qi} 0

 =


0 0 0 0

0 0 0 −eqi

0 0 0 eqi

0 −e−qi e−qi 0


while the RHS becomes

1

µ− λ



1

1

1

1

 ,


0 0 0 e2qi

0 0 −1 eqi(µ− pi)

0 −1 0 (λ− pi)e
qi

e−2qi −e−qi(µ− pi) −(λ− pi)e
−qi (λ− pi)(µ− pi)
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Corollary 4.2. We have

{L(N)(λ)⊗ 1, 1⊗ L(N)(µ)} = [r(λ− µ), L(N)(λ)⊗ L(N)(µ)]

Proof. We use induction on N :

{L(N)(λ)⊗ 1, 1⊗ L(N)(µ)} = LN (λ)⊗ LN (µ){L(N−1)(λ)⊗ 1, 1⊗ L(N−1)(µ)]

+ {LN (λ)⊗ LN (µ)}L(N−1)(λ)⊗ L(N−1)(µ)

= LN (λ)⊗ LN (µ)[r(λ− µ), L(N−1)(λ)⊗ L(N−1)(µ)]

+ [r(λ− µ), LN (λ)⊗ LN (µ)]L(N−1)(λ)⊗ L(N−1)(µ)

= [r(λ− µ), L(N)(λ)⊗ L(N)(µ)].

Theorem 4.3. The closed Toda chain is Liouville integrable: {T (λ), T (µ)} = 0.

Remark. It follows action-angle variables exist. However, we still lack the machinery to determine them.

For this, we need the spectral curve.
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