Unfolding is required, due to migration effects, for the measurement of distributions in HEP, where the quantity of interest is often measured indirectly. Unfolding is a linear inverse problem with a coefficient matrix, which is usually ill-conditioned. Techniques of standard linear algebra no longer apply and the numerical treatment becomes more difficult. Available additional information can be used to stabilize the solution, without introducing a significant bias. The use of these regularization methods requires some insight into statistical behavior and mathematical operations.

1. Cross section determination
2. Unfolding by matrix inversion
3. Least squares methods
4. Regularization methods

Summary

Unfolding examples
1. Cross section determination

The measurement of distributions, cross sections in HEP . . . is complicated by

- migration effects, limited acceptance, and limited statistical precision

Measurement/MC: \[\text{true distribution} \quad \implies \quad A \quad \implies \quad \text{measured distribution} \]

\quad \text{direct} \quad A = \text{Kernel, response matrix}

Unfolding: \[\text{true distribution} \quad \iff \quad A^\# \iff \quad \text{measured distribution} \]

\quad \text{inverse} \quad A^\# = \text{generalized inverse}

Unfolding (deconvolution) with the inverse transition is a complex mathematical operation (ill-posed problem, instability of solution) and requires a good understanding of the detector. Straightforward methods can result in solutions which look chaotic. Alternative home-made methods usually produce biased results.

The generalized inverse \(A^\# \) should depend only on the detector properties, it should not depend on the expected result; it allows to propagate the input errors to the result. The product \(\Xi = A^\# A \) is called resolution matrix.
Counting events . . . and cross section determination

Cross sections are measured by counting events for the specific process:

\[
\text{cross section} = \frac{\text{number of events}}{\text{integrated luminosity}} = \frac{n}{\int L \, dt}
\]

Detector acceptance probabilities and \(\epsilon_1, \epsilon_2 \ldots \) have to be taken into account:

\[
\text{cross section} = \frac{n}{\epsilon_1 \cdot \epsilon_2 \cdots \epsilon_k \int L \, dt} = \frac{n}{A \int L \, dt}
\]

where \(A = \text{total acceptance} \) and \(\int L \, dt = \text{integrated luminosity} \).

The candidate event sample may contain background, which has to be subtracted:

\[
\text{cross section} = \frac{n_{\text{cand}} - \tau \cdot n_{\text{bg}}}{A \int L \, dt}
\]

For a small number of events this represents the classical problem of observing a signal in the presence of background (limit calculation).

Statistics:

- the number(s) \(n \) of events follows the Poisson distribution;
- the total acceptance factor \(A \) follows the log-normal distribution (i.e. \(\log A \) is Gaussian);
- the factor \(\tau \) and the integrated luminosity \(\int L \, dt \) follow a Gaussian distribution.
Cross section in bins

Cross section x_i as a function of a variable is measured in bins (bin index i), in ideal case of perfect resolution:

$$ (\text{cross section})_i \equiv x_i = \frac{n_{i,\text{cand}} - \tau \cdot n_{i,\text{bg}}}{A_{ii} \int \mathcal{L} \, dt} $$

In practice there are migration effects between bins: an event originating from bin j is measured in another bin i, due to limited detector resolution. It becomes impossible to consider one bin without the other bins: $A \rightarrow A = \text{matrix with elements } A_{ij}$:

$$ \int \mathcal{L} \, dt \cdot \sum_j A_{ij} x_j + \tau \cdot n_{i,\text{bg}} = n_{i,\text{cand}} $$

using matrix formalism:

$$ \int \mathcal{L} \, dt \cdot A x + \tau n_{\text{bg}} = n_{\text{cand}} $$

In the following the equations are written without the factor $\int \mathcal{L} \, dt$ and without background τn_{bg}, and the measured histogram is the vector y:

$$ A x = y $$

to be solved for the cross section x, given A and y.

Basis is Fredholm integral equation of first kind:

$$ \int A(x, y) f(x) \, dx = g(y) $$

which is written in discrete form above.
Inverse problems in other fields

Linear inversion: (measurement) \(y \Rightarrow x \) (unfolded distribution)

There is an extensive literature about unfolding, which is of great importance in many different fields:

- tomography in medicine, archaeology, biology, geophysics, oceanography, materials science, astrophysics ... using several different physical phenomena including X-rays, gamma rays, positron-electron annihilation reactions, nuclear magnetic resonance, ultrasound, electrons, ions ...;

- image restoration, picture deblurring;

Special conditions in HEP:

- **Statistical precision of measurement** \(y \) **often limited**;
- **Response matrix** \(A \) **defined by MC sample of events**;
- **Covariance matrix** \(V_x \) **of unfolding result** \(x \) **required**!

Literature:

Response/acceptance matrix determination ... by MC simulation

Standard method for the determination of the response matrix A in HEP is Monte Carlo simulation. Input to the simulation is a certain ”true“ distribution $f(x)$, in the form of a histogram of event numbers $\{N_1, N_2 \ldots N_n\}$. In the simulation an event from bin j is generated, simulated in the detector and reconstructed/observed in bin i.

$$N_j = \text{number of events, generated in bin } j = 1 \ldots n$$
$$N_{ij} = \text{number of events, observed in bin } i = 1 \ldots m, \text{ generated in bin } j$$
$$N_{0j} = \text{number of events, not observed, generated in bin } j$$

$$A_{ij} = \frac{N_{ij}}{N_j} = \text{probability to observe in bin } i, \text{ if generated in bin } j$$

Equation $Ax \approx y$ (Measured histogram y is m-vector, result histogram x is n-vector, $m \geq n$)

$$A_{11}x_1 + A_{12}x_2 + A_{13}x_3 + \ldots A_{1n}x_n \approx y_1$$
$$A_{21}x_1 + A_{22}x_2 + A_{23}x_3 + \ldots A_{2n}x_n \approx y_2$$
$$A_{31}x_1 + A_{32}x_2 + A_{33}x_3 + \ldots A_{3n}x_n \approx y_3$$

$$\ldots$$

$$A_{m1}x_1 + A_{m2}x_2 + A_{m3}x_3 + \ldots A_{mn}x_n \approx y_m$$

Note that the probabilities A_{ij} do not depend on the MC distribution $\{N_1, N_2 \ldots N_n\}$
HEP acceptance correction

Correction factor method (CFM)

If there is no migration between bins:

\[(\text{cross section})_i \equiv x_i = \frac{n_{i,cand} - \tau \cdot n_{i,bg}}{A_{ii} \left[\int L \, dt \right]} \implies \frac{n_{i,cand} - \tau \cdot n_{i,bg}}{n_{\text{MC,rec}}/n_{\text{MC,gen}} \left[\int L \, dt \right]}\]

using identical bins for the true and measured variable. The correction factor \(n_{\text{gen}}/n_{\text{MC}}\) is the inverse acceptance probability of the bin, if there is no migration between bins.

The same method is used in many experiments even if there are migration effects between bins, i.e. using no matrix, and fixing migration to the input assumption.

Purity \(P\) and stability \(S\) determined from an adjusted/optimized Monte Carlo event sample

\[
Purity \quad P = \frac{n_{\text{MC,rec,gen}}}{n_{\text{MC,rec}}} \quad \text{Stability} \quad S = \frac{n_{\text{MC,rec,gen}}}{n_{\text{MC,gen}}} \left(\frac{n_{\text{MC,rec}}}{n_{\text{MC,gen}}} = \frac{S}{P}\right)
\]

- An method without any matrix (operation), without the use of data covariance matrix \(V_y\);
- migration out of bin and into bin fixed by Monte Carlo input assumption;
- calculation of covariance matrix \(V_x\) undefined;
- very popular in HEP.
- for the estimate by CFM it is hard to calculate noise characteristics and bias in the estimate because of nonlinearity of the procedure (V.B.Anykeyev et al.,NIM A 322 (1992) 280-285
- Correction factors – a disaster. . . . The data will tend to follow the MC that gave you the correction factors . . . (Roger Barlow, SLUO Lecture 9 (2000) SLAC

V. Blobel – University of Hamburg

Data unfolding

Page 7
2. Unfolding by matrix inversion

Equation $Ax \cong y$ \hspace{1cm} (Measured histogram y is m-vector, result histogram x is n-vector, $m \geq n$)

Case $n = m$, matrix A is square, non-symmetric \hspace{1cm} Case $n < m$, matrix A is rectangular

Case of $m = n$ can be solved by matrix inversion, without least squares:

$$Ax = y$$

Direct solution: \hspace{1cm} $x = A^{-1}y$ \hspace{1cm} $V_x = A^{-1}V_y (A^{-1})^T$

Note: the covariance matrix V_y has no influence on the result x; residuals are zero.
Example of unfolding problem \ldots by inversion

Example of unfolding problem with σ/binwidth $= 3$

Perfect resolution (no unfolding)

Unfolding by inversion

Histogram for sample with 10 000 entries.

Huge fluctuations, due to large negative correlations: neighbour bin -95%, second $+85\%$.

True curve $f(x)$ is shown in red.
General unfolding requirements

The requirements for the solution of the unfolding equation

\[A x \sim y \]

- Complete usage of all available measurement information, including the (usually diagonal) covariance matrix \(V_y \) of measured vector \(y \).

- Unfolding should introduce no bias, with respect to a particular model of the physical process and Monte Carlo simulation.

- Unfolding should introduce no or only a small bias, with respect to general requirements of the solution (a general requirement is e.g. smoothness of the solution).

- Complete covariance matrix \(V_x \) of solution (and weight matrix \(W_x = \text{inverse covariance matrix} \)) to be used in subsequent fits of parametrizations to the data. For a linear solution \(x = A^\# y \) by standard error propagation:

 \[V_x = A^\# V_y A^\# T. \]

- Solution should have small correlations between different \(x \)-bins. Correlation coefficients up to \(\pm 0.5 \) are acceptable, values \(|\pm \rho| > 0.9 \) should be avoided, i.e. the matrix \(V_x \) should be almost diagonal.

A correct determination of the response matrix \(A \) (e.g. by Monte Carlo) is essential.
The response matrix A is generated from Monte Carlo $x - y$-pairs.

The resolution is deteriorated, if too few bins are used (m too small).

Example: plots of x versus y, with small non-linearity in $y = y(x)$. . .

Use number of y-bins $m \gtrsim 2n$

Never use $n = m$ with identical bins! – (“inverse crime”: . . . the numerical methods contain features that effectively render the inverse problem less ill-posed than it actually is, thus yielding unrealistically optimistic results.)
Problem: Unfolding with 2 bins

Exercise in unfolding and propagation of uncertainties

probability matrix \(A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \\ A_{01} & A_{02} \end{pmatrix} = \begin{pmatrix} 0.7 & 0.4 \\ 0.3 & 0.6 \\ 0 & 0 \end{pmatrix} \)

Example: \(A_{12} \) is probability to observe in bin 1, originating from bin 2.

inverse matrix \(A^{-1} = \frac{1}{A_{11} \cdot A_{22} - A_{12} \cdot A_{21}} \begin{pmatrix} A_{22} & -A_{12} \\ -A_{21} & A_{11} \end{pmatrix} = \begin{pmatrix} ? & ? \\ ? & ? \end{pmatrix} \)

observed values \(y = Ax = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} 64 \\ 36 \end{pmatrix} \)

\(\mathbf{V} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} 64 & 0 \\ 0 & 36 \end{pmatrix} \)

calculate “true” values \(x = A^{-1} y = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = ? \)

\(\mathbf{V} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} ? & ? \\ ? & ? \end{pmatrix} \)

calculate sum and diff \(= \begin{pmatrix} x_1 + x_2 \\ x_1 - x_2 \end{pmatrix} = ? \)

\(\mathbf{V} \begin{pmatrix} x_1 + x_2 \\ x_1 - x_2 \end{pmatrix} = \begin{pmatrix} ? & ? \\ ? & ? \end{pmatrix} \)

Replace ? by numbers!
Solution: Unfolding with 2 bins

Solution for the exercise in unfolding

probability matrix

\[
A = \begin{pmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22} \\
A_{01} & A_{02}
\end{pmatrix} = \begin{pmatrix}
0.7 & 0.4 \\
0.3 & 0.6 \\
0 & 0
\end{pmatrix}
\]

inverse matrix

\[
A^{-1} = \frac{1}{A_{11} \cdot A_{22} - A_{12} \cdot A_{21}} \begin{pmatrix}
A_{22} & -A_{12} \\
-A_{21} & A_{11}
\end{pmatrix} = \begin{pmatrix}
2 & -4/3 \\
-1 & 7/3
\end{pmatrix}
\]

observed values

\[
y = Ax = \begin{pmatrix}
y_1 \\
y_2
\end{pmatrix} = \begin{pmatrix}
64 \pm 8 \\
36 \pm 6
\end{pmatrix}
\]

\[
V \begin{pmatrix}
y_1 \\
y_2
\end{pmatrix} = \begin{pmatrix}
64 & 0 \\
0 & 36
\end{pmatrix}
\]

“true” values

\[
x = A^{-1}y = \begin{pmatrix}
x_1 \\
x_2
\end{pmatrix} = \begin{pmatrix}
80 \pm 17.9 \\
20 \pm 16.1
\end{pmatrix}
\]

\[
V \begin{pmatrix}
x_1 \\
x_2
\end{pmatrix} = \begin{pmatrix}
320 & -240 \\
-240 & 260
\end{pmatrix}
\]

sum and diff

\[
= \begin{pmatrix}
x_1 + x_2 \\
x_1 - x_2
\end{pmatrix} = \begin{pmatrix}
100 \pm 10 \\
60 \pm 32.6
\end{pmatrix}
\]

\[
V \begin{pmatrix}
x_1 + x_2 \\
x_1 - x_2
\end{pmatrix} = \begin{pmatrix}
100 & 60 \\
60 & 1060
\end{pmatrix}
\]

The correlation coefficient between \(x_1 \) and \(x_2 \) is \(\rho = -0.83 \), and between \(x_1 + x_2 \) and \(x_1 - x_2 \) it is \(\rho = +0.18 \).
Average of two correlated numbers d_1 and d_2 (assuming $\sigma_1 = \sigma_2$) with positive/negative correlation:

$$\text{average } \bar{d} = \frac{1}{2} (d_1 + d_2)$$
$$V_{\bar{d}} = \frac{1}{2} (1 + \rho_{12}) \sigma^2$$

$$V = \begin{pmatrix} \sigma_1^2 & \rho_{12} \sigma_1 \sigma_2 \\ \rho_{12} \sigma_1 \sigma_2 & \sigma_2^2 \end{pmatrix}$$

$\rho_{12} = +0.95$

$\rho_{12} = -0.95$

Averaged value has almost the same error as each single data value (0.987σ).

Averaged value has much smaller error than each single data value (0.158σ).
3. Least Squares methods

Optimal solution in the least squares sense of the equation $A x \cong y$ is defined by the requirement

$$F(x) = \|Ax - y\|^2 = \text{minimum}$$

In the following the covariance matrix V_y is inserted:

$$F(x) = (Ax - y)^T V_y^{-1} (Ax - y) = \text{minimum}$$

In the normal-equation formalism for the solution the matrix equation

$$(A^T V_y^{-1} A) x = (A^T V_y^{-1} y)$$

$$C x = b$$

has to be solved. The solution vector x is a linear transformation of the measurement vector y, which allows standard error propagation:

$$x = A^# y$$

$$A^# = (A^T V_y^{-1} A)^{-1} A^T V_y^{-1}$$

$$V_x = A^# V_y A^{#T} = C^{-1}$$
The measured distribution

Measured histogram in 40 bins ...

... reconstruction by unfolding will be done in 16 bins, with \(\sigma = \) bin-width.
Example of unfolding problem... by inversion

Example of unfolding problem with $\sigma = \text{bin size (Gaussian resolution)}$

- True curve $f(x)$ is shown in red.

- Matrix of correlation coefficients:

\[-1 \leq \rho_{ij} \leq +1\]
Properties of the LS solution

The potential bias and the accuracy of a method should be checked.

(1) Check of a potential bias in the solution:

\[
\text{estimator } \hat{x} = A^\# y \quad \text{with} \quad E[y] = Ax_{\text{exact}}
\]

\[
E[\hat{x}] = A^\# E[y] = (A^\# A)x_{\text{exact}} = x_{\text{exact}}
\]

⇒ the estimator \(\hat{x} \) is unbiased, because: resolution matrix \(\Xi \equiv A^\# A = 1 \).

(2) Variance: Lower bound of the variance is given by the Rao-Cramér-Frechet (RCF) inequality. The covariance matrix \(V_x \) is equal to the lower bound:

⇒ the estimator \(\hat{x} \) has the smallest possible variance for an estimator with zero bias.

General statement by the Gauss-Markov theorem: the least square estimate is unbiased and efficient.

But: the result \(\hat{x} \) will often show large, unacceptable fluctuations!

The fluctuations are not caused by inaccurate matrix elements (from Monte Carlo), but are inherent in the problem, i.e. the response matrix \(A \) and its “smoothing” properties.
Matrix diagonalization

Study transformation properties of symmetric n-by-n matrix $C = (AV^{-1}A^T)$

by decomposition in the form

$$C = U\Lambda U^T, \quad \Lambda = U^T C U, \quad U^T U = U U^T = I, \quad C^{-1} = U \Lambda^{-1} U^T$$

with a diagonal matrix Λ.

All matrices in the decomposition are n-by-n matrices:

$$
\begin{pmatrix}
C \\
\end{pmatrix} =
\begin{pmatrix}
U
\end{pmatrix} \cdot
\begin{pmatrix}
\lambda_1 \\
\lambda_2 \\
\vdots \\
\lambda_n
\end{pmatrix} \cdot
\begin{pmatrix}
U^T
\end{pmatrix}
$$

Eigenvalues $\lambda_j \geq 0$ are in decreasing order, with $\lambda_1 \geq \lambda_2 \geq \ldots \lambda_n \geq 0$.

The orthogonal matrix $U = [u_1, u_1, \ldots, u_n]$ is an array of column vectors = eigenvectors u_j of the matrix C.
If the inverse C^{-1} exists (i.e. all $\lambda_j > 0$):

$$x = C^{-1}b = U \Lambda^{-1/2} \left(\Lambda^{-1/2}U^T \right) b = U \Lambda^{-1/2}c$$

with coefficients $c = \Lambda^{-1/2}U^Tb$, i.e. the solution is expressed by a vector c of Fourier coefficients.

The covariance matrix of the vector of Fourier coefficients c is simply the unit matrix, because

$$V_c = \left(\Lambda^{-1/2}U^T \right) V_b \left(U \Lambda^{-1/2} \right) = \left(\Lambda^{-1/2}U^T \right) C \left(U \Lambda^{-1/2} \right) = \Lambda^{-1/2} \Lambda \Lambda^{-1/2} = 1 .$$

The solution can be written with a sum in the form

| Solution: $x = \sum_{j=1}^{n} \frac{1}{\sqrt{\lambda_j}} c_j u_j$ with $c_j = \frac{1}{\sqrt{\lambda_j}} (b^T u_j)$ | $V_x = \sum_{j=1}^{n} \frac{1}{\lambda_j} u_j u_j^T$ |

Fourier coefficients c_j, which are insignificant (compatible with zero), should follow a normal distribution $N(0,1)$; this allows simple statistical tests for significance.

The insignificant coefficients can make a huge and dominating contribution to the solution x, if the eigenvalues λ_j are small. Diagonalization allows to determine the degree of freedom $= \text{number of significant coefficients}$.
The eigenvalues decrease by ≈ 8 orders of magnitude, due to limited resolution.

Truncation: The truncated solution can be written with a sum up to $k = 10$ only (instead of n) ... the noisy contributions are removed from the result, without the introduction of a bias, ... but the rank of \mathbf{V}_x is only k ($< n$) ($\Rightarrow \mathbf{V}_x$ is singular).

Note: the c_j are independent, and all have error 1 \Rightarrow only ten coefficients are significant.
4. Regularization methods

Key idea: incorporate certain a-priori assumptions about the size and/or smoothness of the solution! ⇒ control the
\textit{norm of the residuals} and, simultaneously, the \textit{norm of the solution} \(x \).

\textbf{Thikhonov-Phillips:}

\[F_\tau(x) = \|Ax - y\|^2 + \tau \|Lx\|^2 = \text{minimum} \quad \tau > 0 \quad L = 1 \]

Matrix equation:

\[(A^T V^{-1}_y A + \tau \cdot 1) \quad x = A^T V^{-1}_y y \quad \text{to be solved} \]

\[(C + \tau \cdot 1) \quad x = b \]

(diagonalization of \(C \))

\[U (\Lambda + \tau \cdot 1) U^T x = b \]

Fourier coefficients

\[c = \Lambda^{-1/2} U^T b \]

filter factor

\[f_j = \frac{\lambda_j}{\lambda_j + \tau} = 1 \ldots 0.5 \ldots 0 \]

Solution:

\[x = \sum_{j=1}^{n} \frac{f_j}{\sqrt{\lambda_j}} c_j u_j \quad \text{with} \quad c_j = \frac{1}{\sqrt{\lambda_j}} \left(b^T u_j \right) (\pm 1) \]

The result \(x \) is expressed as a superposition of eigenvectors \(u_j \), each weighted with the Fourier coefficient \(c_j \) and \(1/\sqrt{\lambda_j} \); the filter factor \(f_j \) reduces the effect of insignificant contributions, without introducing a bias.
solution \(x = \sum_{j=1}^{n} \frac{f_j}{\sqrt{\lambda_j}} \ c_j \ u_j \)

The solution \(x \) is expressed as a superposition of normalized eigenvectors \(u_j \), each

- proportional to the Fourier coefficient \(c_j (\pm 1) \), and
- weighted by \(1/\sqrt{\lambda_j} (!) \);
- the filter factor \(f_j \) reduces the effect of insignificant contributions.
Second derivative

Key idea: incorporate certain a-priori assumptions about the size and/or smoothness of the solution! ⇒ control the norm of the residuals and, simultaneously, the norm of second derivative Lx.

$$F_\tau(x) = \|Ax - y\|^2 + \tau \|Lx\|^2 = \text{minimum} \quad \tau > 0$$

$$x''_i \propto x_{i-1} - 2x_i + x_{i+1}$$

$$L = \begin{pmatrix}
1 & -2 & 1 & 0 & \cdots & 0 & 0 & 0 \\
0 & 1 & -2 & 1 & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 1 & -2 & 1
\end{pmatrix}$$

Matrix equation:

\[
\begin{align*}
(A^T V_y^{-1} A + \tau \cdot L^T L) \quad x &= A^T V_y^{-1} y \quad \text{to be solved} \\
(C + \tau \cdot L^T L) \quad x &= b \\
R (1 + \tau \cdot S) R^T x &= b \quad \text{with} \quad R = U_1 A^{1/2} U_2
\end{align*}
\]

requires simultaneous diagonalization of two symmetric matrices C and $L^T L$ (S is diagonal).

Fourier coefficients \(c = U_2^T A^{-1/2} U_1^T b \) \quad filter factor \(f_i = \frac{\lambda_j}{\lambda_j + \tau} \) \quad with \quad \lambda = S_{jj}^{-1}

Often better than standard regularization ($L = 1$), but depends on order of bins (2-dim solution?)! ⇒more
Regularization parameter I

Discrepancy principle (Morozov): choose \(\tau \) such that \(\| Ax_{\text{reg}} - y \|_2^2 = n_{df} \)

L-curve method: plot \(\| Lx_{\text{reg}} \|_2 \) versus \(\| Ax_{\text{reg}} - y \|_2 \) for a set of \(\tau \)-values \(\Rightarrow \) dependence has shape of an L with a distinct corner: optimal value of \(\tau \).

Effective number of degrees of freedom: (RUN) determine \(n_{df} \) from spectrum of Fourier coefficients \(c_j \), and determine \(\tau \) such that sum of filter factors

\[
\sum_{j=1}^{n} \frac{\lambda_j}{\lambda_j + \tau} = n_{df}
\]

Minimum of global correlation: minimum mean value of global correlation coefficients

\[
\rho_j = \sqrt{1 - \left[(V_x)_{jj} \cdot (V_x^{-1})_{jj} \right]^{-1}} \quad \text{with} \quad 0 \leq \rho_j \leq 1
\]

The global correlation coefficient is a measure of the total amount of correlation between element \(j \) of \(x \) and all other elements. The arithmetic and the geometric mean of all \(n \) global correlation coefficients is determined for a large range of \(\tau \)-values: the \(\tau \)-value with the smallest mean value is accepted.

\[
\ldots \text{seems to be the best method!}
\]
optimal regularization in region of largest curvature
Unfolding results

Regularization parameter τ taken from minimum of mean of global correlation coefficients:

$$\sigma = \text{bin-width}$$

$$\sigma = \frac{1}{2} \times \text{bin-width}$$

Small bias at the peaks.

Reduced bias at the peaks.
Correlation matrices

\[\sigma = \text{bin-width} \]

\[\sigma = \frac{1}{2} \times \text{bin-width} \]

Correlations \(\rho_{j,j+1} \approx +0.1 \) and \(\rho_{j,j+2} \approx -0.25 \)

Correlations \(\rho_{j,j+1} \approx \pm 0.08 \) and \(\rho_{j,j+2} \approx -0.1 \)
Summary

Pragmatic decisions about the selection of unfolding methods alone are suboptimal:

- Tests of black-box unfolding algorithms on a few selected examples are not sufficient;
- it is essential, to understand the statistical and mathematical properties of the algorithms!

Experimental data, measured with limited resolution and acceptance, require unfolding to allow a correct interpretation:

- Statistical errors are increased, if there are migration effects.
- Number of bins of unfolded distribution is in general small, and has to be adjusted to the size of migration effects – otherwise correlations between bins will be large.
- Methods based on Least squares (for Gaussian errors) and Poisson ML (for counting data), supplemented by regularization terms, using orthogonalization methods (singular values or diagonalization), exist and allow to control a potential bias and to propagate the measurement errors.
Unfolding example

- Unfolding by inversion
- Eigenvalues and coefficients
- Truncation
- Correlation matrices
- Regularization method
- Bin combination: 2 → 1
- Low-pass regularization with 3 → 1 averaging
- Low-pass regularization
- Regularized unfolding by RUN
Unfolding by inversion

Example of unfolding problem with σ/binwidth = 3

Perfect resolution (no unfolding)

Unfolding by inversion

Histogram for sample with 10 000 entries.

Huge fluctuations, due to large negative correlations: neighbour bin -95%, second $+85\%$.

True curve $f(x)$ is shown in red.
Eigenvalues and coefficients

Example of unfolding problem with σ/binwidth = 3

Eigenvalues u_j

Normalized coefficients c_j

Eigenvalues decrease by 4 orders of magnitude.

Only 10 of the 20 coefficients are significant.

Red lines are for 1, 2, 3 and 4 standard deviations.
Statistical errors are 1 for all coefficients.

Diagonalization allows to determine the degree of freedom = number of significant coefficients
Truncation

Example of unfolding problem with σ/binwidth = 3

Perfect resolution (no unfolding)

Truncation method (15 terms kept)

Histogram for sample with 10 000 entries.

Reduced fluctuations, but large errors due to large correlations.

True curve $f(x)$ is shown in red.
Correlation matrices

Example of unfolding problem with σ/binwidth = 3

Colour graph of correlation coefficients ρ with range $-1 \ldots +1$:

Direct inversion

![Correlation matrix (inversion)](image1)

Truncation method (15 terms kept)

![Correlation matrix (15 terms)](image2)

Large negative and positive correlations: neighbour bin -95%, second neighbour $+85\%$.

Correlations reduced, negative for neighbour bin -40% and second neighbour -30%.
Regularization

Example of unfolding problem with σ/binwidth = 3

Perfect resolution (no unfolding)

Unfolding by regularization $\tau = 10^{-5}$

Histogram for sample with 10 000 entries.

Reduced fluctuations: correlations neighbour bin -80% and second neighbour $+40\%$.

True curve $f(x)$ is shown in red.
Bin combination 2 \rightarrow 1

Reduce correlations and errors by combination of two bins to one:

Example of unfolding problem with σ/binwidth $= 3 \Rightarrow 1.5$

Perfect resolution (no unfolding)

Unfolding by regularization $\tau = 10^{-5}$

Histogram for sample with 10 000 entries.

Reduced fluctuations: correlations neighbour bin -20% and second neighbour -30%.

True curve $f(x)$ is shown in red.
Low-pass regularization with $3 \to 1$ averaging

Without regularization there are large bin-to-bin fluctuations due to negative correlations between neighbour bins. These fluctuations can be suppressed in a low-pass filter by averaging 3-to-1 bins:

$$\bar{x}_j = \frac{1}{4} x_{j-1} + \frac{1}{2} x_j + \frac{1}{4} x_{j+1}$$

or general

$$\bar{x}_j = a_j x_{j-1} + (1 - 2a_j) x_j + a_j x_{j+1}$$

The factor a_j can be chosen to minimize\(^1\) the variance of \bar{x}_j, using the known matrix V_x.

Pro: Fluctuations are really suppressed and the true dependence is clearer visible. ⇒ more

No bias, if number of bins large and no strong structure.

Con: In regions of larger second-derivatives a bias is introduced, because the above filter assumes an almost linear dependence over 3-point regions.

First and last bins disappear.

The general averaging algorithm for this “local”-regularization method:

$$\bar{x} = Tx$$

$$V_{\bar{x}} = TV_x T^T$$

with

$$T = \begin{pmatrix}
a_2 & 1 - 2a_2 & a_2 & 0 & \cdots & 0 & 0 & 0 \\
0 & a_3 & 1 - 2a_3 & a_3 & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & a_{n-1} & 1 - 2a_{n-1} & a_{n-1}
\end{pmatrix}$$

Question: Can the bias in curved regions be avoided in an improved averaging algorithm?

Low-Pass regularization

Example of unfolding problem with σ/binwidth = 3

Perfect resolution (no unfolding)

Low pass after regularization $\tau = 10^{-5}$

Histogram
for sample with 10 000 entries.

Reduced correlations: neighbour bin -10% and second neighbour -30%.

True curve $f(x)$ is shown in red.
Regularized UNfolding by RUN

The program for regularized unfolding:

- Developed in the 1980’s and under conditions of the 1980’s (with punched cards);
- input are n-tuple files, with additional quantities for detailed checks after unfolding;
- measured distribution can be > 1-dimensional;
- curvature (square of second derivates) is used for regularization;
- use of cubic splines to represent intermediate result without discontinuities; allows to calculate accurate second derivatives for regularization and finding of optimized bins;
- maximum likelihood fit based on Poisson distribution;
- final result converted to bins (optional with different optimized bin size)
- Test of covariance matrix:
 - Generate large number of sets of random measurements from the n-dimensional normal distribution, using full matrix V_x.
 - Calculate χ^2 for each set, ignoring all off-diagonal elements of V_x.
 - Convert each χ^2 with n_{df} into the p-value and make histogram of p-values.

Off-diagonal elements can be neglected, if the histogram of p-values is flat.

Now converted to C++.
Contents

1. Cross section determination
 Counting events . . . and cross section determination 3
 Cross section in bins 4
 Inverse problems in other fields 5
 Response/acceptance matrix determination . . . 6
 HEP acceptance correction 7

2. Unfolding by matrix inversion
 Example of unfolding problem 9
 General unfolding requirements 10
 Response matrix . 11
 Problem: Unfolding with 2 bins 12
 Solution: Unfolding with 2 bins 13
 The wonderful world of correlations 14

3. Least Squares methods
 The measured distribution 16
 Example of unfolding problem 17
 Properties of the LS solution 18
 Matrix diagonalization 19
 Eigenvalue spectrum and Fourier coefficients . . . 21

4. Regularization methods
 Plot of the eigenvectors u_j 23
 Second derivative 24
 Regularization parameter I 25
 Regularization parameter II 26
 Unfolding results . 27

Correlation matrices 28
Summary . 29

Unfolding example
 Unfolding by inversion 31
 Eigenvalues and coefficients 32
 Truncation . 33
 Regularization . 35
 Bin combination $2 \rightarrow 1$ 36
 Low-pass regularization with $3 \rightarrow 1$ averaging . 37
 Low-Pass regularization 38
 Regularized UNfolding by RUN 39

Table of contents
 . 40