
Python for Computational Science

January 19, 2025

1

Outline

1. Python for Computational Science

2. Part 1
3. First steps with Python

4. Introspection (dir)

5. Defining functions

6. About Python

7. Using modules

8. Conditionals, if-else

9. Raising exceptions

10. Sequences

11. Loops

12. Style guide for Python code

2

Outline

13. Reading and writing files

14. Writing modules

15. Name spaces, global and local variables

16. Plotting data from csv file

17. Catching exceptions

18. Print
19. String formatting

20. Dictionary

21. Default function arguments

22. Keyword function arguments

23. Virtual Environments venv
24. Installing python packages with pip

3

Outline

25. Numpy

26. IPython, Jupyter, Editors and IDEs

27. Matplotlib

28. Optimisation

29. Testing

30. Numpy usage examples

31. Pandas

32. Common Computational Tasks

33. Optimisation

4

Outline

5

Python for Computational Science

Computational Science

• use of computers to support research and operation in
science, engineering, industry and services

• applications include
• analysis of data and visualisation
• data science / data analytics
• artificial intelligence (AI) & machine learning (ML)
• control
• computer simulations
• virtual design & optimisation
• symbolic mathematics

6

Computational Science - What are objectives?

Minimum objective

• solve the given (science/data) problem using computation

Ideally also

• test the software
• document and archive the software
• make the study reproducible
• make the study re-usable
• make the software re-usable
• be time-efficient in developing the software, and
• be time-efficient in executing the software

7

Computational Science - Required skills

Minimum requirements:

• understanding of application domain
• understanding of programming and data structures

Additional skills to be more efficient:

• overview of existing libraries / tools
• (research) software engineering
• basic understanding of hardware and use through
software if performance matters

8

Computational Science — a new domain

. . .
BiologyMathematics

Computer
Science

Engineering

Chemistry

Physics

Computational
Science

Computational science:
an enabling methodology, like literacy and mathematics

9

Computational Science — a new domain

• Computational Science is not Computer Science
• specific skill set required: application domain knowledge
and computational science

• often scientists who learn the computational side
• no clear career path: neither scientist nor software
engineer

• growing movement to establish such roles in academia:
Research Software Engineer

• https://www.software.ac.uk
• https://www.de-rse.org

• “better software, better research”
10

https://www.software.ac.uk
https://www.de-rse.org

This course: Why Python?

• Python is relatively easy to learn [1]
• high efficiency: a few lines of code achieve a lot of
computation

• growing use in (open source) academia and industry, thus
• many relevant libraries available
• minimises the time of the programmer
• but: (naive) Python in general much slower execution than
compiled languages (such as Fortran, C, C++, Rust, …).

[1] https://link.springer.com/chapter/10.1007/978-3-540-25944-2_157

11

https://link.springer.com/chapter/10.1007/978-3-540-25944-2_157

This course: Introduction to Python for Computational Science

• introduces the foundations of computational science and
data science

• Python programming language
• focus on parts of the Python programming language
relevant to computational science

• computational science methodology
• research software engineering
• enable self-directed learning in the future

12

This course: learning methods

• daily lectures
• daily laboratory sessions (think computer laboratory)

• opportunity to start and complete self-paced exercises,
and to ask for any other clarification.

• automatic feedback on submitted exercises
• teaching materials and lectures are designed to support
practical exercises

13

This course: practicalities

Source of information:
http://www.desy.de/~fangohr/teaching

• time table
• laboratory exercises
• pdf files of these slides (may change)
• additional textbook
• further materials

14

http://www.desy.de/~fangohr/teaching

Part 1

Part 1

16

First steps with Python

Hello World program

• Our first Python program: Entered interactively in Python
prompt:

>>> print("Hello World")
Hello World

Or in Interactive Python (IPython) prompt:

In [1]: print("Hello world")
Hello world

• Python prompt (>>>) and IPython prompt (In []:) are
very similar

• We prefer the more convenient IPython prompt (but the
slides usually show the more compact >>> notation)

17

∗Read-Eval-Print Loop (REPL)

The python and the IPython prompt are both examples for a
READ-EVAL-PRINT LOOP (REPL):

• Read (the command the user enters)
• Evaluate (the command)
• Print (the result of the evaluation)
• Loop (i.e. go back to the beginning and wait for next
command)

18

Integrated development environments (Spyder)

• You can write programs with a python prompt, a shell and
an editor

• More convenient is the use of an “Integrated Development
Environment” (IDE)

• Example IDEs: Spyder, Visual Studio Code, PyCharm, IDLE,
Emacs, …

• A python prompt is typically embedded in the IDE
• We use Spyder in this module

19

Everything in Python is an object (with a type)

>>> type("Hello World")
<class 'str'> # "Hello world" is a string

'class' means 'type'
>>> type(print)
<class 'builtin_function_or_method'>

>>> type(10)
<class 'int'> # 10 is an integer number

>>> type(3.5)
<class 'float'> # 3.5 is floating point number

(floating point number:
it has a decimal point)

>>> type('1.0')
<class 'str'> # string (because of the quotes)

>>> type(1 + 3j)
<class 'complex'> # complex number 20

Python prompt can act like a calculator

>>> 2 + 3
5
>>> 42 - 15.3
26.7
>>> 100 * 11
1100
>>> 2400 / 20
120
>>> 2 ** 3 # 2 to the power of 3
8
>>> 9 ** 0.5 # sqrt of 9
3.0

21

Create variables through assignment

>>> a = 10
>>> b = 20
>>> a # short cut for 'print(a)'
10
>>> b # short cut for 'print(b)'
20
>>> a + b # ...
30
>>> ab4 = (a + b) / 4
>>> ab4
7.5

22

Functions and using existing functions

• Example: print function

>>> print("Hello World")
Hello World

The print function takes an argument (here a string), and
does something with the argument. (Here printing the
string to the screen.)

• Example: abs function

>>> x = -100
>>> y = abs(x)
>>> print(y)
100

A function may return a value: the abs function returns
the absolute value (100) of the argument (-100). 23

The help function

The help(x) function provides documentation for object x.

Example:

>>> help(abs)
Help on built-in function abs in module builtins:

abs(x, /)
Return the absolute value of the argument.

24

Introspection (dir)

The directory function (dir)

• Everything in Python is an object.
• Python objects have attributes.
• dir(x) returns the attributes of object x
• Example:

>>> c = 2 + 1j
>>> dir(c) # we ignore attributes starting with __
[... 'conjugate', 'imag', 'real']
>>> c.imag
1.0
>>> c.real
2.0
>>> c.conjugate()
(2-1j)

25

Attributes of objects can be functions

Example:

>>> c = 2 + 1j
>>> dir(c)
[... 'conjugate', 'imag', 'real']
>>> type(c.real)
<class 'float'>
>>> type(c.conjugate)
<class 'builtin_function_or_method'>

To execute a function, we need to add () to their name:

>>> c.conjugate # this is the function object
<built-in method conjugate of complex object at 0x10a95f3d0>
>>> c.conjugate() # this executes the function
(2-1j) # return value of conjugate function

An object attribute that is a function, is called a method. 26

Introspection example with string

>>> word = 'test'
>>> print(word)
test
>>> type(word)
<class str>
>>> dir(word)
['__add__', '__class__', '__contains__', ...,
'__doc__', ..., 'capitalize', <snip>,
'endswith', ..., 'upper', 'zfill']
>>> word.upper()
'TEST'
>>> word.capitalize()
'Test'
>>> word.endswith('st')
True
>>> word.endswith('a')
False

27

Summary useful commands (introspection)

• print(x) to display the object x
Not needed at the prompt, but in programs that we will write later.

• type(x) to determine the type of object x
• help(x) to obtain the documentation string for object x
• dir(x) to display the methods and members of object x,
or the current name space (dir()).

28

Defining functions

Function terminology

Example abs(x) function:

x = -1.5
y = abs(x)

• x is the argument given to the function (also called input
or parameter)

• y is the return value (the result of the function’s
computation)

• Functions may expect zero, one or more arguments
• Not all functions (seem to) return a value. (If no return
keyword is used, the special object None is returned.)

29

Defining a function ourselves

• Functions
• provide (potentially complicated) functionality
• are building blocks of computer programs
• hide complexity from the user of the function
• help manage complexity of software

• Example 1:

def mysum(a, b):
return a + b

main program starts here
print("The sum of 3 and 4 is", mysum(3, 4))

30

Functions should be documented (“docstring”)

def mysum(a, b):
"""Return the sum of parameters a and b."""
return a + b

main program starts here
print("The sum of 3 and 4 is", mysum(3, 4))

Can now use the help function for our new function:

>>> help(mysum)
Help on function mysum in module __main__:

mysum(a, b)
Return the sum of parameters a and b.

31

Function documentation strings

def mysum(a, b):
"""Return the sum of parameters a and b."""
return a + b

Essential information for documentation string:

• What inputs does the function expect?
• What does the function do?
• What does it return?

∗Desirable:

• Examples
• Notes on algorithm (if relevant)
• exceptions that might be raised
• [Author, date, contact details: not needed if version control is used]

Advanced: Recommendations for documentation string style are numpydoc style or PEP257 docstring conventions.
32

https://numpydoc.readthedocs.io/en/latest/format.html
http://www.python.org/dev/peps/pep-0257/

Function documentation string example 1
def mysum(a, b):

"""Return the sum of parameters a and b.

Parameters

a : numeric

first input
b : numeric

second input

Returns

a+b : numeric

returns the sum (using the + operator) of a and b. The return type will
depend on the types of `a` and `b`, and what the plus operator returns.

Examples

>>> mysum(10, 20)
30
>>> mysum(1.5, -4)
-2.5

Notes

History: example first created 2002, last modified 2013
Hans Fangohr, fangohr@soton.ac.uk,
"""
return a + b

33

Function documentation string example 2
def factorial(n):

"""Compute the factorial recursively.

Parameters

n : int

Natural number `n` > 0 for which the factorial is computed.

Returns

n! : int

Returns n * (n-1) * (n-2) * ... * 2 * 1

Examples

>>> factorial(1)
1
>>> factorial(3)
6
>>> factorial(10)
3628800
"""
assert n > 0

if n == 1:
return 1

else:
return n * factorial(n - 1) 34

Function example

def plus42(n):
"""Add 42 to n and return""" # docstring

result = n + 42 # body of
return result # function

main program follows
a = 8
b = plus42(a)

After execution, b carries the value 50 (and a = 8).

35

Summary functions

• Functions provide (black boxes of) functionality:
crucial building blocks that hide complexity

• interaction (input, output) through input arguments and
return values
(printing and returning values is not the same, see slide 41)

• docstring provides the specification (contract) of the
function’s input, output and behaviour

• advanced∗: a function should (normally) not modify input
arguments
(watch out for lists, dicts, more complex data structures as input arguments)

36

Functions printing vs returning values

Key message: functions should generally return values.

We use the Python prompt to explore the difference with these
two function definitions:

def print42():
print(42)

def return42():
return 42

37

Functions printing vs returning values

>>> b = return42() # return 42, is assigned
>>> print(b) # to b
42

>>> a = print42() # return None, and
42 # print 42 to screen
>>> print(a)
None # special object None

38

Functions printing vs returning values

If we use IPython, it shows whether a function returns
something (i.e. not None) through the Out [] token:

In [1]: return42()
Out[1]: 42 # Return value of 42

In [2]: print42()
42 # No 'Out []', so no

returned value

39

Summary: to print or to return?

• A function that returns the control flow through the
return keyword, will return the object given after return.

• A function that does not use the return keyword, returns
the special object None.

• Generally, functions should return a value.
• Generally, functions should not print anything.
• Calling functions from the prompt can cause some
confusion here: if the function returns a value and the
value is not assigned, it will be printed.

40

About Python

Python

What is Python?

• High level programming language
• interpreted
• supports three main programming styles
(imperative=procedural, object-oriented, functional)

• General purpose tool, yet good for numeric work with
extension libraries

Availability

• Python is free
• Python is platform independent (works on Windows,
Linux/Unix, Mac OS, …)

• Python is open source
41

Which Python version

• There are currently two versions of Python:
• Python 2.7 and
• Python 3.x

• Python 2.x and 3.x are incompatible although the changes
only affect very few commands.

• Write new programs in Python 3.
• You may have to read / work with Python 2 code at some
point.

42

Python documentation

There is lots of useful documentation:

• Teaching materials on website, including these slides and
a text-book like document

• Online documentation, for example
• http://www.python.org) (Python home page)
• Matplotlib (publication figures)
• Numpy (fast vectors and matrices, (NUMerical PYthon)
• SciPy (scientific algorithms, solve_ivp)
• Pandas (data engineering and data science)
• scikit-learn (machine learning)
• SymPy (Symbolic calculation)

• interactive documentation (such as dir() and help())

43

https://fangohr.github.io/teaching/python/book.html
http://www.python.org
https://matplotlib.org/
https://numpy.org/
https://scipy.org/
https://pandas.pydata.org/
https://scikit-learn.org/
https://sympy.org/

Using modules

The math module (import math)

>>> import math
>>> math.sqrt(4)
2.0
>>> math.pi
3.141592653589793
>>> dir(math) #attributes of 'math' object
['__doc__', '__file__', < snip >
'acos', 'acosh', 'asin', 'asinh', 'atan', 'atan2',
'atanh', 'ceil', 'copysign', 'cos', 'e', 'erf',
'exp', <snip>, 'sqrt', 'tan', 'tanh', 'trunc']

>>> help(math.sqrt) # ask for help on sqrt
sqrt(...)

sqrt(x)
Return the square root of x.

44

Name spaces and modules

Three (good) options to access a module:

1. use the full name:

import math
print(math.sin(0.5))

2. use some abbreviation

import math as m
print(m.sin(0.5))
print(m.pi)

3. import all objects we need explicitly

from math import sin, pi
print(sin(0.5))
print(pi)

45

Modules provide functionality

• each module provides some additional python
functionality

• Python has many modules:
• Python Standard Library: math, pathlib, sys, …
• Contributions from others: numpy, jupyter, pytest, …
• Every programmer can create their own modules.

• there is distinction between module, package, and library
but in practice the terms are used interchangeably.

46

Conditionals, if-else

Truth values

The python values True and False are special inbuilt objects:

>>> a = True
>>> print(a)
True
>>> type(a)
<class bool>
>>> b = False
>>> print(b)
False
>>> type(b)
<class bool>

47

Truth values

We can operate with these two logical values using boolean
logic, for example the logical and operation (and):

>>> True and True # logical and operation
True
>>> True and False
False
>>> False and True
False
>>> False and False
False

48

Truth values

There is also logical or (or) and the negation (not):

>>> True or False
True
>>> not True
False
>>> not False
True
>>> True and not False
True

49

Truth values

In computer code, we often need to evaluate some expression
that is either true or false (sometimes called a “predicate”).
For example:

50

Truth values

>>> x = 30 # assign 30 to x
>>> x >= 30 # is x greater than or equal to 30?
True
>>> x > 15 # is x greater than 15
True
>>> x > 30
False
>>> x == 30 # is x the same as 30?
True
>>> not x == 42 # is x not the same as 42?
True
>>> x != 42 # is x not the same as 42?
True

51

if-then-else

The if-else command allows to branch the execution path
depending on a condition. For example:

>>> x = 30 # assign 30 to x
>>> if x > 30: # predicate: is x > 30
... print("Yes") # if True, do this
... else:
... print("No") # if False, do this
...
No

52

if-then-else

The general structure of the if-else statement is

if A:
B

else:
C

where A is the predicate.

• If A evaluates to True, then all commands B are carried out (and
C is skipped).

• If A evaluates to False, then all commands C are carried out
(and B) is skipped.

• if and else are Python keywords.

53

if-then-else

A and B can each consist of multiple lines, and are grouped through
indentation as usual in Python.

54

if-else example

def slength1(s):
"""Returns a string describing the
length of the sequence s"""
if len(s) > 10:

ans = 'very long'
else:

ans = 'normal'

return ans

>>> slength1("Hello")
'normal'
>>> slength1("HelloHello")
'normal'
>>> slength1("Hello again")
'very long' 55

if-elif-else example

If more cases need to be distinguished, we can use the
keyword elif (standing for ELse IF) as many times as desired:

def slength2(s):
if len(s) == 0:

ans = 'empty'
elif len(s) > 10:

ans = 'very long'
elif len(s) > 7:

ans = 'normal'
else:

ans = 'short'

return ans

56

if-elif-else example

>>> slength2("")
'empty'
>>> slength2("Good Morning")
'very long'
>>> slength2("Greetings")
'normal'
>>> slength2("Hi")
'short'

57

LAB1

Raising exceptions

57

Exceptions

• Errors arising during the execution of a program result in
“exceptions” being ’raised’ (or ’thrown’).

• We have seen exceptions before, for example when
dividing by zero:

>>> 4.5 / 0
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ZeroDivisionError: float division by zero

or when we try to access an undefined variable:

58

Exceptions

>>> print(x)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
NameError: name 'x' is not defined

• Exceptions are a modern way of dealing with error
situations

• We will now see
• what exceptions are coming with Python
• how we can raise (“throw”) exceptions in our code

59

In-built Python exceptions

Python’s in-built exceptions (from
https://docs.python.org/3/library/exceptions.html)

60

https://docs.python.org/3/library/exceptions.html

In-built Python exceptions

BaseException
+-- SystemExit
+-- KeyboardInterrupt
+-- GeneratorExit
+-- Exception

+-- StopIteration
+-- StopAsyncIteration
+-- ArithmeticError
| +-- FloatingPointError
| +-- OverflowError
| +-- ZeroDivisionError
+-- AssertionError
+-- AttributeError
+-- BufferError
+-- EOFError
+-- ImportError
| +-- ModuleNotFoundError
+-- LookupError
| +-- IndexError
| +-- KeyError
+-- MemoryError
+-- NameError
| +-- UnboundLocalError
+-- OSError
| +-- BlockingIOError
| +-- ChildProcessError
| +-- ConnectionError
| | +-- BrokenPipeError
| | +-- ConnectionAbortedError
| | +-- ConnectionRefusedError
| | +-- ConnectionResetError
| +-- FileExistsError
| +-- FileNotFoundError
| +-- InterruptedError
| +-- IsADirectoryError
| +-- NotADirectoryError
| +-- PermissionError
| +-- ProcessLookupError
| +-- TimeoutError
+-- ReferenceError
+-- RuntimeError
| +-- NotImplementedError
| +-- RecursionError
+-- SyntaxError
| +-- IndentationError
| +-- TabError
+-- SystemError
+-- TypeError
+-- ValueError
| +-- UnicodeError
| +-- UnicodeDecodeError
| +-- UnicodeEncodeError
| +-- UnicodeTranslateError
+-- Warning

+-- DeprecationWarning
+-- PendingDeprecationWarning
+-- RuntimeWarning
+-- SyntaxWarning
+-- UserWarning
+-- FutureWarning
+-- ImportWarning
+-- UnicodeWarning
+-- BytesWarning
+-- ResourceWarning

∗Advanced topic: We can catch exceptions.

∗Advanced topic: We can provide our own exception classes
(by inheriting from Exception).

61

Raising exceptions

• Because exceptions are Python’s way of dealing with runtime
errors, we should use exceptions to report errors that occur in
our own code.

• To raise a ValueError exception, we use

raise ValueError("Message")

and can attach a message "Message" (of type string) to that
exception which can be seen when the exception is reported or
caught:

>>> raise ValueError("Some problem occurred")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: Some problem occurred

62

Raising NotImplementedError Example

Often used is the NotImplementedError in incremental
software development:

def my_complicated_function(x):
message = f"Called with x={x}"
raise NotImplementedError(message)

If we call the function:

>>> my_complicated_function(42)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "<stdin>", line 3, in my_complicated_function

NotImplementedError: Called with x=42

63

Sequences

Sequences overview

Different types of sequences

• strings
• lists (mutable)
• tuples (immutable)
• arrays (mutable, part of numpy)

They share common behaviour.

64

Strings

>>> a = "Hello World"
>>> type(a)
<class str>
>>> len(a)
11
>>> print(a)
Hello World

Different possibilities to limit strings:

'A string'
"Another string"
"A string with a ' in the middle"
"""A string with triple quotes can
extend over several
lines""" 65

Strings 2 (exercise)

• Define a, b and c at the Python prompt:

>>> a = "One"
>>> b = "Two"
>>> c = "Three"

• Exercise: What do the following expressions evaluate to?
1. d = a + b + c
2. 5 * d
3. d[0], d[1], d[2] (indexing)
4. d[-1]
5. d[4:] (slicing)

66

Strings 3 (exercise)

>>> s="""My first look at Python was an
... accident, and I didn't much like what
... I saw at the time."""

For the string s:

• count the number of (i) letters ’e’ and (ii) substrings ’an’
• replace all letters ’a’ with ’0’
• make all letters uppercase
• make all capital letters lowercase, and all lower case
letters to capitals

67

Lists

[] # the empty list
[42] # a 1-element list
[5, 'hello', 17.3] # a 3-element list
[[1, 2], [3, 4], [5, 6]] # a list of lists

• Lists store an ordered sequence of Python objects
• Access through index (and slicing) as for strings.
• use help(), often used list methods is append()

(In general computer science terminology, vector or array might be better name as the

actual implementation is not a linked list, but direct O(1) access through the index is

possible.)

68

Example program: using lists

>>> a = [] # creates a list
>>> a.append('dog') # appends string 'dog'
>>> a.append('cat') # ...
>>> a.append('mouse')
>>> print(a)
['dog', 'cat', 'mouse']
>>> print(a[0]) # access first element
dog # (with index 0)
>>> print(a[1]) # ...
cat
>>> print(a[2])
mouse
>>> print(a[-1]) # access last element
mouse
>>> print(a[-2]) # second last
cat

69

Example program: lists containing a list

>>> a = ['dog', 'cat', 'mouse', [1, 10, 100, 1000]]
>>> a
['dog', 'cat', 'mouse', [1, 10, 100, 1000]]
>>> a[0]
dog
>>> a[3]
[1, 10, 100, 1000]
>>> max(a[3])
1000
>>> min(a[3])
1
>>> a[3][0]
1
>>> a[3][1]
10
>>> a[3][3]
1000

70

Sequences – more examples

>>> a = "hello world"
>>> a[4]
'o'
>>> a[4:7]
'o w'
>>> len(a)
11
>>> 'd' in a
True
>>> 'x' in a
False
>>> a + a
'hello worldhello world'
>>> 3 * a
'hello worldhello worldhello world'

71

Tuples

• tuples are very similar to lists

• tuples are immutable (unchangeable after they have been
created) whereas lists are mutable (changeable)

• tuples are usually written using parentheses (↔ “round
brackets”):

72

Tuples

>>> t = (3, 4, 50) # t for Tuple
>>> t
(3, 4, 50)
>>> type(t)
<class tuple>

>>> L = [3, 4, 50] # compare with L for List
>>> L
[3, 4, 50]
>>> type(L)
<class list>

73

Tuples are defined by comma

• tuples are defined by the comma (!), not the parenthesis

>>> a = 10, 20, 30
>>> type(a)
<class tuple>

• the parentheses are usually optional (but should be
written anyway):

>>> a = (10, 20, 30)
>>> type(a)
<class tuple>

74

Tuples are sequences

• normal indexing and slicing (because tuple is a sequence)

>>> t[1]
4
>>> t[:-1]
(3, 4)

75

Why do we need tuples (in addition to lists)?

1. use tuples if you want to make sure that a set of objects
doesn’t change.

2. Using tuples, we can assign several variables in one line
(known as tuple packing and unpacking)

x, y, z = 0, 0, 1

This allows “instantaneous swap” of values:

a, b = b, a

Strictly: “tuple packing” on right hand side and “sequence unpacking” on left.

76

Why do we need tuples (in addition to lists)?

3. functions return tuples if they return more than one
object

def f(x):
return x**2, x**3

a, b = f(x)

4. tuples can be used as keys for dictionaries as they are
immutable

77

(Im)mutables

• Strings — like tuples — are immutable:

>>> a = 'hello world' # String example
>>> a[3] = 'x'
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: object does not support item assignment

• strings can only be ’changed’ by creating a new string, for
example:

>>> a = a[0:3] + 'x' + a[4:]
>>> a
'helxo world'

78

Summary sequences

• lists, strings and tuples (and arrays) are sequences.
• sequences share the following operations

a[i] returns element with index i of a
a[i:j] returns elements i up to j− 1
len(a) returns number of elements in sequence
min(a) returns smallest value in sequence
max(a) returns largest value in sequence
x in a returns True if x is element in a
a + b concatenates a and b
n * a creates n copies of sequence a

In the table above, a and b are sequences, i, j and n are
integers, x is an element.

79

Conversions of sequence to list and to tuple

• to tuple:
Convert any sequence into a tuple using the tuple
function:

>>> tuple([1, 4, "dog"])
(1, 4, 'dog')

• to list:
Convert any sequence into a list using the list function:

>>> list((10, 20, 30))
[10, 20, 30]

80

Conversions of sequence to strings

• every string object s has a join method that joins elements of a
squence together, with the string s connecting the sequence elements:

>>> x = ['A', 'list', 'of', 'strings.']
>>> " ".join(x)
'A list of strings.'
>>> "-".join(x)
'A-list-of-strings.'
>>> "-um-".join(x)
'A-um-list-um-of-um-strings.'
>>> "".join(x)
'Alistofstrings.'

• Only works if the elements in the sequence are of type string already:

>>> a = [10, 20, 30]
>>> "-".join(a)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: sequence item 0: expected str instance, int found
>>>

81

∗Conversions to and from iterators

• Looking ahead to iterators, we note that list and tuple can
also convert from iterators:

>>> list(range(5))
[0, 1, 2, 3, 4]

• ∗And if you ever need to create an iterator from a sequence, the
iter function can this:

>>> iter([1, 2, 3])
<list_iterator object at 0x1013f1fd0>

82

Reversing a sequence with slicing operator ::-1

• The slicing operator ::-1 creates a reversed copy of a sequence:

>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] # list
>>> a
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> a[::-1]
[9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

>>> "Hello World"[::-1] # string
'dlroW olleH'

• Why does this work?
>>> a
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> a[:] # slice from beginning to end (creates copy of a)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> a[::2] # slice from beginning to end in steps of 2
[0, 2, 4, 6, 8]
>>> a[::-2] # in steps of -2
[9, 7, 5, 3, 1]
>>> a[::-1] # in steps of -1
[9, 8, 7, 6, 5, 4, 3, 2, 1, 0] 83

Reversing a list with list.reverse() method

• list objects have an in-built reverse() method:

>>> a = [1, 2, 3, 4]
>>> a.reverse()
>>> a
[4, 3, 2, 1]
>>> tuple([1, 4, "dog"])

• this is called working “in place” as it re-arranges the data in the
place where it is stored (in contrast to creating a second copy)

• useful if the data is large and we want to avoid a second copy

• not available for string and tuple as these are immutable

84

∗Reverse sequence with reversed iterator

>>> a
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> b = reversed(a)
>>> b # will iterate through

reverse sequence when needed
<list_reverseiterator object at 0x101117d30>
>>> type(b)
<class 'list_reverseiterator'>
>>> list(b) # conversion to list enforces iteration
[9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
>>> list(reversed(a)) # reversing a in one line
[9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

85

Loops

Introduction loops

Computers are good at repeating tasks (often the same task
for many different sets of data).

Loops are the way to execute the same (or very similar) tasks
repeatedly (“ in a loop”).

Python provides the “for loop” and the “while loop”.

86

Example program: for-loop

animals = ['dog', 'cat', 'mouse']

for animal in animals:
print(f"This is the {animal}!")

produces

This is the dog!
This is the cat!
This is the mouse!

The for-loop iterates through the sequence animals and
assigns the values in the sequence subsequently to the name
animal. 87

Iterating over integers

Often we need to iterate over a sequence of integers:

for i in [0, 1, 2, 3, 4, 5]:
print(f"the square of {i} is {i**2}")

produces

the square of 0 is 0
the square of 1 is 1
the square of 2 is 4
the square of 3 is 9
the square of 4 is 16
the square of 5 is 25

88

Iterating over integers with range

The range(n) object is used to iterate over a sequence of
increasing integer values up to (but not including) n:

for i in range(6):
print(f"the square of {i} is {i**2}")

produces

the square of 0 is 0
the square of 1 is 1
the square of 2 is 4
the square of 3 is 9
the square of 4 is 16
the square of 5 is 25

89

The range object

• range is used to iterate over integer sequences
• We can use the range object in for loops:

>>> for i in range(3):
... print(f"i={i}")
i=0
i=1
i=2

90

The range object

• We can convert it to a list:

>>> list(range(6))
[0, 1, 2, 3, 4, 5]

• This conversion to list is useful to understand what
sequences the range object would provide if used in a for
loop:

91

The range object

>>> list(range(6))
[0, 1, 2, 3, 4, 5]
>>> list(range(0, 6))
[0, 1, 2, 3, 4, 5]
>>> list(range(3, 6))
[3, 4, 5]
>>> list(range(-3, 0))
[-3, -2, -1]

92

The range object

• ∗Advanced: range has its own type:

>>> type(range(6))
<class range>

range objects are lazy sequences (Python range is not an iterator)

93

https://treyhunner.com/2018/02/python-range-is-not-an-iterator/

Summary range

range
range([start,] stop [,step]) iterates over integers from
start up to to stop (but not including stop) in steps of step.

start defaults to 0 and step defaults to 1.

>>> list(range(0, 10))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> list(range(0, 10, 2))
[0, 2, 4, 6, 8]
>>> list(range(5, 4))
[] # no iterations

94

Iterating over sequences with for-loop

• for loop iterates over iterables.
• Sequences are iterable.
• Examples

for i in [0, 3, 4, 19]: # list is a
print(i) # sequence

for animal in ['dog', 'cat', 'mouse']:
print(animal)

for letter in "Hello World": # strings are
print(letter) # sequences

for i in range(5): # range objects
print(i) # are iterable 95

Example: create list with for-loop

def create_list_of_increasing_halfs(n):
"""Given integer n >=0, return list of length
n starting with [0, 0.5, 1.0, 1.5, ...]."""
result = []
for i in range(n):

number = i * 1 / 2
result.append(number)

return result

main program
print(create_list_of_increasing_halfs(5))

Output:

[0.0, 0.5, 1.0, 1.5, 2.0] 96

Example: modify list with for-loop

def modify_list_add_42(original_list):
"""Given a list, add 42 to every element
and return"""
modified_list = []
for element in original_list:

new_element = element + 42
modified_list.append(new_element)

return modified_list

main program
print(modify_list_add_42([0, 10, 100, 1000]))

Output:

[42, 52, 142, 1042] 97

Reminder: If-then-else

• Example 1 (if-then-else)

a = 42
if a > 0:

print("a is positive")
else:

print("a is negative or zero")

98

Another iteration example

This example generates a list of numbers often used in hotels
to label floors (more info)

def skip13(a, b):
"""Given ints a and b, return
list of ints from a to b without 13"""
result = []
for k in range(a, b):

if k == 13:
pass # do nothing

else:
result.append(k)

return result

99

https://en.wikipedia.org/wiki/Thirteenth_floor

Another iteration example (with continue)

This example generates a list of numbers often used in hotels
to label floors (more info)

def skip13(a, b):
"""Given ints a and b, return
list of ints from a to b without 13"""
result = []
for k in range(a, b):

if k == 13:
continue # jump to next iteration

result.append(k)
return result

100

https://en.wikipedia.org/wiki/Thirteenth_floor

Exercise range_double

Write a function range_double(n) that generates a list of numbers
similar to list(range(n)). In contrast to list(range(n)), each
value in the list should be multiplied by 2. For example:

>>> range_double(4)
[0, 2, 4, 6]
>>> range_double(10)
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

For comparison the behaviour of range:

>>> list(range(4))
[0, 1, 2, 3]
>>> list(range(10))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

101

For loop summary

• for-loop to iterate over sequences
• can use range to generate sequences of integers
• special keywords:

• continue - skip remainder of body of statements and
continue with next iteration

• break - leave for-loop immediately
• ∗Advanced:

• can iterate over any iterable
• we can create our own iterables
• See summary Socratica on Iterators, Iterables, and Itertools

102

https://youtu.be/WR7mO_jYN9g

Exercise: First In First Out (FIFO) queue

Write a First-In-First-Out queue implementation, with
functions:

• add(name) to add a customer with name name (call this
when a new customer arrives)

• next() to be called when the next customer will be
served. This function returns the name of the customer

• show() to print all names of customers that are currently
waiting

• length() to return the number of currently waiting
customers

Suggest to use a global variable q and define this in the first
line of the file by assigning an empty list: q = [].

103

While loops

• Reminder:
a for loop iterates over a given sequence or iterable

• A while loop iterates while a condition is fulfilled

• x = 64
while x > 10:

x = x // 2
print(x)

produces

32
16
8

104

∗While loop example 2

Determine ϵ:

eps = 1.0

while eps + 1 > 1:
eps = eps / 2.0

print(f"epsilon is {eps}")

Output:

epsilon is 1.11022302463e-16

105

Style guide for Python code

Syntax versus style

• Python programs must follow Python syntax.
• Python programs should follow Python style guide,
because

• readability is key (debugging, documentation, team effort)
• conventions improve effectiveness

106

Common style guide: PEP8

From http://www.python.org/dev/peps/pep-0008/:

• This style guide evolves over time as additional conventions are
identified and past conventions are rendered obsolete by
changes in the language itself.

• ”Readability counts”: One of Guido van Rossum’s key insights is
that code is read much more often than it is written. The
guidelines provided here are intended to improve the
readability of code and make it consistent across the wide
spectrum of Python code.

107

http://www.python.org/dev/peps/pep-0008/

PEP8 Style guide

• Indentation: use 4 spaces
• One space around assignment operator (=) operator:
c = 5 and not c=5.

• Spaces around arithmetic operators can vary. Both
x = 3*a + 4*b and x = 3 * a + 4 * b are okay.

• No space before and after parentheses:
x = sin(x) but not x = sin(x)

• A space after comma: range(5, 10) and not range(5,10).
• No whitespace at end of line
• No whitespace in empty line
• One or no empty line between statements within function

108

PEP8 Style guide

• Two empty lines between functions
• One import statement per line
• import first standard Python library (such as math), then
third-party packages (numpy, scipy, ...), then our own
modules

• no spaces around = when used in keyword arguments:
"Hello World".split(sep=' ') but not
"Hello World".split(sep = ' ')

109

PEP8 Style Summary

• Follow PEP8 guide, in particular for new code.
• Use tools to help us:

• Spyder editor can show PEP8 violations (In Spyder 6:
Preferences → Completion and Linting → Code style
and formatting → [X] Enable code style lintiing →
[OK])

• Similar tools/plugins are available for other editors.
editors.

• pycodestyle program available to check source code from
command line (used to be called pep8 in the past).
To check file myfile.py for PEP8 compliance:

pycodestyle myfile.py

110

∗Style conventions for documentation strings

• Python documentation strings (pydoc) conventions:
• PEP257 docstring style (from 2001), basis for both
• numpydoc style (science) and
• Google pydoc style

• Examples on slide 33 and 34 are compatible with all
conventions

• Editors can highlight deviations
• Program to check documentation string style compliance
in file myfile.py:

• pydocstyle --convention=pep257 myfile.py

• pydocstyle --convention=numpy myfile.py

• pydocstyle --convention=google myfile.py
111

http://www.python.org/dev/peps/pep-0257/
https://numpydoc.readthedocs.io/en/latest/format.html
https://google.github.io/styleguide/pyguide.html#38-comments-and-docstrings

LAB2

112

Outlook: first plot

import math
import matplotlib.pyplot as plt # convention

xs = [] # store x-values for plot in list
ys = [] # store y-values for plot in list
for i in range(100): # compute data

x = 0.1 * i
xs.append(x)
y = math.sin(x) # we plot sin(x)
ys.append(y)

plot data
plt.plot(xs, ys, '-o')

plt.savefig("matplotlib-mini-example.pdf")

112

Outlook: first plot

0 2 4 6 8 10

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

113

Reading and writing files

File input/output

It is a common task to

• read some input data file
• do some calculation/filtering/processing with the data
• write some output data file with results

Python distinguishes between

• text files ('t')
• binary files 'b')

If we don’t specify the file type, Python assumes we mean text
files.

114

Writing a text file

>>> with open('test.txt', 'tw') as f:
... f.write("first line\nsecond line")
...
22

creates a file test.txt that reads

first line
second line

115

Writing a text file

• To write data, we need to open the file with 'w' mode:

with open('test.txt', 'w') as f:

By default, Python assumes we mean text files. However,
we can be explicit and say that we want to create a Text
file for Writing:

with open('test.txt', 'wt') as f:

• If the file exists, it will be overridden with an empty file
when the open command is executed.

• The file object f has a method f.write which takes a
string as an input argument.

116

Reading a text file

We create a file object f using

>>> with open('test.txt', 'rt') as f: # Read Text

and have different ways of reading the data:

1. f.read() returns one long string for the whole file

>>> with open('test.txt', 'rt') as f:
... data = f.read()
...
>>> data
'first line\nsecond line'

117

Reading a text file

2. f.readlines() returns a list of strings (each being one
line)

>>> with open('test.txt', 'rt') as f:
... lines = f.readlines()
...
>>> lines
['first line\n', 'second line']

118

Reading a text file

3. ∗Advanced: Use text file f as an iterable object: process
one line in each iteration

>>> with open('test.txt', 'rt') as f:
>>> for line in f:
... print(line, end='')
...
first line
second line
>>> f.close()

119

Reading a text file

This is important for large files: the file can be larger than
the computer RAM as only one line at a time is read from
disk to memory.

120

∗File input and output without context manager

With file context manager (recommended):

>>> with open('test.txt', 'rt') as f: # This creates
... # the context.
... data = f.read() # We can use 'f'
... # in the context.
... # File 'f' is automatically closed
>>> data # when the context is left.
'first line\nsecond line'

Without file context manager (not recommended!):

>>> f = open('test.txt', 'rt')
>>> data = f.read()
>>> f.close() # must close file manually
>>> data
'first line\nsecond line' 121

Use case: Reading a file, iterating over lines

Often we want to process line by line. Typical code fragment:

with open('myfile.txt', 'rt') as f:
lines = f.readlines()

some processing of the lines object
for line in lines:

print(line)

122

Splitting a string

• We often need to split a string into smaller parts: use
string method split():
(try help("".split) at the Python prompt for more info)

Example:

>>> c = 'This is my string'
>>> c.split()
['This', 'is', 'my', 'string']
>>> c.split('i')
['Th', 's ', 's my str', 'ng']

123

Useful functions processing text files:

• string.strip() method gets rid of leading and trailing white
space, i.e. spaces, newlines (\n) and tabs (\t):

>>> a = " hello\n "
>>> a.strip()
'hello'

• int() and float convert strings into numbers (if possible)

>>> int("42")
42
>>> float("3.14")
3.14
>>> int("0.5")
Traceback (most recent call last):

ValueError: invalid literal for int()
with base 10: '0.5' 124

Exercise: Shopping list

Given a list

bread 1 1.39
tomatoes 6 0.26
milk 3 1.45
coffee 3 2.99

Write program that computes total cost per item, and writes to
shopping_cost.txt:

bread 1.39
tomatoes 1.56
milk 4.35
coffee 8.97

125

One solution

One solution is shopping_cost.py

with open('shopping.txt', 'tr') as fin: # INput File
lines = fin.readlines()

with open('shopping_cost.txt', 'tw') as fout: # OUTput File
for line in lines:

words = line.split()
itemname = words[0]
number = int(words[1])
cost = float(words[2])
totalcost = number * cost
fout.write(f"{itemname:10} {totalcost}\n")

126

Exercise

Write function print_line_sum_of_file(filename) that
reads a file of name filename containing numbers separated
by spaces, and which computes and prints the sum for each
line. A data file might look like

2 3 5 -30 100
0 45 3 2
17

127

∗Binary files 1

• Files that store binary data are opened using the 'b' flag
(instead of 't' for Text):

open('data.dat', 'br')

• For text files, we read and write str objects. For binary
files, use the bytes type instead.

• By default, store data in text files. Text files are human
readable (that’s good) but take more disk space than
binary files.

• Reading and writing binary data is outside the scope of
this introductory module. If you read arbitrary binary
data, you may need the struct module.

• For large/complex scientific data, consider HDF5.

128

∗HDF5 files

• If you need to store large and/or complex data, consider
the use of HDF5 files:
https://portal.hdfgroup.org/display/HDF5/HDF5

• Python interface: https://www.h5py.org (import h5py)
• hdf5 files

• provide a hierarchical structure (like subdirectories and
files)

• can compress data on the fly
• supported by many tools
• standard in some areas of science
• optimised for large volume of data and effective access

129

https://portal.hdfgroup.org/display/HDF5/HDF5
https://www.h5py.org

LAB3

Writing modules

129

Writing module files

• Motivation: it is useful to bundle functions that are used
repeatedly and belong to the same subject area into one
module file (also called “library”)

• This allows to re-use the functions in multiple Python
applications.

• Every Python file can be imported as a module.
• If the module file contains commands (other than class
and function definitions) then these are executed when
the file is imported. This can be desired but sometimes it
is not.

130

The internal __name__ variable (1)

• Here is an example of a module file saved as module1.py:

def someusefulfunction():
pass

print(f"My name is {__name__}")

We can execute this module file, and the output is

My name is __main__

• The internal variable __name__ takes the (string) value
"__main__" if the program file module1.py is executed.

131

The internal __name__ variable (1)

• On the other hand, we can import module1.py in another file,
for example like this:

import module1

The output is now:

My name is module1

• We see that __name__ inside a module takes the value of the
module name if the file is imported.

132

if __name__ == __main__ …

module2.py:
1 def someusefulfunction():
2 pass
3

4 if __name__ == "__main__":
5 print("I am the top level")
6 else:
7 print(f"I am imported as a library '{__name__}'")

• Line 5 is only executed when the module is executed as the top
level (for example as python module2.py, or pressing F5 in
Spyder when editing the dile module2.py).

• __name__ allows conditional execution of code when top-level
or imported.

133

Application file example

def useful_function():
Core function in this app.
Could be useful in other apps.
pass

def main():
Main functionality of this app in here.
useful_function()
...

if __name__ == "__main__":
main() # start main application

else:
get here if the file is imported
pass

134

Library file example

def useful_function():
core functionality of library here
pass

def test_for_useful_function():
print("Running self test ...")

if __name__ == "__main__":
test_for_useful_function()

else:
print("Setting up library")
initialisation code that might be needed
if imported as a library

135

Name spaces, global and local
variables

Name spaces — what can be seen where?

We distinguish between

• global variables (defined in main program) and

• local variables (defined for example in functions)

• built-in commands

136

Python’s look up rule

Python’s look up rule for Names
When coming across an identifier, Python looks for this in the
following order in

• the local name space (L)
• (if appropriate in the next higher level local name space),
(L2, L3, …)

• the global name space (G)
• the set of built-in commands (B)

This is summarised as “LGB” or “LnGB”.

If the identifier cannot be found, a NameError is raised.

137

Local names shadow global names

• This means, we can read global variables from functions.
Example:

def f():
print(x)

x = 'I am global'
f()

Output:

I am global

138

Local names shadow global names

• but local variables “shadow” global variables:

def f():
y = 'I am local y'
print(x)
print(y)

x = 'I am global x'
y = 'I am global y'
f()
print("back in main:")
print(y)

Output:

139

Local names shadow global names

I am global x
I am local y
back in main:
I am global y

140

Why should I care about global variables?

• Generally, the use of global variables is not
recommended:

• functions should take all necessary input as arguments
• and return all relevant output.
• This makes the functions work as independent units and is
essential to control complexity of software (good
engineering practice)

• However, sometimes the same constant or variable (such
as the mass of an object) is required throughout a
program:

• it is not good practice to define this variable more than
once (it is likely that we assign different values and get
inconsistent results)

141

Why should I care about global variables?

• in this case — in small programs — the use of (read-only)
global variables may be acceptable.

• Object Oriented Programming provides a somewhat neater
solution to this.

142

Plotting data from csv file

Data analysis example: temperature anomaly

• National Oceanic and Atmospheric Administration (NOAA)
hosts climate data at https://www.ncei.noaa.gov/access/monitoring/

climate-at-a-glance/global/time-series/globe/tavg/land_ocean/12/9/1850-2024

• provides average global temperature data since 1850
• we choose 12-month average from September to August
from 1850 to 2024 -> Download CSV

• anomaly data shows the temperature deviation from the
average 1910 to 2000.

143

https://www.ncei.noaa.gov/access/monitoring/climate-at-a-glance/global/time-series/globe/tavg/land_ocean/12/9/1850-2024
https://www.ncei.noaa.gov/access/monitoring/climate-at-a-glance/global/time-series/globe/tavg/land_ocean/12/9/1850-2024

Beginning of data file

Title: Land and Ocean Oct - Sept Average Temp Anomalies
Units: Degrees Celsius
Base Period: 1901-2000
Missing: -999
Year,Anomaly
1851,-0.14
1852,-0.07
1853,-0.07
1854,-0.11
1855,-0.06
1856,-0.11
1857,-0.23
1858,-0.17
1859,-0.09
1860,-0.15
1861,-0.32

144

Data analysis example: attempt 1 1/3

import matplotlib.pyplot as plt

read data
with open("data.csv", "tr") as f:

lines = f.readlines()

year = []
dT = []

for line in lines[5:]: # skip first 5 lines
a, b = line.split(",")
year.append(int(a)) # convert string of year to int
dT.append(float(b)) # convert string of temp to float

145

Data analysis example: attempt 1 2/3

plot data
plt.bar(year, dT, color=[0.8, 0, 0])
plt.ylabel("temperature anomaly [deg C]")
plt.xlabel("years")
plt.grid(True)
plt.savefig("anomaly1.pdf")

146

Data analysis example: attempt 1 3/3

1850 1875 1900 1925 1950 1975 2000 2025
years

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

te
m

pe
ra

tu
re

 a
no

m
al

y
[d

eg
 C

]

147

∗Data analysis example: outlook

• In this example, we store each data set in a list. Better options
are numpy.array or pandas.Series.

• Here we read the CSV file manually but there are dedicated
libraries to read CSV files.
Preferred option is read_csv() from pandas (259).

import pandas
d = pandas.read_csv('data.txt', skiprows=4, index_col=0)
d.plot.bar()

Next best is loadtxt() from numpy (221).

import numpy as np
import matplotlib.pyplot as plt
data = np.loadtxt("data.csv", delimiter=",", skiprows=5)
plt.plot(data[:,0], data[:,1]) # axes are not annotated yet

148

Catching exceptions

Exceptions example

• suppose we try to read data from a file:

with open('myfilename.txt', 'r') as f:
lines = f.readlines()

for line in lines:
print(line)

• If the file doesn’t exist, then the open() function raises
the FileNotFoundError exception:

FileNotFoundError: [Errno 2] No such file or
directory: 'myfilename.txt'↪→

149

Catching exceptions

• We can modify our code to ’catch’ this error:

1 try:
2 with open('myfilename.txt', 'r') as f:
3 lines = f.readlines()
4 except FileNotFoundError:
5 print("The file couldn't be found.")
6 else:
7 # this is executed if no exception is raised
8 for line in lines:
9 print(line)

10

which produces this message:

150

Catching exceptions

The file couldn't be found.

• The try branch (line 1) will be executed.

• Should an FileNotFoundError exception be raised, then the except
branch (starting line 4) will be executed.

• Should no exception be raised in the try branch, then the except
branch is ignored, and the program carries on starting in line .

151

Catching exceptions

Slight extension to print more detailed error message:

1 try:
2 with open('myfilename.txt', 'r') as f:
3 lines = f.readlines()
4 except FileNotFoundError as error:
5 print("The file couldn't be found.")
6 print(f"Error message: {error}")
7 else:
8 # this is executed if no exception is raised
9 for line in lines:

10 print(line)
11

152

Catching exceptions

Output:

The file couldn't be found.
Error message: [Errno 2] No such file or directory:

'myfilename.txt'↪→

153

Catching exceptions summary

• Catching exceptions allows us to take action on errors that
occur

• For the file-reading example, we could ask the user to
provide another file name if the file can’t be opened.

• Catching an exception once an error has occurred may be
easier than checking beforehand whether a problem will
occur (“It is easier to ask forgiveness than get
permission”.)

154

Overview try-except-else-finally

try:
statement that might raise an exception
pass

except SomeError:
deal with error
pass

else:
code to execute if no error is raised
pass

finally:
code that must always be executed
(for example closing a file)
pass

155

try-except example

From Python documentation

try:
f = open("myfile.txt")
s = f.readline()
i = int(s.strip())

except OSError as err:
print("OS error:", err)

except ValueError:
print("Could not convert data to an integer.")

except Exception as err:
print(f"Unexpected {err=}, {type(err)=}")
raise

The last raise re-raises the last exception as if it wasn’t caught before.

156

https://docs.python.org/3/tutorial/errors.html

Exercise

Extend print_line_sum_of_file(filename) so that if the
data file contains non-numbers (i.e. strings), these evaluate to
the value 0. For example

1 2 4 -> 7
1 cat 4 -> 5
coffee -> 0

157

Print

print function

• the print function sends content to the “standard
output” (usually the screen)

• print() prints an empty line:

>>> print()

• Given a single string argument, this is printed, followed by
a new line character:

>>> print("Hello")
Hello

158

print function

• Given multiple objects separated by commas, they will be
printed separated by a space character:

>>> print("dog", "cat", 42)
dog cat 42

• To supress printing of a new line, use the end option:

>>> print("Dog", end=""); print("Cat")
DogCat
>>>

159

print function

• Given another object (not a string), the print function will
ask the object for its preferred way to be represented as a
string (via the __str__ method):

>>> print(42)
42

With Object Oriented programming, we can customise the
__str__ method for each class.

160

Common strategy for the print command

• Construct some string s, then print this string using the
print function

>>> s = "I am the string to be printed"
>>> print(s)
I am the string to be printed

• The question is, how can we construct the string s? We
talk about string formatting.

161

String formatting

String formatting & Example 1

• Task: Given some objects, we would like to create a string
representation.

• Example 1: a variable t has the value 42.123 and we like to
print Duration is 42.123s to the screen.

• Solution: Create a formatted string “Duration is
42.123s” and pass this string to the print function:

>>> t = 42.123
>>> print(f"Duration = {t}s")
Duration = 42.123s

• With string formatting, we mean the creation of the string
“Duration is 42.123s”

162

String formatting & Example 2

• Example 2: a variable t has the value 42.123 and we like to
print Duration is 42.1s to the screen (i.e round to one
post-decimal digit.)

• Solution:

>>> t = 42.123
>>> print(f"Duration = {t:.1f}s")
Duration = 42.1s

163

String formatting: Example 2 explanation

Explanation of f"Duration = {t:.1f}s”

f" Beginning of a formatted string literal
Duration = string content

{…} content in curly braces is evaluated by Python
t take value from variable t
:f format t as a floating point number
.1 display one digit after the decimal point
s string content
" end of formatted string literal

164

String formatting examples with numbers

>>> import math
>>> p = math.pi
>>> f"{p}" # default representation (same as `str(p)`)
'3.141592653589793'
>>> str(p)
'3.141592653589793'
>>> f"{p:f}" # as floating point number (6 post-dec digits)
'3.141593'
>>> f"{p:10f}" # total number 10 characters wide
' 3.141593'
>>> f"{p:10.2f}" # 10 wide and 2 post-decimal digits
' 3.14'
>>> f"{p:.10f}" # 10 post-decimal digits
'3.1415926536'
>>> f"{p:e}" # in exponential notation
'3.141593e+00'
>>> f"{p:g}" # extra compact
'3.14159' 165

Expressions in f-strings are evaluated at run time

We can evaluate Python expressions in the f-strings:

>>> import math
>>> f"The diagonal has length {math.sqrt(2)}."
'The diagonal has length 1.4142135623730951.'

∗Advanced: Precision specifier can also be variables:

>>> width = 10
>>> precision = 4
>>> f"{math.pi:{width}.{precision}}"
' 3.142'

166

Show variable name and value with {name=}

Convenient short cut for debugging print statements:

>>> a = 10
>>> b = 20
>>> c = math.sqrt(a**2 + b**2)
>>> f"State: {a=} {b=} {c=}"
'State: a=10 b=20 c=22.360679774997898'

167

String formatting method overview

“f-strings”: most convenient and recommended method (2016):

>>> value = 42
>>> f"the value is {value}"
'the value is 42'

“new style” or “advanced” string formatting (Python 3, 2006):

>>> "the value is {}".format(value)
'the value is 42'

“% operator” (Python 1 and 2):

>>> "the value is %s" % value
'the value is 42'

168

Dictionary

Dictionaries

• Python provides another data type: the dictionary.
Dictionaries are also called “associative arrays” and “hash tables”.

• Dictionaries are unordered sets of key-value pairs.
Starting from Python 3.7, dictionaries preserve insertion order.

• An empty dictionary can be created using curly braces:

>>> d = {}

• Keyword-value pairs can be added like this:

>>> d['today'] = '22 deg C' # 'today' is key
'22 deg C' is value

>>> d['yesterday'] = '19 deg C'

169

Dictionaries

• We can retrieve values by using the keyword as the index:

>>> d['today']
'22 deg C'

170

Dictionaries

• d.keys() returns all keys:

>>> d.keys()
dict_keys(['today', 'yesterday'])

• d.values() returns all values:

>>> d.values()
dict_values(['22 deg C', '19 deg C'])

• Check if key is in dictionary:

>>> 'today' in d.keys()
True

Equivalent to

171

Dictionaries

>>> 'today' in d
True

172

Dictionary example 1: drinks order

order = {} # create empty dictionary

add orders as they come in
order['Peter'] = 'Sparkling water'
order['Paul'] = 'Cup of tea'
order['Mary'] = 'Cappuccino'

deliver order at bar
for person in order.keys():

print(f"{person} requests {order[person]}")

produces this output:

Peter requests Sparkling water
Paul requests Cup of tea
Mary requests Cappuccino

173

Iterating over dictionaries

Iterating over the dictionary itself is equivalent to iterating over the
keys. Example:

order = {} # create empty dictionary

add orders as they come in
order['Peter'] = 'Sparkling water'
order['Paul'] = 'Cup of tea'
order['Mary'] = 'Cappuccino'

iterating over keys:
for person in order.keys():

print(f"{person} requests {order[person]}")

is equivalent to iterating over the dictionary:
for person in order:

print(f"{person} requests {order[person]}")
174

Dictionary example 2: counting objects

def count_fruit(fruits):
"""Given a list of fruits (each fruit one string), return a
dictionary: each fruit is a key, and the associated value
reports how often the fruit occurred in the list of fruits.
"""
d = {} # start with empty dictionary
for fruit in fruits: # process all elements in list fruits

if fruit not in d: # this is the first time we find
the fruit in the list

d[fruit] = 1 # create an entry with key=fruit
else: # we have seen this fruit before

d[fruit] = d[fruit] + 1 # increase counter

return d

result = count_fruit(['banana', 'apple', 'banana', 'orange'])
print(result)

produces this output:

{'banana': 2, 'apple': 1, 'orange': 1} 175

Summary dictionaries

• similar to data base

• fast to retrieve value

• useful if you are dealing with two lists at the same time
(possibly one of them contains the keyword and the other the
value)

• useful if you have a data set that needs to be indexed by strings
or tuples (or other immutable objects)

• keys must be immutable (such as strings, numbers, tuples)

• values can be any Python object (including dictionaries)

176

Default function arguments

Default argument values for functions

• Motivation:
• suppose we need to compute the area of rectangles and
• we know the side lengths a and b.
• Most of the time, b=1 but sometimes b can take other
values.

• Solution 1:

def area(a, b):
return a * b

print(f"The area is {area(3, 1)}")
print(f"The area is {area(2.5, 1)}")
print(f"The area is {area(2.5, 2)}")

177

Default argument values for functions

• We can make the function more user friendly by providing
a default value for b. We then only have to specify b if it is
different from this default value:

• Solution 2 (with default value for argument b):

def area(a, b=1):
return a * b

print(f"The area is {area(3)}")
print(f"The area is {area(2.5)}")
print(f"The area is {area(2.5, 2)}")

178

Default argument values for functions

• Default parameters have to be at the end of the argument
list in the function definition.

179

Default argument values

You may have met default arguments in use before, for
example

• the print function uses end='\n' as a default value
• the open function uses mode='rt' as a default value
• the list.pop method uses index=-1 as a default

180

Keyword function arguments

Keyword argument values

• We can call functions with a “keyword” and a value. (The
keyword is the name of the variable in the function
definition.)

• Here is an example

def f(a, b, c):
print(f"{a=} {b=} {c=}")

f(1, 2, 3)
f(c=3, a=1, b=2)
f(1, c=3, b=2)

181

Keyword argument values

which produces this output:

a=1 b=2 c=3
a=1 b=2 c=3
a=1 b=2 c=3

• If we use only keyword arguments in the function call,
then we do not need to know the order of the arguments.
(This is good.)

• Choosing meaningful variable names in the function
definition makes the function more user friendly.

182

∗Disallow or enforce keyword argument use

def f(pos1, pos2, /, pos_or_kwd, *, kwd1, kwd2):
----------- ---------- ----------
| | |
| Positional or keyword |
| - Keyword only
-- Positional only

See https://www.python.org/dev/peps/pep-0570/#how-to-teach-this

183

https://www.python.org/dev/peps/pep-0570/#how-to-teach-this

∗Disallow or enforce keyword argument use

def standard_arg(arg):
print(arg)

def pos_only_arg(arg, /):
print(arg)

def kwd_only_arg(*, arg):
print(arg)

def combined_example(pos_only, /, standard, *, kwd_only):
print(pos_only, standard, kwd_only)

184

Virtual Environments venv

Virtual environment

Given an installed Python interpreter, we can create virtual
environments:

python -m venv myvirtualenv

and activate that environment (see also next slide):

• linux/MacOS: source myvirtualenv/bin/activate

• cmd.exe: myvirtualenv\Scripts\activate.bat

Why virtual environments?

• good practice: one environment per project

• better reproducibility

• can install two versions of the same library in different
environments

185

Activating virtual environments in different shells

From https://docs.python.org/3/library/venv.html:

186

https://docs.python.org/3/library/venv.html

Installing python packages with pip

PyPI

• The Python Package Index (PyPI) provides many python
packages (https://pypi.org)

• Can search the website for packages, and available
versions

• Install locally (in virtual environment) using pip

Example: install the python cowsay package:

pip install cowsay

Uninstall:

pip uninstall cowsay

187

https://pypi.org

pip commands

• pip install cowsay

• pip install cowsay==3.0

– install version 3.0

• pip uninstall cowsay

• pip install -U cowsay

– upgrade cowsay

• pip show cowsay

- show information about installed package

• pip list

- list installed packages

• pip freeze

- list installed packages in machine readable format

188

Summary virtual environments and pip commands

Summary

• create virtual environment before installing packages

• Common names for virtual environments: env, venv, .env, .venv

• use (at least) one virtual environment per project

• use

pip freeze

and

pip install -r requirements.txt

to maintain reproducible environments

See more detailed discussion at: https://fangohr.github.io/
introduction-to-python-for-computational-science-and-engineering/
18-environments.html

189

https://fangohr.github.io/introduction-to-python-for-computational-science-and-engineering/18-environments.html
https://fangohr.github.io/introduction-to-python-for-computational-science-and-engineering/18-environments.html
https://fangohr.github.io/introduction-to-python-for-computational-science-and-engineering/18-environments.html

∗Anaconda and conda packages

• Anaconda software distribution is a convenient way to install python
(and more) and python packages

• Anaconda introduced “conda“ packages
• conda packages are not limited to python packages (i.e. more generic)
• If no conda package is available for python package x, we can (i) create
and activate a conda environment, and (ii) use pip install x to
install package x from the Python Packaging Index (PyPI) via pip

Legal alert: since 2020, anaconda has changed license conditions. If
your organisation has more >250 staff, you probably need to pay
license fees to use anaconda.

Recommendation:

• use pixi (https://pixi.sh)

• if you know and like anaconda, use miniforge instead
(https://github.com/conda-forge/miniforge)

190

https://pixi.sh
https://github.com/conda-forge/miniforge

∗pixi- package management

Pixi is a package and tasks management tool that can install conda and pip
packages.

• https://pixi.sh/
• pixi stores its files in the (hidden) subfolder '.pixi'

Example:

$ pixi init # create pixi environment in this folder
$ pixi add python==3.13 numpy # request python version 3.13
$ pixi add numpy # add numpy (uses conda-forge package by default)
$ pixi add --pypi cowsay # add cowsay from PyPI (via pip)
$ pixi shell # activate pixi environment
<pixi-env> $ python
Python 3.13.0 | packaged by conda-forge | (main, Nov 27 2024, 19:18:26)
>>> import numpy
>>> import cowsay
>>>

191

https://pixi.sh/

∗For Anaconda users: interaction conda and pip

Anaconda provides packages and (conda) environments
through conda.

• Avoid mixing pip installs with conda installs, i.e.
• if conda can install all the required packages, then use that

• if conda cannot install the required package, either
• first install all that is needed/available from conda
• then install the desired packages through pip that conda
cannot provide

• afterwards, do not use conda again to install more
packages.

or (if possible)
• install all packages from pip

See also https://www.anaconda.com/blog/using-pip-in-a-conda-environment

192

https://www.anaconda.com/blog/using-pip-in-a-conda-environment

LAB4

Numpy

192

numpy

numpy

• is an interface to high performance linear algebra libraries
(such as BLAS, LAPACK, ATLAS, MKL, BLIS)

• provides
• the array object (strictly ndarray type)
• fast mathematical operations over arrays
• linear algebra, Fourier transforms, random number
generation

• Numpy is not part of the Python standard library.

193

numpy 1d-arrays (vectors)

• An (1d) array is a sequence of objects
• all objects in one array are of the same type

>>> import numpy as np # widely used convention
>>> a = np.array([1, 4, 10]) # convert any sequence to array
>>> a
array([1, 4, 10])
>>> type(a)
<class numpy.ndarray>
>>> a + 100 # arithmetic operations apply to all elements
array([101, 104, 110])
>>> a**2
array([1, 16, 100])
>>> np.sqrt(a)
array([1. , 2. , 3.16227766])
>>> a > 3 # apply >3 comparison to all elements
array([False, True, True], dtype=bool)

194

Array creation 1: from iterable

• 1d-array (vector) from iterable

>>> import numpy as np
>>> a = np.array([1, 4, 10]) # from list
>>> a
array([1, 4, 10])
>>> print(a)
[1 4 10]

• 2d-array (matrix) from nested sequences

>>> B = np.array([[0, 1.5], [10, 12]]) # from nested list
>>> B
array([[0. , 1.5],

[10. , 12.]])
>>> print(B)
[[0. 1.5]
[10. 12.]] 195

Array type

• All elements in an array must be of the same type
• For existing array, the type is the dtype attribute

>>> a.dtype
dtype('int64')
>>> B.dtype
dtype('float64')

• We can fix the type of the array when we create the array, for
example:

>>> a2 = array([1, 4, 10], float)
>>> a2
array([1., 4., 10.])
>>> a2.dtype
dtype('float64')

196

Important array types

• For numerical calculations, we normally use double floats
which are known as float64 or short float:

>>> a2 = array([1, 4, 10], float)
>>> a2.dtype
dtype('float64')

• This is also the default type for zeros and ones.
• A full list is available at
http://docs.scipy.org/doc/numpy/user/basics.types.html

197

http://docs.scipy.org/doc/numpy/user/basics.types.html

Array size

The size of an array is the number of items:

>>> a.size
3
>>> B.size
4

The number of bytes per item is the itemsize:

>>> a.itemsize # dtype is int64 = 64 bit = 8 byte
8
>>> B.itemsize # dtype is float64 = 64 bit = 8 byte
8

198

Array size

The total number of bytes of an array is given through the nbytes
attribute:

>>> a.nbytes
24
>>> B.nbytes
32

199

∗Diving in with numpy.info

>>> z = np.arange(0, 12, 1).reshape(3, 4)
>>> z
array([[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]])

>>> z.dtype
dtype('int64')
>>> np.info(z)
class: ndarray
shape: (3, 4)
strides: (32, 8) # 32 bytes from row to row
itemsize: 8
aligned: True
contiguous: True
fortran: False
data pointer: 0x6000012dc060
byteorder: little
byteswap: False
type: int64
>>> z.nbytes
96 200

Array creation 2: arange

• arange([start,] stop[, step,]) is inspired by range:
create array from start up to but not including stop

>>> np.arange(10)
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> np.arange(10, dtype=float)
array([0., 1., 2., 3., 4., 5., 6., 7., 8., 9.])

• arange provides non-integer increments:

>>> np.arange(0, 0.5, 0.1)
array([0. , 0.1, 0.2, 0.3, 0.4, 0.5])

201

Array creation 3: linspace

• linspace(start, stop, num=50) provides num points
linearly spaced between start and stop (including stop):

>>> np.linspace(0, 10, 11)
array([0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10.])
>>> np.linspace(0, 1, 11)
array([0. , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.])

202

Array shape

The shape is a tuple that describes

• (i) the dimensionality of the array (that is the length of the
shape tuple) and

• (ii) the number of elements for each dimension (“axis”)

Example:

>>> a.shape
(3,) # 1d array with 3 elements
>>> B.shape
(2, 2) # 2d array with 2 x 2 elements

203

Array shape

Can use shape attribute to change shape:

>>> B
array([[0. , 1.5],

[10. , 12.]])
>>> B.shape
(2, 2)
>>> B.shape = (4,)
>>> B
array([0. , 1.5, 10. , 12.])

Number of dimension also available in attribute ndim:

204

Array shape

>>> B.ndim
2
>>> len(B.shape) # same as B.ndim
2

205

Array indexing (1d arrays)

Regarding indexing, (1d)-Arrays behave like sequences:

>>> x = np.arange(0, 10, 2)
>>> x
array([0, 2, 4, 6, 8])
>>> x[3]
6
>>> x[4]
8
>>> x[-1] # last element
8

206

Array indexing (2d arrays)

>>> C = np.arange(12)
>>> C
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])
>>> C.shape = (3, 4)
>>> C
array([[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]])

>>> C[0, 0] # first index for rows, second for columns
0
>>> C[2, 0]
8
>>> C[2, -1] # row 3, last column
11
>>> C[-1, -1] # last row, last column
11 207

Array slicing (1d arrays)

Double colon operator ::
Read as START:END:INDEXSTEP

If either START or END are omitted, the respective ends of the
array are used. INDEXSTEP defaults to 1.

Examples:

208

Array slicing (1d arrays)

>>> y = np.arange(10)
>>> y
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> y[0:5] # slicing (default step is 1)
array([0, 1, 2, 3, 4])
>>> y[0:5:1] # equivalent (step 1)
array([0, 1, 2, 3, 4])
>>> y[0:5:2] # slicing with index step 2
array([0, 2, 4])
>>> y[:5:2] # from the beginning
array([0, 2, 4])
>>> y[0:5:-1] # negative index step size
array([], dtype=int64)
>>> y[5:0:-1] # from end to beginning
array([5, 4, 3, 2, 1])
>>> y[5:0:-2] # in steps of two
array([5, 3, 1])
>>> y[::-1] # reverses array elements
array([9, 8, 7, 6, 5, 4, 3, 2, 1, 0])

[Double colon operator works for all sequences.]

209

Array slicing (2d)

Slicing for 2d (or higher dimensional arrays) is analog to 1-d
slicing, but applied to each component. Common operations
include extraction of a particular row or column from a matrix:

>>> C
array([[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]])

>>> C[0, :] # row with index 0
array([0, 1, 2, 3])
>>> C[:, 1] # column with index 1

(i.e. 2nd col)
array([1, 5, 9])

210

Array creation 4: zeros and ones

Other useful methods are zeros and ones which accept a
desired matrix shape as the input:

>>> np.zeros((2, 4)) # two rows, 4 cols
array([[0., 0., 0., 0.],

[0., 0., 0., 0.]])
>>> np.zeros((4,)) # (4,) is tuple
array([0., 0., 0., 0.])
>>> np.zeros(4) # 4 works as well
array([0., 0., 0., 0.])

>>> np.ones((2, 7))
array([[1., 1., 1., 1., 1., 1., 1.],

[1., 1., 1., 1., 1., 1., 1.]])

211

Array creation 5: eye and diag

Create Identity matrix eye (name from capital I used in
equations):

>>> np.eye(2)
array([[1., 0.],

[0., 1.]])

Create diagonal matrix diag:

>>> np.diag([10, 20, 30])
array([[10, 0, 0],

[0, 20, 0],
[0, 0, 30]])

212

∗Views of numpy arrays

Slicing a numpy array results in a view of the data (not a copy).

>>> C = np.arange(12).reshape(3, 4)
>>> C
array([[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]])

>>> view_C = C[0, :]
>>> view_C
array([0, 1, 2, 3])
>>> C[0, 0] = 42
>>> view_C
array([42, 1, 2, 3])

Often, this is desired — in particular when the arrays are large.

213

∗array.base points to the view’s data

• x.base == None means x is not a view.
• x.base is y means x is a view of y.

Example:

>>> x = np.arange(10)
>>> x
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> print(x.base)
None
>>> y = x[::2] # create a view with every 2nd element
>>> print(y.base)
[0 1 2 3 4 5 6 7 8 9]
>>> y.base is x
True
>>> np.shares_memory(x, y) # do x and y share memory?
True 214

Creating copies of numpy arrays

Create copy of 1d array:

>>> y = np.arange(10)
>>> y
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> copy_y = y.copy()
>>> y[0] = 42
>>> copy_y
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> print(copy_y.base)
None
>>> np.shares_memory(y, copy_y)
False

215

Solving linear systems of equations

np.linealg.solve(A, b) solves Ax = b for a square matrix A and
given vector b, and returns the solution vector x. Example:

Ax =

(
1 0
0 2

)(
x0
x1

)
=

(
1
4

)
= b

is equivalent to the system of linear equations:

1x0 + 0x1 = 1
0x0 + 2x1 = 4

>>> A = np.array([[1, 0], [0, 2]])
>>> b = np.array([1, 4])
>>> x = np.linalg.solve(A, b)
>>> x
array([1., 2.])
>>> np.dot(A, x) # Computing A*x
array([1., 4.]) # this should be b

216

Other linear algebra tools

help(np.linalg) provides an overview, including

• det to compute the determinant
• eig to compute eigenvalues and eigenvectors
• pinv to compute the (pseudo) inverse of a matrix
• svd to compute a singular value decomposition

217

Can I always use numpy instead of math?

Use numpy instead of math so f accept scalars (int, float, complex) and numpy arrays.

import numpy as np

def f(x):
"""Accepts scalar x or numpy array x and returns exp(-x) * x^2"""
return np.exp(-x) * x**2

x = 0.5
print(f"Calling with {x=} and {type(x)=}")
print(f" -> {f(x)=:f} and {type(f(x))=}.")
x = np.array([0.5, 1.0])
print(f"Calling with {x=} and {type(x)=}")
print(f" -> {f(x)=} and {type(f(x))=}.")

Ouput:

Calling with x=0.5 and type(x)=<class 'float'>
-> f(x)=0.151633 and type(f(x))=<class 'numpy.float64'>.

Calling with x=array([0.5, 1.]) and type(x)=<class 'numpy.ndarray'>
-> f(x)=array([0.15163266, 0.36787944]) and type(f(x))=<class 'numpy.ndarray'>.

Note that for numpy.exp(x) for a scalar x is slower than math.exp(x). 218

numpy performance optimisation

• numpy is fast if number of elements is large: for an array
with one element, np.sqrt will be slower than math.sqrt

• avoid loops (formulate instead as matrix operation)
• numpy can be up to ∼100 times faster than naive Python
• ∗avoid copies of data (i.e. use views)

219

arrays are often faster than loops

Without arrays (need to use loop):

In [1]: %%timeit
...: N = 5000
...: mysum1 = 0
...: for i in range(N):
...: x = 0.1*i
...: mysum1 += math.sqrt(x)*math.sin(x)
...:

657 mu s +- 17.8 mu s per loop (7 runs, 1,000 loops each)

Optimised with numpy array:

In [2]: %%timeit
...: N = 5000
...: x = np.arange(0, N)*0.1
...: mysum2 = np.sum(np.sqrt(x)*np.sin(x))
...:

46.9 mu s +- 19.8 mu s per loop (7 runs, 10,000 loops each)

657µ seconds version 46.9µ seconds: factor ∼ 14 220

Reading data from text files with numpy

import numpy as np

def write_data_file(filename):
"""create test data file with this content:
0 0
1 1
2 4
3 9
"""
with open(filename, 'wt') as f:

for i in range(0, 4):
f.write(f"{i} {i**2}\n")

write_data_file('test-data.txt')
read white-space separated data file with numpy.loadtxt:
data = np.loadtxt('test-data.txt')
print(data)

221

Reading data from text files with numpy

Ouput:

[[0. 0.]
[1. 1.]
[2. 4.]
[3. 9.]]

222

Revisit NOAA data from CSV file (numpy)

import matplotlib.pyplot as plt
import numpy as np

read data
data = np.loadtxt("data.csv", delimiter=",", skiprows=5)
year = data[:, 0]
dT = data[:, 1]

plot data
plt.bar(year, dT, color=[0.8, 0, 0])
plt.ylabel("temperature anomaly [deg C]")
plt.xlabel("years")
plt.grid(True)
plt.savefig("anomaly1.pdf")

Creates plot on slide 147.

223

Summary

• numpy provides fast array operations
• elements in the array have the same type (typically a
numerical type)

• conversion options include:
• can create array from sequence s with a = np.array(s).
• can create list from array with a.tolist()

• ∗data is stored contiguously in memory (if possible)

224

Further reading for numpy

• Consult Numpy documentation if used outside this course.
Start here:

• Basics: https://numpy.org/doc/stable/user/absolute_
beginners.html

• Quickstart:
https://numpy.org/doc/stable/user/quickstart.html

• Matlab users may want to read Numpy for Matlab Users

225

http://www.numpy.org
https://numpy.org/doc/stable/user/absolute_beginners.html
https://numpy.org/doc/stable/user/absolute_beginners.html
https://numpy.org/doc/stable/user/quickstart.html
https://docs.scipy.org/doc/numpy/user/numpy-for-matlab-users.html

IPython, Jupyter, Editors and IDEs

IPython (interactive python)

• Interactive Python (ipython) prompt
• command history (across sessions), auto completion
• special commands:

• %run myfile will execute file myfile.py in current name
space

• %reset can delete all objects if required
• use range? instead of help(range)
• %logstart will log your session
• %prun will profile code
• %timeit can measure execution time
• %load loads file for editing (also from URL)
• %debug start debugger after error

• Much more (read at http://ipython.org)

226

http://ipython.org

Jupyter Notebook useful for research and data science

• Used to be the IPython Notebook, but now supports many
more languages (JUlia, PYThon, ER→ JUPYTER)

• Notebook is executable document hosted in web browser.
• Home page http://jupyter.org

Great value for research
• Fangohr etal: Data Exploration and Analysis with Jupyter Notebooks
10.18429/JACoW-ICALEPCS2019-TUCPR02 (2020)

• Granger and Perez: Thinking and Storytelling with Jupyter,
10.1109/MCSE.2021.3059263 (2021)

• Fangohr, Di Pierro and Kluyver: Jupyter in Computational Science,
10.1109/MCSE.2021.3059494 (2021)

• Beg, Fangohr, etal: Using Jupyter for reproducible scientific workflows,
Computing in Science and Engineering 23, 36-46
10.1109/MCSE.2021.3052101 (2021)

• Blog entry: Jupyter for Computational Science and Data Science (2022) 227

http://jupyter.org
https://doi.org/10.18429/JACoW-ICALEPCS2019-TUCPR02
https://doi.org/10.1109/MCSE.2021.3059263
https://doi.org/10.1109/MCSE.2021.3059494
https://doi.org/10.1109/MCSE.2021.3052101
https://fangohr.github.io/blog/jupyter-for-computational-science-and-data-science.html

Integrated Development Environments (IDEs) and editors

Including

• Spyder
• PyCharm (commercial)
• Visual studio code
• Emacs
• vim and Emacs→ Spacemacs
• vim (vi)
• …

228

https://www.spacemacs.org

Matplotlib

Matplotlib

• Matplotlib tries to make easy things easy and hard things
possible

• Matplotlib is a 2D plotting library which produces
publication quality figures (increasingly also 3d)

• Matplotlib can be fully scripted but interactive interface
available

229

Figure and axes windows

• We can have multiple subplots in one figure (fig)

• each has one axes object (with x-axis and y-axis)

• use plt.subplots to create figure and list of axes objects (example
next slide)

0 1 2 3
x-label for ax1

0.0

0.2

0.4

0.6

0.8

1.0

ax1

0 1 2 3
x-label for ax2

0.4

0.2

0.0

0.2

0.4

0.6

0.8

ax2

Figure with two sublots (called ax1 and ax2)

230

∗Figure and axes windows - source

import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(0, 3.14, 100)
y1 = np.sin(x)
y2 = np.sin(x * 5) * np.exp(-x)

fig, axes = plt.subplots(1, 2, figsize=(8, 4)) # 1 row, 2 cols
ax1, ax2 = axes # extract the two axes objects
ax1.plot(x, y1) # plot curve in left subplot
ax1.set_xlabel("x-label for ax1")
ax2.plot(x, y2) # plot curve in right subplot
ax2.set_xlabel("x-label for ax2")
ax1.text(1.5, 0.5, "ax1", weight="bold", fontfamily="monospace")
ax2.text(1.5, 0.3, "ax2", weight="bold", fontfamily="monospace")
fig.suptitle("Figure with two sublots (called ax1 and ax2)")
fig.savefig("matplotlib-subplot-example.pdf")

231

matplotlib.pyplot - example 1

import matplotlib.pyplot as plt
import numpy as np

xs = np.linspace(0, 10, 100) # create some data
ys = np.sin(xs)

fig, ax = plt.subplots() # one figure, one subplot
ax.plot(xs, ys)
fig.savefig("pyplot-demo1.pdf")

0 2 4 6 8 10

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

232

matplotlib.pyplot - example 2: labels and grid

fig, ax = plt.subplots(figsize=(6, 4))
ax.plot(xs, ys, 'o-', linewidth=2, color='orange')

ax.grid(True)
ax.set_xlabel('x')
ax.set_ylabel('y=f(x)')
fig.savefig("pyplot-demo2.pdf")

0 2 4 6 8 10
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

y=
f(x

)

233

matplotlib.pyplot - example 3: two curves

xs = np.linspace(0, 10, 100) # create some data
ys1 = np.sin(xs)
ys2 = np.sin(xs)**2
fig, ax = plt.subplots(figsize=(6, 4)) # plot data
ax.plot(xs, ys1, '--', color='orange', label='sin(x)')
ax.plot(xs, ys2, '-', color='darkgreen', label='sin(x)^2')
ax.set_xlabel('x')
ax.legend()
fig.savefig("pyplot-demo3.pdf")

0 2 4 6 8 10
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

sin(x)
sin(x)^2

234

Matplotlib.pyplot interface

• Matplotlib.pyplot is an object oriented plotting interface
• Very fine grained control over plots
• recommended to use

235

matplotlib.pyplot - references

Matplotlib.pyplot
Matplotlib.pyplot is an object oriented plotting interface.

• prefer this over pylab
• Matplotlib tutorials at
https://matplotlib.org/stable/tutorials/index

• Check gallery at
https://matplotlib.org/stable/gallery/index.html

• Nicolas Rougier. Scientific Visualization: Python +
Matplotlib. Nicolas P. Rougier. 2021, 978-2- 9579901-0-8.
hal-03427242, online at https://github.com/rougier/
scientific-visualization-book

236

https://matplotlib.org/stable/tutorials/index
https://matplotlib.org/stable/gallery/index.html
https://github.com/rougier/scientific-visualization-book
https://github.com/rougier/scientific-visualization-book

Matplotlib in IPython QTConsole and Notebook

Within the IPython console (for example in Spyder) and the
Jupyter Notebook, use

• %matplotlib inline to see plots inside the console
window, and

• %matplotlib qt to create pop-up windows with the plot.
(May need to call matplotlib.show().) We can
manipulate the view interactively in that window.

• In Spyder, the plots appear by default in the “plots” pane.
• Within the Jupyter notebook, you can use %matplotlib
notebook which embeds an interactive window in the note
book.

237

Optimisation

Optimisation example: garden fence

garden
area A

a

b

fence

Optimisation problem:

• The shape of the fenced area must be a rectangle (side
lengths a and b).

• We have L = 100m of fence available.
• We want to maximise the enclosed garden area A = ab.
• What are the optimal values for a and b?

238

Optimisation example: strategy

garden
area A

a

b

fence

How do we find a and b that optimise the area A(a,b)?

• We know L = 100m = 2a+ 2b
• So we have only one unknown: when a is fixed, then b is
given by b = (L− 2a)/2.

• Change a systematically to find best largest value of A.

239

Optimisation example: attempt 1 1/3

import matplotlib.pyplot as plt

def fenced_area(a):
"""Return area for garden with side length a.

Given the side length a of a rectangular garden fence
(with side lengths a and b), compute what side length
b can be used for a total fence length of 100m.
Return the associated area.
"""
L = 100 # total length of fence in metre
for a given a, what is length b to use all 100m?
L = 2*a + 2b => b = (L - 2a) / 2
b = (L - 2*a) / 2

240

Optimisation example: attempt 1 2/3

main program
side_lengths = [] # collect the side length a
areas = [] # collect the associated areas

vary side length of fence a [in metres]
for a in range(10, 40, 5):

side_lengths.append(a)
areas.append(fenced_area(a))

plt.plot(side_lengths, areas, '-o')
plt.xlabel('a [m]')
plt.ylabel('garden area [m^2]')
plt.grid(True)
plt.savefig('optimisation-fence.pdf')

241

Optimisation example: attempt 1 3/3

10 15 20 25 30 35
a [m]

400

450

500

550

600

ga
rd

en
 a

re
a

[m
^2

]

242

Optimisation example: “educational example”

We show one strategy to solve an optimisation problem with a
simple example so we can focus on the strategy.

For the given fence problem:

• we can guess the correct answer
• there are better ways to find the result with the computer
• we can find the correct answer analytically

Analytical solution

• A(a) = ab = a (L−2a)
2 = aL

2 − a2

• Find maximum using dA
da

!
= 0 : dA

da = L
2 − 2a⇒ a = L

4

• b = L−2a
2 ⇒ b = L

4

• Check d2A
da2 = −2 < 0⇒ A

(L
4
)
is maximum. ✓

243

LAB4

Testing

243

Testing - context

• Writing software is easy – debugging it is hard
• When debugging, we always test
• Later code changes may require repeated testing
• Best to automate testing by writing functions that contain
tests

• A big topic: here we provide some key ideas
• We use Python extension tool py.test, see pytest.org

244

http://pytest.org

Example 1: Source code of mixstrings.py on following pages.

• a function mixstrings is defined together with multiple
test_ functions

• tests are run if mixstrings.py is the top-level (tests are
not run if file is imported)

• no output if all tests pass (“no news is good news”)
• More common approach than calling tests from __main__:
use py.test mixstrings.py

245

1 def mixstrings(s1, s2):
2 """Given two strings s1 and s2, create and return a new
3 string that contains the letters from s1 and s2 mixed:
4 i.e. s[0] = s1[0], s[1] = s2[0], s[2] = s1[1],
5 s[3] = s2[1], s[4] = s1[2], ...
6 If one string is longer than the other, the extra
7 characters in the longer string are ignored.
8

9 Example:
10

11 >>> mixstrings("Hello", "12345")
12 'H1e2l3l4o5'
13 """
14 # what length to process
15 n = min(len(s1), len(s2))
16 # collect chars in this list
17 s = []
18

19 for i in range(n):
20 s.append(s1[i])
21 s.append(s2[i])
22 return "".join(s)
23

246

24 def test_mixstrings_basics():
25 assert mixstrings("hello", "world") == "hweolrllod"
26 assert mixstrings("cat", "dog") == "cdaotg"
27

28 def test_mixstrings_empty():
29 assert mixstrings("", "") == ""
30

31 def test_mixstrings_different_length():
32 assert mixstrings("12345", "123") == "112233"
33 assert mixstrings("", "hello") == ""
34

35 if __name__ == "__main__":
36 test_mixstrings_basics()
37 test_mixstrings_empty()
38 test_mixstrings_different_length()

247

py.test (also known as pytest)

We can use the standalone program py.test to run test functions in any
python program:

• py.test will look for functions with names starting with test_
• and execute each of those as one test.
• Example:

$> py.test -v mixstrings.py
============================= test session starts ===========
platform darwin -- Python 3.10.2, pytest-7.1.2
collected 3 items

mixstrings.py::test_mixstrings_basics PASSED [33%]
mixstrings.py::test_mixstrings_empty PASSED [66%]
mixstrings.py::test_mixstrings_different_length PASSED [100%]
============================== 3 passed in 0.01s ============

• This works, even if the file to be tested (here mixstrings.py) does not refer to
pytest at all.

248

*Calling pytest from a python file

If desired, one can trigger execution of pytest from python file.

Example:

import pytest

<parts of the file missing here>

if __name__ == "__main__":
pytest.main(["-v", "mixstrings.py"])

However, it is much more common to use py.test to discover and execute the tests
(often across multiple files).

249

Testing (partially) defines functionality

• Just being given the tests for a function, often defines the
functions behaviour.

• Example:

def test_reverse_words_empty():
assert reverse_words("") == ""

def test_reverse_words_one_word():
assert reverse_words("Python") == "Python"

def test_reverse_words_simple():
assert reverse_words("Hello world!") == "world! Hello"

def test_reverse_words_with_punctuation():
assert reverse_words("Hi, there!") == "there! Hi,"

250

Numpy usage examples

Performance gains with numpy

• Calculations using numpy are faster (∼ 100 times) than
using pure Python (see example next slide).

• Imagine we need to compute the mexican hat function
with many points

4 2 0 2 4

0.5

0.0

0.5

1.0

1.5 Mexican hat function

251

Performance gains with numpy

1 """Demo: practical use of numpy (mexhat-numpy.py)"""
2
3 import datetime
4 import math
5 import sys
6 import time
7 import matplotlib.pyplot as plt
8 import numpy as np
9

10 N = 100000
11
12
13 def mexhat_py(t, sigma=1):
14 """Computes Mexican hat shape, see http://en.wikipedia.org/wiki/Mexican_hat_wavelet
15 for equation (13 Dec 2011)"""
16 c = 2.0 / math.sqrt(3 * sigma) * math.pi**0.25
17 return c * (1 - t**2 / sigma**2) * math.exp(-(t**2) / (2 * sigma**2))
18
19
20 def mexhat_np(t, sigma=1):
21 """Computes Mexican hat shape using numpy"""
22 c = 2.0 / math.sqrt(3 * sigma) * math.pi**0.25
23 return c * (1 - t**2 / sigma**2) * np.exp(-(t**2) / (2 * sigma**2))

252

Performance gains with numpy

26 def test_is_really_the_same():
27 """Checking whether mexhat_np and mexhat_py produce the same results."""
28 xs1, ys1 = loop1()
29 xs2, ys2 = loop2()
30 deviation = math.sqrt(sum((ys1 - ys2) ** 2))
31 print("error:", deviation)
32 assert deviation < 1e-14
33
34
35 def loop1():
36 """Compute list ys with mexican hat function in ys(xs), returns tuple (xs, ys)"""
37 xs = np.linspace(-5, 5, N)
38 ys = []
39 for x in xs:
40 ys.append(mexhat_py(x))
41 return xs, ys
42
43
44 def loop2():
45 """As loop1, but uses numpy to be faster."""
46 xs = np.linspace(-5, 5, N)
47 return xs, mexhat_np(xs)

253

Performance gains with numpy

50 def time_this(f):
51 """Call f, measure and return number of seconds execution of f() takes"""
52 starttime = time.time()
53 f()
54 stoptime = time.time()
55 return stoptime - starttime
56
57
58 def make_plot(filename):
59 fig, ax = plt.subplots()
60 xs, ys = loop2()
61 ax.plot(xs, ys, label="Mexican hat function")
62 ax.legend()
63 fig.savefig(filename)
64
65
66 def main():
67 test_is_really_the_same()
68 make_plot("mexhat-numpy.pdf")
69 time1 = time_this(loop1)
70 time2 = time_this(loop2)
71 print(f"Numpy version is {time1 / time2:.1f} times faster")

254

Performance gains with numpy

72 print(f"Executed at {datetime.datetime.now()!s} ", end="")
73 print(f"with Python {sys.version_info.major}.{sys.version_info.minor}")
74
75
76 if __name__ == "__main__":
77 main()

Produces this output:

error: 1.159820840535702e-15
Numpy version is 81.7 times faster
Executed at 2025-01-19 13:19:42.313469 with Python 3.12

• A lot of the source code above is focussed on measuring the execution
time.

• Within IPython, we could just have used %timeit loop1() and
%timeit loop2() to get to the timing information.

255

0d-arrays with only one item convert to scalars

>>> import numpy as np
>>> x = np.array([81., 100.]) # 1d-numpy array with two elements
>>> x.shape
(2,)
>>> np.sqrt(x)
array([9., 10.])
>>> math.sqrt(x) # fails: math.sqrt wants a scalar (e.g. float)
[...]
TypeError: only length-1 arrays can be converted to Python scalars
>>> y = np.array(81.0) # this is a 0d-numpy array
>>> y.shape
()
>>> math.sqrt(y) # behaves like a python float
9.0
>>> type(math.sqrt(y))
<class 'float'>

256

0d-arrays with only one item convert to scalars

This allows us to write functions f(x) that can take an input argument x
which can either be a numpy.array or a scalar. The mexhat_np(t) function
is such an example:

>>> a = mexhat_np(0); print(f"{a=}")
a=1.537293661343647

>>> a = mexhat_np(np.array([0])); print(f"{a=}")
a=array([1.53729366])

>>> a = mexhat_np(np.linspace(0, 1, 3)); print(f"{a=}")
a=array([1.53729366, 1.01749267, 0.])

257

Pandas

Pandas

• de-facto standard in data science (and maschine learning)
• builds on numpy
• convenient handling of multi-dimensional data sets
• important data structures: Series and DataFrame

• excellent import and export functionality, including csv
and xlsx.

• many, many, many parameters, functions, tools (Can’t
know them all)

• for data cleaning and data exploration typically used in
Juptyter Notebook

See https://fangohr.github.io/introduction-to-python-for-computational-science-and-engineering/
17-pandas.html

258

https://fangohr.github.io/introduction-to-python-for-computational-science-and-engineering/17-pandas.html
https://fangohr.github.io/introduction-to-python-for-computational-science-and-engineering/17-pandas.html

Revisit NOAA data from CSV file (pandas)

import pandas as pd
import matplotlib.pyplot as plt

df = pd.read_csv('data.csv', skiprows=4, index_col=0)
df.plot() # create line-plot
plt.savefig("anomaly1-pandas-plot.pdf")

more fine grained control - use matplotlib as usual
plt.close() # start new plot
year = df.index
dT = df['Anomaly']
plt.bar(year, dT, color=[0.8, 0, 0])
plt.ylabel("temperature anomaly [deg C]")
plt.xlabel("years")
plt.grid(True)
plt.savefig("anomaly1-pandas.pdf")

259

Revisit NOAA data from CSV file (pandas)

Creates plot on slide 147.

260

Common Computational Tasks

Overview common computational tasks

• Data file processing, python, numpy & pandas

• Data cleaning, data engineering, tabular data (pandas)
• Linear algebra fast arrays (numpy)
• Random number generation and Fourier transforms
(numpy)

• Interpolation of data (scipy.interpolate.interp)
• Fitting a curve to data (scipy.optimize.curve_fit)
• Integrating a function numerically
(scipy.integrate.quad)

• Integrating a ordinary differential equation numerically
(scipy.integrate.solve_ivp)

261

Overview common computational tasks

• Finding the root of a function (scipy.optimize.fsolve,
scipy.optimize.brentq)

• Minimising or maximising a function
(scipy.optimize.fmin)

• Symbolic manipulation of terms, including integration,
differentiation and code generation (sympy)

All in the following (third party) python packages:

scipy, numpy, pandas, sympy

262

Optimisation

Optimisation (Minimisation)

• Optimisation typically described as: given a (“objective”)
function f(x), find xm so that f(xm) is the (local) minimum
of f.

• Optimisation algorithms need to be given a starting point
(initial guess x0 as close as possible to xm)

• Minimum position x obtained may be local (not global)
minimum

To maximise a function f(x), create a second function
g(x) = −f(x) and minimise g(x).

263

Optimisation example: parabola

from scipy import optimize

def f(x):
"""parabola - minimum at x=0"""
return x**2

minimum = optimize.fmin(f, 1)
print("======= Result: ==========")
print(minimum)

Code produces this output:

Optimization terminated successfully.
Current function value: 0.000000
Iterations: 17
Function evaluations: 34

======= Result: ==========
[-8.8817842e-16] 264

Optimisation example: garden fence

garden
area A

a

b

fence

10 15 20 25 30 35
a [m]

400

450

500

550

600

ga
rd

en
 a

re
a

[m
^2

]

265

Optimisation example: garden fence
from scipy.optimize import fmin

def fenced_area(a):
"""Return area for garden with side length a.

Given the side length a of a rectangular garden fence
(with side lengths a and b), compute what side length
b can be used for a total fence length of 100m.
Return the associated area.
"""
L = 100 # total length of fence in metre
for a given a, what is length b to use all 100m?
L = 2*a + 2b => b = (L - 2a) / 2
b = (L - 2*a) / 2
return a*b # area that fence encloses

def objective_function(a):
return -1*fenced_area(a)

main program
a0 = 10 # m, initial guess for fence length of a
a_opt = fmin(objective_function, a0)
print("======= Result: ==========")
print(a_opt)

266

Optimisation example: garden fence

Code produces this output:

Optimization terminated successfully.
Current function value: -625.000000
Iterations: 22
Function evaluations: 44

======= Result: ==========
[25.]

267

Optimisation example: multiple minima
1 import numpy as np
2 from scipy.optimize import fmin
3 import matplotlib.pyplot as plt
4
5 def f(x): # objective function
6 return np.cos(x) - 3 * np.exp(-((x - 0.2) ** 2))
7
8 # find minima of f(x),
9 # starting from 1.0 and 2.0 respectively

10 minimum1 = fmin(f, 1.0)
11 print("Start search at x=1., minimum is", minimum1)
12 minimum2 = fmin(f, 2.0)
13 print("Start search at x=2., minimum is", minimum2)
14
15 # plot function
16 x = np.arange(-10, 10, 0.1)
17 y = f(x)
18 fig, ax = plt.subplots()
19 ax.plot(x, y, label=r"$\cos(x)-3e^{-(x-0.2)^2}$")
20 ax.set_xlabel("x")
21 ax.set_xlabel("$f(x)$")
22 ax.grid()
23 ax.axis([-5, 5, -2.2, 0.5])
24
25 # add minimum1 to plot

268

Optimisation example: multiple minima
26 ax.plot(minimum1, f(minimum1), "vr", label="minimum 1")
27 # add start1 to plot
28 ax.plot(1.0, f(1.0), "or", label="start 1")
29
30 # add minimum2 to plot
31 ax.plot(minimum2, f(minimum2), "vg", label="minimum 2")
32 # add start2 to plot
33 ax.plot(2.0, f(2.0), "og", label="start 2")
34
35 ax.legend(loc="lower left")
36 fig.savefig("fmin1.pdf")

Code produces this output:

Optimization terminated successfully.
Current function value: -2.023866
Iterations: 16
Function evaluations: 32

Start search at x=1., minimum is [0.23964844]
Optimization terminated successfully.

Current function value: -1.000529
Iterations: 16
Function evaluations: 32

Start search at x=2., minimum is [3.13847656]

269

Optimisation example: multiple minima

4 2 0 2 4
f(x)

2.0

1.5

1.0

0.5

0.0

0.5

cos(x) 3e (x 0.2)2

minimum 1
start 1
minimum 2
start 2

270

commit e77aa60505f23c28a6af95797d85375013d89201
Author: Hans Fangohr <fangohr@users.noreply.github.com>
Date: Sun Jan 19 11:06:33 2025 +0100

improve question

270

	Python for Computational Science
	Part 1
	First steps with Python
	Introspection (dir)
	Defining functions
	About Python
	Using modules
	Conditionals, if-else
	Raising exceptions
	Sequences
	Loops
	Style guide for Python code
	Reading and writing files
	Writing modules
	Name spaces, global and local variables
	Plotting data from csv file
	Catching exceptions
	Print
	String formatting
	Dictionary
	Default function arguments
	Keyword function arguments
	Virtual Environments venv
	Installing python packages with pip
	Numpy
	IPython, Jupyter, Editors and IDEs
	Matplotlib
	Optimisation
	Testing
	Numpy usage examples
	Pandas
	Common Computational Tasks
	Optimisation

