ScECAL + AHCAL Combined Analysis

Detailled MC simulations for the ScECAL

Oskar Hartbrich CALICE Meeting KEK, 20.04.2015

BERGISCHE UNIVERSITÄT WUPPERTAL

Introduction

ScECAL + AHCAL Testbeam FNAL 2009

Muons, electrons, pions 2-32GeV

ScECAL EM analysis nearly complete

- CAN 16c, paper in progress
- Simulation not very detailed, not fully validated
- Step-by-step to a realistic simulation
 - Sensor effects
 - Single cell spectra
 - Shower profiles
 - Reponse & resolution
- > Planned: Combined scintillator system analysis
 - Pion response and resolution (OH)
 - Particle separation with shower shapes (Mathias Goetze, BU Wuppertal)

Digitisation

- Previously used raw Mokka depositions
- SiPM: finite number of pixels
 - Quantisation → statistics
 - Saturation
 - Noise (from data)
- > Implemented new digitisation processor

- > Good agreement between muon spectra
 - Data slightly wider than MC
 Strip inhomogonaity act incl
 - \rightarrow Strip inhomogeneity not included

DES

EM Shower Cell Spectra

- Compare single cell hit spectra
 - Tight CoG selection → low statistics
- Superficial upstream material
 - Beamline instrumentation modelled by 5mm Al plate in front of first layer
 - \rightarrow Excellent description of cell spectra in the first layers

EM Shower Cell Spectra

> Good description also for deeper layers

- Correct description of saturation effects?
- Single outliers are expected
 - Calibration
 - Not all calibration parameters available cellwise

EM Shower Profile

> 20GeV Run: Good description

- Good agreement in energy sum
- Effective electron selection
- Small difference 0mm/5mm AI

DESY

EM Schauerprofil

> 4GeV Run: Worse description

- Energy sum too low in simulation
- 5mm Al plate shifts profile in the correct direction, though not enough
- No clean electron selection → pion contamination
- Additional diffuse energy particles?

Response/Linearity

> Only one run per energy simulated, limited statistics

- No systematics yet
- > Good linearity in range 2-32GeV
 - <1.7% (<0.5%) residuals in data (MC)</p>

> Fits: Excellent description of slope

- Data: 129.9(±0.01)MIP/GeV
 +23.2 MIP
- MC: 130.7(±0.02) MIP/Gev
 -3.7 MIP
- Constant: beam contamination?

WUPPERTAL

EM Auflösung

> Only one run per energy simulated, limited statistics

No systematics yet

Single resolutions slightly worse in MC

Assumed beam momentum uncertainty correct?

> Fits: Stochastic term slightly higher in MC

- Daten: 12.72(±0.06)% stoch.
 +1.15(±0.04)% const.
- MC: 13.46(±0.08)% stoch.
 +0.97(±0.09)% const.
- Full run MCs in production at Uni Shinshu

Sumary & Outlook

Summary

- Full SiPM digitisation implemented for ScECAL
- Sood agreement on cell spectra, shower profile
 - Limited by electron selection purity at low energies
- Good agreement in response
- > Acceptable agreement in resolution
 - MC slightly worse than data

Outlook

- > Publish ScECAL EM paper
- > Pions in scintillator calorimeter system

Sumary & Outlook

Summary

- Full SiPM digitisation implemented for ScECAL
- Good agreement on cell spectra, shower profile
 - Limited by electron selection purity at low energies
- Good agreement in response
- Special thanks to Katsu and all of the Uni Shinshu group for > Acceptable agreement in resolution
 - MC slightly worse than data

Outlook

- > Publish ScECAL EM paper
- Pions in scintillator calorimeter s

continued support and

great hospitality!

RSITÄT

Backup

Oskar Hartbrich | ScEcal MC | 10.03.2015 | Page 12

Data, Reconstruction and Selection

> Rebuilt ScECAL EM analysis

- Event selection, result combination etc.
- Identical results
- Found/fixed bugs \rightarrow CAN-16c

ScECAL MIP calibration crosscheck

- Correct mean
- Good spread
 - \rightarrow Enables summing of MIP spectra

UNIVERSITÄT

WUPPERTAL

DESY

Beamprofile

> Beamprofile different each run

- Geant4 Gun parameters from Gaussian fit to data CoG distribution
- > Acceptable shape description
 - MC peaks too narrow
 - \rightarrow wrong upstream material? ... but first layer CoG looks fine
 - Perfect on 1*1cm² binning

Beamprofile

> Beamprofile different each run

- Geant4 Gun parameters from Gaussian fit to data CoG distribution
- > Acceptable shape description
 - MC peaks too narrow
 - \rightarrow wrong upstream material? ... but first layer CoG looks fine
 - Perfect on 1*1cm² binning

Absorber Composition

- "Tungsten" absorber composition unclear
- Measurements: (Katsushige Kotera, CALICE Asia 28.11.'12)
 - Density (caliper, micrometer, scale): 14.25±0.04 g/cm³
 - XRD: WC & Co crystal lattices, no elementary W
 - BSEI: WC pebbles bonded by Cr
 - EDX: 88% WC, 12%Co (+ ϵ % Cr) → 14.65±0.04 g/cm³
- > Densities do not match
 - Pixel counting in BSEI image: ~11% "black"
 - Mokka: 88% WC, 12% Co but ρ=14.25 g/cm³
- Idea: calculate WC:Co ratio from density
 - Constrained equations as W:C = 1
 - Result: 80%WC, 20%Co

EM Showerprofile

- > CAN-16 event selection
 - + Multi-particle suppression via Esum
- Layerwise MIP correction
 - Using muon contamination
 - Too few statistics for cellwise fits
- > Uncertainties
 - CoG selection variation
 - Statistics (negligible)
- > Run 560284 (20 GeV electrons)
 - Very nice MC/data shape
 - Response in agreement
 - Strongly favors 20% Co absorber

EM Showerprofile

> Lower energy runs look worse

No layerwise MIP correction possible

> Run 560294 (12GeV electrons)

Worse electron selection performance

- Slightly favors 20% Co absorber
- > Run 560330 (4GeV electrons)
 - Very unclean selection
 - Does not favor any absorber
 - Shower starts too late in MC?
- Need to look at more runs
 - Improve electron selection for low energies?

Birks' Law

> Birks' Law: saturation in organic scintillator

- Should influence high amplitude hits more than small amplitude hits
- Using AHCAL standard parameter for now, scintillator material to be checked

CAN-16 Electron Selection

Selection

- Shower maximum layer <20 (pion suppression)
- CoGx/y cut (lateral leakage)
- Beam energy dependent cut on deposition in shower maximum
- AHCAL energy cut (pion, muon suppression)
- Efficiency on data typically ~70%
- Efficiency on electron MC >95%

ScECAL Energy Sum 4GeV, /Run560330_rec.root

MIP shape MC/data

> All ScEcal cells, no selection

MIP shape MC/data

Single central ScEcal cell, only hits on tracks

DESY

MC MIP distribution

> Run MIP analysis on simulated digitised and reconstructed muon sample

> MIPs peak at ~0.95, retuning of MIP2GeV factor needed

MIP peak at ~1 after lowering MIP2GeV by ~5%

Cells MIP MPV Positions

Dead/noisy channel treatment

- Dead channel never gives signal
 - Switch off in MC
- Noisy channel gives random signal
 - Switch off in data and MC
- Identify by pedestal width
 - Too narrow pedestal: dead channel
 - Too wide pedestal: noisy channel
- Small number of faulty channels
 - 2-3 noisy channels per run
 - One run with 18 dead channels identified
 - To be written to DB

EM Analysis

> Reimplemented EM Analysis from CAN-16

- Same runs, cuts, result combination technique
- Systematics not included
- Comparison our analysis to CAN-16c
 - Identical linearity, deviation <1.8%</p>
 - Very similar resolutions: CAN-16c: 12.8%/√E ⊕ 1.14% Our analysis: 12.72%/√E ⊕ 1.10%

ScEcal response [MIP]

Deviation [%]

EM Analysis

> Reimplemented EM Analysis from CAN-16

- Same runs, cuts, result combination technique
- Systematics not included
- Comparison our analysis to CAN-16c
 - Identical linearity, deviation <1.8%</p>
 - Very similar resolutions: CAN-16c: 12.8%/√E ⊕ 1.0% Our analysis: 12.72%/√E ⊕ 1.14%

WUPPERTAL

ScEcal resolution [%]