FNAL 2009 Analysis

Run 560498: 12GeV Pi⁻

Introduction

- FNAL 2009: Combined scintillator calo testbeam
 - AHCAL integrity verified by various publications + crosschecks
 - ScEcal calibration, data quality, MC model less published

Lots of crosschecks done with EM data

- Longitudinal profile EM showers
- Single cell spectra in EM showers
- Single pion energy resolution
 - Try to be as bottom-up as possible
 - First look at resolutions at all
 - Work in progress
- This talk MCs all QGSP_BERT in G4 9.6p3

First Hadron Interaction – Reconstruction

> Based on Marina's FHI Algorithm

- Unchanged in HCAL
- Slightly different treatment in ECAL
- No beam energy dependence in ECAL
- Good correlation truth/reco
- > Good reconstruction performance
 - 50% reconstructed layer-perfect
 - 80% reconstructed layer ±1
 - 90% reconstructed layer ±2

Energy Weights – Chi2 Optimisation

> Need to find proper weights a, b for ECAL/HCAL depositions $E_{\rm rec} = a \times E_{\rm ECAL} + b \times E_{\rm HCAL}$

Standard approach: Chi2 minimisation

$$\chi^2 = \sum_{\text{events}} \left(E_{\text{rec}}(a, b) - E_{\text{beam}} \right)^2$$

Event Selection

- Generally taken from Clemens'/Nils' Theses
 - Did not include any ECAL, only general selection applicable
- > Beam quality cuts (data only)
 - Trigger scintillators
 - Multiplicity counter
- > Pion selection cuts
 - Cherenkov counter (data only)
 - Muon rejection (single long track in HCAL)
 - Empty event rejection
 - Preshower/electron rejection: FHI layer cut
- Multi particle suppression
 - Clemens' cuts not (immediately) applicable
 - Needed?

Multi Particle Rejection – Multiplicity Counter

Multiplicity counter: Scintillator paddle with 16bit readout

- Only covers central 20x20cm²
- > Use 4GeV electron run
 - Can select 1-, 2-, 3-electron events from E_{su}
 - Separation of multi particle contributions in multiplicity counter spectrum
- > Significant contamination left
 - Try other ways (Clemens: cluster parameters)

Multi Particle Rejection – Event Displays

Events in top 1% E_{rec}

Multi Particle Rejection – Event Displays

Events in top 1% E_{rec}

Multi Particle Rejection – Cuts

- Multiple particles in ScEcal: Find their primary tracks
- Reconstruct all tracks from overlapping strips
 - Require isolation, hit efficiency, starting from beginning of ECAL etc.
- Select events with exactly one isolated track in ECAL
 - Efficiency in MC: 93%, data: 87%. (Resolution bias in MC <0.1%)</p>
- Reject events with beam-parallel tracks in outer HCAL
 - Efficiency MC: 92%, data: 88%. (Resolution bias in MC <0.1%)
- > Apply selection, check event display: No obvious multi particle events left

Profiles MC vs. Data

- > Reconstructed FHI layer looks ok
 - Slight FHI overestimation in ScEcal
 - Dip in first layers from isolated track criterium
- > Longitudinal shower profile
 - Consistent 5% MC overestimation in ScEcal

FNAL Pion Selection & Resolution

- Multi particle cuts slighly reduce high energy tail in data
- Chi² optimised energy weights very similar in MC and data
- Preliminary energy resolution 12 GeV Pi⁻:
 - Full selection: MC: 15.6%
 - FHI in HCAL: MC: 16.4%
- Data: 16.4% Data: 16.5%

Summary

> FHI reconstruction works for combined system

- Good correlation and error vs. MC truth
- Acceptable in MC vs. data
- > Event selection works
 - From Clemens/Nils
 - Current multi particle suppression cuts work ok, but can be improved in efficiency
- Energy Resolutions MC vs. data acceptable for current status
 - Switch to G4 10.x, try different physics lists
 - Longitudinal profile → ScECAL absorber, calibration
 - Remnants from beam impurities → Higher energy runs
- Response, other runs, systematics ... lots to do

Backup

First Hadron Interaction – MC Truth

Definition of MC truth not straightforward

- Quasi inelastic interactions
- Weird G4 behaviour

Final definition of "true" FHI:

- Remove leading pion from step
 - Look at all (including primary) pions in step
 - Project each pion momentum to previous step's primary pion
 - Remove pion with highest projected momentum
- Sum up kinetic energies of remaining secondaries
- Accept event if sum(E_{kin})>E_{beam}/3

Energy Weights – Chi2 Optimisation

> Need to find proper weights a, b for ECAL/HCAL depositions $E_{\rm rec} = a \times E_{\rm ECAL} + b \times E_{\rm HCAL}$

Ω

par

Standard approach: Chi2 minimisation

$$\chi^2 = \sum_{\text{events}} \left(E_{\text{rec}}(a, b) - E_{\text{beam}} \right)^2$$

- Use iterative parameter scan
- (Better: Minuit)

Energy Weights – Fit Resolution Optimisation

> Different approach: Optimise fitted energy resolution

Rewrite E_{rec} to two linear independent variables

$$E_{\rm rec} = s \times \left(\frac{1}{e} \times E_{\rm ECAL} + E_{\rm HCAL} \right)$$

Optimise e, then choose s that E_{rec} = E_{beam}

- Iterative scanning
 - Less stable than Chi2 approach
 - IogParabola fit
 - Better: Minuit

Energy Reconstruction

Similar resolution for both approaches

- <0.1% absolute resolution difference</p>
- > Chi2 optimised response 11.6GeV
 - Why?
 - Fit optimised response 12.0GeV by construction

Multi Particle Rejection – Cuts

