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Warm dense matter (WDM) is an exotic state of matter that is inherently difficult to model theoretically, due to
the fact that the thermal Coulomb coupling and quantum effects are comparable in magnitude and must be treated
on equal footing, foregoing the employment of conventional methods from either plasma physics or condensed-
matter physics. Our work focuses on describing electronic states present in a transient, nonisothermal WDM
state, where electrons become hot and ions remain cold, during the first 10-100 fs after the irradiation of a solid
sample with an intense femtosecond x-ray pulse. We present a methodology, combining the finite-temperature
Hartree-Fock-Slater approach with the Bloch-wave approach within a periodic atomic lattice, implemented in
a new toolkit, XCRYSTAL. In XCRYSTAL, electronic states are represented in a hybrid basis comprising plane
waves and localized core orbitals on a radial pseudospectral grid. This hybrid basis ensures a high numerical
efficiency as highly localized states need not be described using plane waves. Additionally, these core orbitals are
responsive to the presence of delocalized plasma electrons through an interwoven optimization between inner-
shell and outer-shell electronic states employed in XCRYSTAL. Therefore, not only does XCRYSTAL model the
plasma electrons efficiently, it also allows for access to inner-shell modifications at high electronic temperatures.
To benchmark our method, we calculate K-shell threshold energies of x-ray-excited solid-density aluminum as
well as the ionization potential depression and show their agreement with experiment. In comparing our method
with other theoretical models, we conclude that the incorporation of optimized inner-shell orbitals is essential to
obtain accurate results, and we find that the inclusion of the full crystal structure has a limited effect. Furthermore,
we obtain temperature-dependent band structure predictions at WDM conditions, up to temperatures of 100 eV,
which, to the best of our knowledge, are the first of their kind for this nonisothermal system. We expect that
our proposed methodology will aid in the theoretical description of nonisothermal WDM, as well as advance the

understanding of this exotic state of matter.
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I. INTRODUCTION

Warm dense matter (WDM) has gained significant interest
because of its abundant presence in a variety of physical
systems. It is relevant to astrophysics, specifically for the re-
search of the interiors of stellar bodies [1,2] and large planets
[3-5], in the field of inertial confinement fusion [6-9], and
in laboratory experiments involving high-power laser sources,
such as those at the National Ignition Facility [10], LCLS
[11], SACLA [12], PAL-XFEL [13], FLASH [14], and the
European XFEL [15].

WDM lies on the border between condensed-matter
physics and plasma physics [16]. It is characterized by temper-
atures of the order of T ~ 0.1-100 eV and densities ranging
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from 1073 to 10%> g/cm>. The WDM regime is inherently
challenging to describe theoretically because both thermal
Coulomb coupling and quantum-mechanical effects are then
of a similar magnitude. This implies that typical methods of
conventional condensed-matter physics and plasma physics
are not trivially extended into the WDM regime, nor can one
justify the imposition that one effect is described as a small
perturbation of the other. However, WDM is now routinely
being produced during high-power-laser experiments, driving
the need for a thorough understanding of this regime. Addi-
tionally, with the advent of x-ray free-electron lasers (XFELs)
over the last decade, a rejuvenated interest in WDM has been
garnered due to the ability of XFELs to produce this state of
matter transiently and to probe it [17-22].

Over the years, various theoretical models and approaches
have been developed to describe WDM and its properties.
Among them are the Ecker-Kroll (EK) model [23], the
Stewart-Pyatt (SP) model [24], the average-atom (AA) model
[25-28] and its variation [29], finite-temperature density
functional theory (DFT) [30-32], frequently in combination
with ab-initio molecular dynamics (QMD) [33-41], time-
dependent DFT [42], Monte Carlo molecular dynamics [43],
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quantum kinetic theory [44,45], and quantum Monte Carlo
simulations [46,47]. A recent review highlighting and analyz-
ing the last two topics can be found in Ref. [48].

In the current study, we will focus on the description of
WDM created by an intense femtosecond XFEL pulse from
solid aluminum (Al). Specifically, we will limit ourselves
to the description of the electronic states during the first
10-100 fs after the x-ray exposure, which allows us to as-
sume that the ion lattice remains cold. This assumption is
well justified as the heating of electrons by the laser pulse
occurs much faster than the transfer of energy to ions through
electron-ion coupling [49-55]. Additionally, the dense elec-
tronic environment created forces the electrons to rapidly
thermalize (on the order of a few fs to a few tens of fs) through
electron-electron collisions and impact-ionization processes
[56]. These assumptions allow us to describe the system
as a hot, thermalized electron distribution embedded in a
periodic crystal lattice, constituted of parent ions. The system
is modeled by a muffin-tin potential, whereas the description
of electronic states is done using a finite-temperature Hartree-
Fock-Slater approach. These states are represented with re-
spect to a hybrid basis consisting of plane waves and localized
core orbitals solved on a radial pseudospectral grid. A simul-
taneous interleaved optimization of inner-shell and outer-shell
electronic states accounts for inner-shell modifications at high
electronic temperatures in an efficient manner. Additionally,
the periodicity of the system allows for the implementation
of the Bloch formalism [57], increasing computational effi-
ciency. A detailed description of the developed methodology
is presented in Sec. II. The model has been implemented into
a new toolkit, XCRYSTAL.

With the calculated electronic states, various characteristic
properties of the transient, nonisothermal WDM state become
available for evaluation and for comparison with experimental
data. In order to benchmark XCRYSTAL, we will compare our
model results to the data from the experiment performed at
the LCLS on x-ray excited solid Al [18-20]. Specifically, the
K-shell threshold energies were measured for this system.
From them, the ionization potential depression (IPD) was
determined, i.e., the lowering of the ionization potentials of
atoms present in the system caused by the dense and charged
environment. It was used to check the predictive capabilities
of the widely-used EK and SP models [18,19,39]. The pre-
dictions of the SP model were found to be unsatisfactory,
and a modified EK model [19,58] was proposed for fitting
the data.

In what follows, we will provide XCRYSTAL predictions for
the K-shell threshold energy and IPD for Al, and compare
them to experiment and the aforementioned theoretical mod-
els. In addition, we will compare the results from XCRYSTAL
with those obtained from the AA model and the two-step HFS
model, introduced in Ref. [29]. Because of the incorporation
of the periodic crystal structure within our model, it is possible
with XCRYSTAL to calculate the band structure of the system
at very high electronic temperatures (~100eV). Let us also
note that, even though band structure calculations at finite
temperatures have been performed before [59,60], it has never
been done in the regime of such high temperatures for the type
of transient WDM state we are considering. Also, the WDM
system that we are interested in is strongly nonisothermal. It is

characterized by electronic temperatures far above room tem-
perature (up to 10~100 eV or 10°-10° K) and ion temperatures
close to room temperature. Therefore, the finite-temperature
band structure calculations that we obtain at these conditions
will be the first of their kind.

The paper is structured as follows: In Sec. II we outline
the theory framework. In the following Sec. III, we provide
the K-shell threshold energies and the IPD values for solid-
density aluminum (Al) at electron temperatures ranging from
0 to 100 eV. We then compare them with experiment and var-
ious theoretical models. Finally, we present the temperature-
dependent band structure calculations of this system at various
temperatures, and comment on the trends observed. In Sec. IV
we provide conclusions and an outlook.

II. METHODOLOGY

In this section we outline our theory framework. In partic-
ular, we describe the treatment of electrons in our approach.
We distinguish between (1) electrons highly localized around
an ion (core electrons) and (2) electrons delocalized within
the unit cell (valence electrons). Worthy of note is that in our
framework we will update the core electrons to the presence
of the plasma electrons as opposed to keeping them frozen as
is custom in low-temperature condensed-matter calculations.
Our approach consists of describing the electronic states as
Bloch states, represented in a hybrid basis consisting of plane
waves and these updated localized core orbitals. Throughout
this paper, atomic units are employed, i.e., m, =e="h =
4meg = 1. We also set kg = 1. The unit of length will be given
in units of the Bohr radius, ag, and energies and temperatures
will be given in electronvolts (e V).

A. Schrodinger equation for a periodic system

We consider a perfectly periodic crystal. The crystal lattice
is defined by the primitive lattice vectors a;, a,, and a3, thus
defining a primitive unit cell volume 2 = |a; - (a; X a3)|. In
the independent-particle approximation, the wave function
of an electron in a periodic system can be represented as a
Bloch wave:

Pnk(r) = %el““un,km, (1

where a total volume V = N2 is introduced to ensure peri-
odic boundary conditions, with N, the number of primitive
cells. Furthermore, k is the wave vector of the electron, n
is a band index, and w,(r) is a lattice periodic function,
ie., Upx(r+a;) = w, k(r), with i = 1, 2, and 3. Both labels
k and n specify an eigenstate of the effective one-electron
(mean-field) Hamiltonian, H = [—1V? + V (r)], where V (r)
is the mean-field potential of the periodic system. Since
Ua k(1) is periodic, we can decompose it into a Fourier series.
In a Bravais lattice, this corresponds to a Fourier series
with respect to a sum over reciprocal lattice vectors K =
Z?:l B:b;, with B; being integer coefficients and b; being the
reciprocal lattice basis vectors, which obey b; - a; = 27§;;.
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The Fourier decomposition is thus

(@) = v,k (Kp)e™ ™, with

1 .
k() = / Pre T (), %)
Q

where m = (B, B2, B3) runs over all reciprocal lattice vectors
K., and the latter integral is restricted to a unit cell. This
implies that the wave function is expanded in a plane-wave
basis of the form
() 1
©On.k \/V

After inserting Eq. (3) into the Schrodinger equation,
Ho,x(r) = E, x@,k(r), we arrive at its representation in k
space for a periodic system:

Z U”wk(Km )ei(k+Km)~l" (3)

1
[§<k+K,»>2—En,k]vn,k<K,»> +)_ W(EKi—K;)v,k(K;) =0,
j

“

where i and j denote specific reciprocal lattice vectors and
W(K) = & [, d*re TV (r). So far, this representation is
general as all that was assumed to derive it was a perfect
crystal structure. This allowed us to use a lattice periodic
potential V(r), decomposable in a Fourier series over the
reciprocal space, and to describe the electrons with a one-
electron wave function specified by Eq. (1). This implies that
we neglect correlation effects.

B. Hybrid basis

A direct attempt to solve Eq. (4) would be computationally
extremely costly as an accurate representation of the highly
localized core states in a basis of plane waves would require
the contribution of large wave vectors. This would result
in a very slow convergence of the solution. Many different
methods of overcoming this problem, typically involving the
separation of the localized core electrons from the delocalized
valence electrons, have been developed over the years. They
include the utilization of Wannier functions [61-63], pseu-
dopotential methods [64,65], and the augmented plane wave
(APW) method [66—68].

Similar to the APW method, we intend to extend the basis
of the plane waves so as to include atomic orbitals. Naturally,
we do not wish to include all atomic orbitals in our hybrid
basis. Only those that are highly localized, i.e., for which the
description using only plane waves is inefficient, are added to
this hybrid basis. We will refer to them as core orbitals. This
provides an ansatz for our wave functions in the form

1 )
On0) = =3 oK) ST S S ) ()

&)

where m runs from 1 to some cutoff index Nk, which repre-
sents the number of valence bands. The index nc denotes the
band index of the core wave functions, introduced as follows.
Since ¢, k(r) is a Bloch function and the first term of Eq. (5)
is structured so as to be a Bloch function [like in Eq. (3)], the

core wave functions v, x (r) must be Bloch functions. We can
construct them using the conventional atomic orbitals that are
eigensolutions of the Hamiltonian, with one Bloch function
per core orbital, per atom in the unit cell. This implies that the
general label n¢ includes information regarding which atom
in a unit cell we are considering, as well as the electronic
structure information, i.e., nc = (a, n, [, m, s), where a de-
notes an atomic index, and n, [, m, and s denote the principal,
azimuthal, magnetic, and spin quantum number, respectively.
Subsequently, nc runs from 1 to the total number of core
orbitals, N¢, in the unit cell. Suppose that ¢,.(r) denotes
an atomic orbital that is strongly localized (for a detailed
explanation of “strong localization” see Sec. II C) and can be
considered as a core orbital. Let R; ,,. denote the position of
the nucleus in the /th unit cell at which the spatial orbital
of the nc type is located: R;,. = R; +r,., with R; being
the lattice vector denoting the /th unit cell, and r,. = R .
The associated atomic core orbital can then be written as
@n(r — Ry ,.). Since the unit cells are identical, the ¢,.(r —
R; ) for all the unit cells / are degenerate eigenfunctions
of the mean-field Hamiltonian, as they all have the exact
same eigenvalue E,,. as a consequence of the assumed strong
localization. Therefore, any linear combination of them is
also an eigenfunction of the same Hamiltonian. In particular,
we can choose a linear combination such that the resulting
wave function is a Bloch wave . x(r). We can achieve this
by considering the following linear combination of atomic
spatial orbitals:

Vaek(@ =N e*Rcg, (r—Ry,)
1
_ Naeik.rNb Z e—ik-(l‘—Rl,n(;)(pnC (r _ Rl,nc)
1

= Nae"k'runak(r), (6)

where N = N,N,, is a normalization constant, with N, =
1//V and N, = v/ (see Appendix A for the derivation).
In order to prove that ¥, x(r) constructed above is indeed
a Bloch wave, we must show that w,.x(r) exhibits the
same periodicity as the lattice. Let R denote some lattice
displacement:

M'Ic’k(r +R) =N, Z e_ik'(r_RlynC_‘_R)(bnc (I‘ - Rlﬁnc + R)
1

=N, Z e—ik-(l‘—Rj,nC)¢nC (r _ R]‘nc)
J

= e k(T), (N

where we used the fact that all cells are identical, resulting
in a periodic behavior of the wave functions ¢,.(r — Ry ,.).
Furthermore, we define the index J such that R; ,,. = Ry . —
R. Since I and J run over all unit cells, they contain the
same terms.

Having constructed our hybrid basis, we may insert
our ansatz, Eq. (5), into the Schrédinger equation. This
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immediately yields

1 Ko | | )
Do | kKD ) WK T unkEae KT £ Bk ()P k()

m j ne

1 )
= En,k [W Z vn,k(I(m)el(lH_Km)'r + Z wn,k(nc)wnc,k(r)] . (8)

nc

For the core wave functions, we used H Ve x () = Ey Y. k(r), where the energy eigenvalue of the core electrons, E,., is
independent of k, because these core electrons are highly localized. We subsequently project this onto our hybrid basis and solve
the Schrodinger equation through a matrix diagonalization.

Performing a projection onto the plane-wave part of our basis, we calculate (k 4+ K;|H|¢, k). Keeping in mind the proper
normalization of our plane waves, (r|k) = ¢**//V, and using [, d*re'®~X)T = V5, this yields

1
5 K+ K)*uk(Ki) + 3 vnse KW (K; = Kj) + Y Bt (1)K + K| i)

J nc
= Lpk |:Un,k(Ki) + Z wn,k(nC)(k + Ki|wnc,k)i| P for i = 17 sy NK- (9)
ne

Performing a projection onto the core-wave-function part of our basis, we calculate (wnc,kﬂ:] |@n k). By using the fact that ¥, x
is an eigenstate of the Hamiltonian H, with the eigenvalue E,,., we find that (.. k|H |@nk) = En. (Vne k|Pn k), OF

Enc [vn,k(Ki)hﬁnc,k |k + Kz) + wn,k(nC)] = Enﬁk [vn,k(Ki)(Wnc,k ‘k + Kz) + wn,k("C)]»

We can combine these equations into a generalized eigenvalue equation, similar to the Roothaan-Hall equations [69,70] of
the form FC = SCA, where A = diag(E, k). The nth column of C is

v, k(K1)
Un,k(KZ)

fori=1,..., k. (10)

vil,k(kNK)
(O = - ; (11

and F and S are

w, k(e = 1)
wyx(nc = 2)

w, k(nc = N¢)

F=| Jk+K)%;+WEK —K)) | Epeej(k + Ki|¥uemjn) | (12)
Elzc:i<wnc:i,k |k + Kj) | E”C=i8ij
81 k Ki ne=j.
sz( s | e il ) (13)
(Vie=ink +K)) | Bij

with i and j denoting rows and columns, respectively. Note
that we have one such equation FC = SCA per k point. It
should come as no surprise to encounter equations similar
to the Roothaan-Hall equations as these are a representation
of the Hartree-Fock equations in a nonorthonormal basis,
precisely as we have done with our hybrid basis consisting
of plane waves and atomic orbitals.

Note that the theory developed in Sec. II B assumed noth-
ing more than a periodic potential V(r), and a one-electron
description for the electron wave function under considera-

(

tion, with the ansatz given in Eq. (5). At this point we would
like to emphasize that, even though we will not consider it
in this work, it is possible to include molecular dynamics in
this framework, so as to extend the applicability of XCRYSTAL
to beyond the timescale of ~100fs after x-ray irradiation.
Conceptually, we need not take the assumption of periodicity
to imply the use of a crystallographic unit cell as is done in this
work. A larger supercell containing many more atoms could
be employed. However, this would cause the Brillouin zone to
shrink, rendering the matrices that must be diagonalized much
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larger. Under these conditions, employing the Bloch theorem
in combination with a plane-wave basis may no longer be
the most efficient approach. We leave this development and
investigation for a future endeavor.

C. Calculation of atomic orbitals

In order to calculate the atomic orbitals needed for the con-
struction of v, k(r), we used the XATOM toolkit [71-73]. This
toolkit describes an isolated many-electron atom in a Hartree-
Fock-Slater (HFS) framework. This is an independent-particle
approximation with a mean-field Hamiltonian of the form

N 1
Hyps = —Evz +V(r)

1 Z /
= ——Vz - — +/d3r/ p(r) + Vexc(r), (14)
2 Ir| Ir —r|

where Z is the nuclear charge. The exchange potential Ve (1)
is assumed to be of the form [74]

3[3 173
Vexc(r)=—§[;,0(r)] , (15)

with p(r) = Y% ¢ (r)¢i(r) being the electron density, and
¢;(r) denoting a single-particle spin-orbital wave function. In
addition, XATOM imposes spherical symmetry, assuming the
solution of the Schrodinger equation to be of the form

Bt (1) = ”"’(")nm(szo(‘s*“/z), (16)

r 85,172

with n, [, m, and s being the principal, azimuthal, magnetic,
and spin quantum numbers of the electron with the associated
wave function ¢,;,,;(r), respectively. A spherical averaging
is done on the electronic density. This implies that both
the electronic density and potential are spherically symmet-
ric, such that p(r) = p(r) and V(r) = V(r). Subsequently,
XATOM solves the Schrédinger equation in a self-consistent
way. There are numerous computational input parameters
required in XATOM calculations [71], the most relevant of
which are the following. The radial coordinate r in Eq. (16)
is defined with the generalized pseudospectral method on
a nonuniform grid [75]. This grid is characterized by the
number of radial grid points N,, the maximum radius, 7y,
and the mapping parameter L, which determines the density
distribution of radial points [75]. A larger L invokes that more
radial grid points are being pushed towards higher values
of r. For the computations of the atomic orbitals presented
further, we used N, = 200, L = 10, and ry.x = 5.0 ag, un-
less specified otherwise. Since XATOM calculates the atomic
orbitals in an isolated-atom description, these orbitals will
not be accurate representations of orbitals in a charged and
dense environment of atoms. We show how we adapt the core
orbitals to the environment in Sec. IIF. Let us continue by
explaining exactly how we define the core atomic orbitals
@y (r) in the framework of XCRYSTAL.

As we intend to work with the atomic orbitals provided
by XATOM, which are calculated in a sphere of size 7%, we
also construct spheres around the constituent atoms located
within our unit cell. The radius of the sphere for atom a will
be denoted by ry(a). In order to be able to maximally exploit
spherical symmetry, we assume the spheres to be touching
each other. The values of ry(a) are then dependent on the
crystal geometry. From all orbitals obtained with XATOM, we
include only those orbitals into our hybrid basis which are
localized within the touching spheres. Thus, we define our
core orbitals as those that satisfy

re(a)
‘1 - f dr|ua.nz(r)|2‘ < dc, a7
0

where 8¢ is a cutoff parameter set to 1073 for all calculations
shown in this work. This implies that at least 99.9% of the
norm of the core orbitals of atom a is confined to the sphere
of radius rc(a). The radius 0 < ro(a) < rg(a) is a model-
dependent parameter. The reason for the inclusion of r¢(a)
is that in the upcoming Sec. IID, we assume a model to
describe our periodic crystal where we disembark from static,
touching spheres.

D. Construction of the crystal potential

Having conceptualized touching spheres of radii ry(a)
around our atoms, we may describe our system using a muffin-
tin-type potential [29,66,67]. Inside of the spheres, a spheri-
cally symmetric potential V,(Jr — R,|) is assumed, where R,
is the position vector of the ath atom. Outside of the spheres,
in the interstitial region, the potential becomes a constant,
Vo. Typically, this potential is set to zero [25,66,67,76-78].
However, we will follow Ref. [29] in explicitly calculating
Vo. In Ref. [29], V; is the potential value at the Wigner-
Seitz radius and denotes the energy value above which the
continuum of states starts. In our framework, we do not have a
similar physical meaning behind V,. What remains true is that
a continuum of delocalized states will be present at energies
above Vj in XCRYSTAL. However, there may also be some
delocalized states below Vp, evidently referring to states that
are somewhat localized, yet not enough to be considered core
orbitals as they do not satisfy Eq. (17). To determine the value
of V, we require the value of the potential on the boundaries
of the spheres to be equal. We know that the potentials in
the spheres are ~C/r for some C < 0. Therefore, for all our
touching spheres, we assign Vy = min{V,(r;)} and proceed
by shrinking all spheres to a radius ry(a) so that V,(ry) =
Vo. In this framework, this implies that in rc(a) = ry(a) in
Eq. (17).

The reason for adopting the muffin-tin potential into our
framework is twofold: (1) the implementation of a spher-
ically symmetric potential inside of a sphere can be ac-
curately captured by the available XATOM toolkit, and (2)
the muffin-tin potential simplifies the evaluation of W (K) =
L o d*re”™® TV (r) in Eq. (12), reducing a three-dimensional
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integral to a one-dimensional one:
1 .

—/ d*re ®TV (1)

Q Jo

_ 1 Ry
S Q

Sph,a

—
5;6 KR/S

W (K)

ph,a

The inclusion of the muffin-tin crystal potential into Eq. (18)
allowed us to split up the integral over the unit cell into
two parts: the atomic region and the interstitial region, as
schematically illustrated in Fig. 1. In the atomic region, the
integral is represented as a sum of spherical integrals (in one
dimension), whereas in the interstitial region the integral can
be evaluated analytically. The latter is highly beneficial for
computational efficiency. The spherically symmetric atomic
potential V,(r), used in Eq. (18), is given by

Z, H o33 %
Vi) === +/S h d%’% - E[;p(r):| . (19
ph,a

Given the limitations on accuracy imposed by the simple
muffin-tin approximation, using a higher quality exchange-
correlation functional than the one alluded to in Egs. (15)
and (19) is not warranted. We have made the assumption that
the electronic density p is also spherically symmetric inside
of the spheres. The respective spherical averaging was done
as p(r) = [dQp(r)/ [ dQ and may be evaluated analyt-
ically. Note that the assumption of a spherically averaged
electronic density may be a poor approximation for capturing
the electronic behavior at low temperatures for materials that
exhibit directional bonding. However, we may expect any
directional dependencies to be suppressed once the electronic
temperature exceeds the zero-temperature band gap, allowing
for thermal excitations. This will make the approximation of
a spherically averaged electronic density less crude at these
temperatures.

Spherically symmetric Constant
atomic potential interstitial
potential V,

FIG. 1. Schematic illustration of the calculation setup in
XCRYSTAL.

; 1 . 1 .
31 —iK-(r-Ry,) _ L 3 —iKr__ 1 —iK-R,
d’(Jr—Ry|)e V.(|r Ra|)+VO|:Q /;zd re R Ea e /s

d(Ir—Ry[)e” R
ph,a

4
K3

] 1 ]
d(r =Ry ™R (r — R, )+ V {5&0 — g2 RS sin(Kry.a) — Ky cos(K m)]}

(18)

E. Electronic density at finite temperature

Within a finite-temperature HFS framework, the temper-
ature is introduced assuming Fermi-Dirac occupation of the
electronic orbitals [79]. Therefore, at temperature 7 and
chemical potential u, the electron density p(r) is calculated
as Zp |<pp(r)|2ﬁp(u, T), with p being a spin-orbital index, ¢,
the electron wave function, and 7,(u, T) a Fermi statistical
weight. For the atomic core orbitals, the index p = n¢ (as
defined in Sec. II B), and for the delocalized valence orbitals
p = (n,Kk, s). We assume a degeneracy in the energies with
regard to the spin quantum number, so a sum over the spins s
will simply lead to a factor of 2. The Fermi weight at T is

1

ePler—1) 4 1° (20)

ﬁp(l“l'a T) =
where ¢, is the energy eigenvalue associated with ¢,, B =
1/T, and p is the chemical potential of the system. The
chemical potential is calculated by imposing charge neutrality
on our unit cell. To find w, we must solve

DD [/Q d3r|¢p(r)|2]ﬁp(u, T)=0,
a P

Zza—NLZﬁP(M,T)zo, 1)

cell p

where we used the fact that ¢,(r) is normalized to 1 in the
total volume V. Since |gpp(r)|2 is a periodic function, ¢,(r) is
normalized to 1/N in the unit cell €2.

F. Self-consistent-field method

In the self-consistent-field (SCF) method, we start with an
initial guess for the spherically symmetric electronic density
p(r). The initial guess can be based, for example, on the
converged XATOM result for the initial atomic orbitals. This
is the typical start for calculations at zero temperature. At
nonzero temperatures, we may use the density calculated at a
lower temperature, or even extrapolate the results from several
lower-temperature runs.

With the initial density, we construct the potentials V,(r)
as in Eq. (19), and perform the sphere shrinking in order to
calculate Vj (explained in Sec. II D). At this point, instead of
keeping our core orbitals fixed, we use the newly obtained
muffin-tin potential in a single XATOM diagonalization in order
to update the atomic core orbitals. Therefore, during the SCF
iteration, the core orbitals, which are incorporated in our
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FIG. 2. Schematic illustration of the algorithm used in XCRYSTAL.

hybrid basis, are always updated to the presence of valence
electrons, in contrast to the conventional low-temperature
condensed-matter calculations where frozen core orbitals are
typically used. We do expect that in dense plasmas the core
orbitals strongly react to the presence of plasma electrons,
throughout the entire unit cell. After this core-orbital update,
we proceed by using our previously obtained muffin-tin po-
tential and Eq. (18) to obtain W (K). It is then utilized in the
Fock matrix F in Eq. (12). Therein the quantities referring to
the core orbitals, E,. and . k(r), are the results from the
updated core orbitals. Subsequently, the equation FC = SCA
is solved to obtain {A, C}.

From the solutions obtained for the core orbitals and
the valence orbitals, we calculate the new electronic den-
sity p(r) = Peore(T) + pval(r), which is spherically averaged
analytically. With this electronic density, we construct a new
potential V,(r) and update Vj, thereby closing the loop in the
SCF method. The whole procedure is repeated until the result
converges. Further discussion on the scheme used to accel-
erate the SCF convergence can be found in Appendix B. An
illustration depicting the SCF algorithm employed is shown in
Fig. 2.

G. Numerical parameters for crystal calculations

In addition to the computational parameters related to
atomic calculations, there is a couple of numerical param-
eters utilized in XCRYSTAL, which are related to the crystal
structure. They are (1) the cutoff on the number of reciprocal
lattice vectors used and (2) the numerical grid defined for the
momentum vectors in the first Brillouin zone (BZ).

The sum over reciprocal lattice vectors K;, used in the
Fourier series should in principle be infinite and include all
possible vectors {K;}. For practical purposes, a cutoff on
the number of reciprocal lattice vectors, denoted by Nk (in
Sec. II B), is indirectly imposed through a cutoff on the norm
of the vectors, denoted by |K]|p.x. As can be seen from the
coupling term W (K; — K;) in the Fock matrix F in Eq. (12),
the quantity |K|y.x determines the energy cutoff for the bands.
At T = 0 eV we may expect to achieve convergence with a
relatively low |K|n.x, as the absence of thermal excitations
implies that higher-lying bands will remain unoccupied. How-
ever, by increasing the temperature, the number of thermal
excitations will rise, and a higher cutoff on |K]|y.x will be

necessary to attain convergence. As one increases |K|pax,
additional plane waves are added to our hybrid basis with
increasingly higher momenta. It may occur that these are high
enough so as to describe the atomic core orbitals in our basis,
and a linear dependency will ensue. In this case, a simple
rank reduction is used on the matrices F, S, and C to remove
this linear dependency. For consistency between results at
various temperatures, all XCRYSTAL calculations were done
using |K|nax = 6.0 a, ! which corresponds to Ng = 1647
valence bands.

The second parameter of interest defines the numerical grid
defined for the momentum vectors in the first Brillouin zone
and affects the sum over momentum vectors k. Because of
our employed Bloch formalism, the sums over k are restricted
to the momentum vectors confined within the first Brillouin
zone (BZ) of the reciprocal lattice. However, contrary to the
reciprocal lattice vectors {K;}, the vectors k in the first BZ
constitute an uncountable set. Therefore, a sum over vectors
k is performed as an integral: ZEZ =V(Q2r)? fBz d*k. To
perform this integral numerically, a grid is defined inside the
first BZ. Through a dedicated analysis, we have found a k
grid of 7 x 7 x 7 to be sufficient for achieving convergence. A
more elaborate discussion on the employed BZ will be given
in Sec. III.

III. RESULTS

In this section we show results obtained with XCRYSTAL
for x-ray-excited solid Al, investigated experimentally in
Refs. [18,19]. This experiment was conducted at the LCLS
[18,19] for solid Al at a density of 2.7 g/cm?. The sample
reached electronic temperatures in the range of 7 = 10—
80 eV. The K« fluorescence signal was measured as a function
of the incoming photon energy. After comparing the results
calculated by XCRYSTAL to experiment, we will show band
structure plots of this system. At zero temperature, these
can be compared to known, well-established result [80,81],
whereas the band diagrams at higher temperatures will be
of interest with regard to how they evolve as temperature
is increased to values characteristic of WDM conditions (up
to 100 eV or 10° K). To the best of our knowledge, these
temperature-dependent electronic band structures at such high
temperatures are the first of their kind for this nonisothermal,
transient WDM state.

The Al crystal has a face-centered-cubic (FCC) struc-
ture, for which the primitive unit cell can be constructed
from the primitive lattice vectors a; = a(1/2,0, 1/2), a, =
a(0,1/2,1/2), az =a(1/2,1/2,0), where a =404.95 x
10712 m = 7.652 qay is the lattice constant of Al. The first
Brillouin zone (BZ) is a truncated octahedron. Due to the
implementation of the Bloch formalism, every sum over
momentum vectors k can be limited to this first Brillouin
zone. However, for modeling this system in XCRYSTAL, it
was numerically more efficient to define the unit cell to be
cubic, with lattice vectors a; = a(1,0,0), a, = a(0, 1, 0),
az = a(0,0, 1), and four Al atoms placed on the positions
a(0,0,0), a(1/2,0,1/2), a(0,1/2,1/2), and a(1/2,1/2,0),
similar to what was done by Vinko et al. in Ref. [39]. In this
manner, any sum over Kk can be evaluated using a simple linear
grid in the cubic BZ. However, our real-space unit cell has a
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larger volume than the primitive unit cell of FCC. This implies
that the volume of our cubic BZ is smaller than the first BZ
of FCC. At first glance, this seems to imply we have lost
information on k points that lie outside of our cubic BZ but
are located inside the first BZ of FCC. However, our employed
periodic Bloch formalism ensures that this is not the case: the
k-dependent quantities, such as E, k, that lie in the first BZ of
FCC, but outside of our cubic BZ are then shifted to a higher
band, n. This effect will reveal itself explicitly in the band
structure plots shown in Sec. III B.

The geometry of the defined crystal structure implies a
radius of the touching spheres ry = 2.706 ay for all atoms.
Due to the high level of symmetry, we found that ry (a) = ry =
2.706 ag for all atoms, and for all temperatures considered.
Thereby, in Eq. (17), r¢(a) = ry, which defines the 1s, 2s,
and 2p orbitals as the core orbitals. Note that through the use
of thermal occupation numbers with a well-defined chemical
potential and temperature in xcrystal as was mentioned in
Sec. ITE, we assume the electrons to be in perfect thermal
equilibrium for the conditions in the LCLS experiment, which
is merely an approximation.

A. K-shell thresholds and ionization potential depression

The LCLS experiment described in Refs. [18,19] pro-
vides the data on the K-shell threshold energy. The K-shell
threshold energy refers to the energy that is required for the
formation of a K-shell (1s) hole. From the spectrally resolved
Koa-emission spectrum in Ref. [18], they could deduce this
quantity by observing at which XFEL-photon energy the
emission peak started. Additionally, each separate emission
peak observed indicates a specific charge state Q of an Al
ion, which this peak refers to. Therefore, we will consider
the K-shell threshold energy as a function of charge state
Q. In addition to a comparison with this experiment, we
will compare the result of XCRYSTAL with the results from
the AA model and the two-step-HFS model, both shown in
Ref. [29]. As such, we will first elaborate on how the K-shell
threshold energy and the charge state Q are defined in these
three models.

In the AA model, a thermal averaging is employed, so
an integer value of Q corresponding to a specific electronic
configuration cannot be obtained. Instead, an average charge
Oan = Z — N} (B, 1) is obtained, with Z the charge of
the neutral Al atom and N**(B, ) the number of bound
electrons. In Ref. [29] a muffin-tin potential is also employed,
albeit with Wigner-Seitz spheres, and the flat potential pro-
vides a clear energetic distinction between bound orbitals and
the continuum. Therefore, NfA (B, n) is calculated as the sum
over the thermal occupations of orbitals with energies below
the flat potential [see Eq. (22a)]. The K-shell threshold energy
is calculated as the energy difference between the 1s orbital
and the lowest-lying orbital above the flat potential. To be
complete, there are two subtleties: (1) if the chemical potential
w is larger than the flat potential, the K-shell threshold energy
is calculated as ;. — €15 to make sure the orbital being excited
into is vacant, and (2) at higher temperatures, the 3p orbital
drops below the flat potential and a 1s electron can be excited
into it. In this case, the K-shell threshold energy is &3, — &1,.
This definition for the K-shell threshold energy is also used in

the two-step-HFS method [29]. However, the two-step-HFS
model is capable of specifying integer charge states, as it
uses an AA calculation in its first step to define a thermal
grand-canonical ensemble and proceeds in its second step by
working with the most likely electronic configuration for a
specific integer charge state Q. In contrast to this, but similar
to the AA model, XCRYSTAL also works with a thermally
averaged, and atom-specific, charge state Oxcry (a). However,
our flat potential V does not share the same physical interpre-
tation as the flat potential used in Ref. [29], as delocalized
states can be found below V; in XCRYSTAL. Therefore, we
calculate Qxcry (@) = Z(a) — Nf® (B, ., a), with the number
of bound electrons of atom a, N (B, i, a), calculated as the
sum of the thermal occupations of the core orbitals (1s, 2s, and
2p). In summary,

8[7<VOAA
1
AA _
NM(B. ) = Xp: ey for AA. (22a)
1
XCRY _
Nb B, n,a) = Z m for XCRYSTAL,

Polhg
(22b)

where VM is the flat potential in the AA model and p =
(n,1,m,s) for a fixed a. Due to the translational symmetry
in the crystal, we found the average charge Qxcry(a) for each
ion to be the same, for a given temperature 7. The Ko fluo-
rescence energies employed in Refs. [18,19] to assign atomic
charges to spectroscopic features are sensitive primarily to
K- and L-shell occupation numbers. The choice made in
Eq. (22b) is consistent with this property. As for the K-shell
threshold energy, it refers to the energy that is required for the
formation of a K-shell (1s) hole by exciting a 1s electron into
the lowest-lying, vacant, delocalized valence orbital. In the
convention employed here, the K-threshold corresponds to the
energy difference between the 1s orbital and the lowest-lying
orbital that has a thermal occupation of <0.5 and that is
associated with a nonzero bandwidth. Note that this definition
is equivalent to the one employed in Ref. [29].

In Fig. 3(a) we plot the K-shell threshold energy as a
function of charge state Q calculated with XCRYSTAL and
compare it to the experimental data [19], as well as to the
theoretical models mentioned previously [29]. For both the
AA model and the XCRYSTAL result, the average charge O
for each method, as defined previously, is portrayed on the
x axis. The Q values shown correspond to a temperature
range of 10-90 eV and 10-70 eV for the AA model and
XCRYSTAL, respectively. The XCRYSTAL results were shifted by
+20.92 eV, similar to what was done in Ref. [29]. This shift
corresponds to the difference between the ionization potential
calculated at T = 0 eV with XCRYSTAL (1538.68 eV) and the
experimentally estimated binding energy (1559.60 eV) [82].
As shown in Fig. 3(a), XCRYSTAL is capable of reproducing
the result for the K-shell threshold energy for all charge
states considered.

The improvement of the XCRYSTAL result with respect to
the AA result alone seemingly implies that this improvement
is due to the incorporation of the full crystal structure in
XCRYSTAL. However, the two-step-HFS model does not take
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FIG. 3. (a) K-shell threshold for Al as a function of the charge state, calculated using XCRYSTAL. A comparison is shown with the two-
step-HFS result and the average-atom result from Ref. [29], as well as with the experimental data from Ref. [19]. Calculations using an
isolated Al ion are labeled as “Unscreened HFS.” (b) K-shell threshold for Al as a function of the charge state, calculated using XCRYSTAL,
the two-step-HFS result [29], and the average-atom result with O defined as in XCRYSTAL [Eq. (22b)]. The experimental data from Ref. [19] is

shown as well.

the crystal structure into account and yet shows excellent
agreement with experiment as well, through its individual
configuration optimization. To shed some light on how large
the effects of incorporating a full crystal structure are, we may
dismiss their inclusion in XCRYSTAL. This simply amounts to
an AA calculation, where the average charge is calculated
as QOxcry, 1.€., the thermal occupations of the 1s, 2s, and
2p orbitals subtracted from the nuclear charge of Al. We
show this result in Fig. 3(b). The temperature range for the
AA result shown in Fig. 3(b) is 10-80 eV. Comparing the
AA result between Figs. 3(a) and 3(b), we conclude that the
discrepancy between experiment and the AA method shown
in Ref. [29] is not so much a limitation of the applicability of
the AA model, but rather a consequence of the definition of
Oana used in Ref. [29].

To further strengthen this claim, we may consider O and
Oxcry(a) for a single Al ion as a function of the electronic
temperature, depicted in Fig. 4. Initially, Qa4 increases with
rising temperature as the bound orbitals are being partially
thermally vacated. However, as the temperature increases, the
previously unbound 3s and 3p orbitals fall below the flat
potential VOAA [29] and count as bound states. This causes a
sudden large contribution to the number of bound electrons,
thereby decreasing the average charge Qaa below what one
would expect if such a sudden addition of new bound or-
bitals had not taken place. The discontinuities at T = 20 eV
(Oan ~3.0) and T = 58 eV (Qaa ~ 5.5) shown in Fig. 4
directly result in the bumps for the K-shell threshold energy
in Fig. 3(a), seen at these same values of Q. In contrast, Oxcry
does not exhibit these sudden drops. The increase in average
charge arises solely from gradually thermally vacating the
core orbitals. This analysis, along with the results shown in
Fig. 3(b), leads us to the conclusion that both the incorporation
of the entire crystal structure, as well as individual configura-
tion optimization, amount to a fairly limited effect overall. The
property shared by the AA model, the two-step-HFS approach

and XCRYSTAL is the optimization of core orbitals, to which we
attribute the success of the three models.

We note that the work performed by Vinko et al. [39]
seemingly contradicts this conclusion. Vinko ef al. show an
excellent agreement with the experiment of Ref. [19]. They
used a plane-wave DFT calculation with a frozen-core pseu-
dopotential determined at a fixed configuration and obtained
values for the K-shell threshold energy using a ASCF scheme.
The agreement with experiment was rationalized through their
incorporation of a full three-dimensional electronic structure
for the valence states and a lack of any spherical averaging.
However, as both XCRYSTAL and the two-step-HFS model
are able to adequately reproduce the experimental results of
Ref. [19], which do incorporate both spherical and thermal
averaging, we disagree with this proposed justification. The

—@— XCRYSTAL
—@— Average Atom

Average charge

T T T T T T T T
0 10 20 30 40 50 60 70 80 90 100
Temperature [eV]

FIG. 4. Average charge Q versus the electronic temperature T
obtained for the average-atom model and for XCRYSTAL.
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fact that Vinko et al. employed a frozen-core pseudopoten-
tial apparently contradicts our conclusion that core-orbital
optimization is of vital importance. However, they do in-
directly account for responsive core orbitals through their
employment of a ASCF scheme to calculate the K-shell
threshold energy. Explicitly, they calculate the difference in
total free energy between a system with and without a single
K-shell hole, accompanied by an additional number of L-
shell holes. Therefore, despite the 1ls orbital being frozen
in both configurations, their energies differ, resulting in an
indirect response from the ls core orbital to the K-shell
threshold energy.

In order to illustrate the efficiency of our hybrid-basis
approach, we compare numerical parameters of XCRYSTAL
with the work done by Vinko et al. [39]. They considered
high-energy bands with energies up to at least ten times the
considered electronic temperature. Because of the high com-
putational cost, they were incapable of making all temperature
calculations with a single fixed Nk (see Sec. II B); instead the
number of bands ranged from ~160 bands at 7 = 10 eV to
~5000 bands at T = 100eV. The computational expense in
the latter case was reported to exceed ~190 CPU days for a
four-atom supercell containing 25 electrons. One should note
that this cell did not contain all the electrons of a charge-
neutral system containing four Al atoms, 4 x Z(Al) = 52,
because of the employed pseudopotential formalism which
used frozen, and not completely filled, core orbitals. In con-
trast, using XCRYSTAL we performed full all-electron calcu-
lations with 52 electrons. All calculations were consistently
done with |K|pnx = 6.0 aj L corresponding to Ng = 1647
bands. We found that this number of bands (1647 < ~5000)
was sufficient to obtain converged XCRYSTAL results. Every
temperature run could be completed within 72 CPU days
for a four-atom unit cell containing 52 electrons. Additional
parallelization of XCRYSTAL further reduced the calculation
time to ~18 days with four CPU cores.

Finally, we present our result for the IPD of this system.
For the 1s orbital, this is defined as the difference between
the result from the HFS calculation for an unscreened (iso-
lated ion) and the K-shell threshold energy [from Fig. 3(a)].
Defining the ionization potentials for the 2s and 2p orbitals
in the analogous way as we did for our K-shell threshold, we
can obtain IPD values for these orbitals as well. These values
are shown in Fig. 5(a). The XCRYSTAL result was interpolated
onto integer values of the charge state Q. Despite the ability
of XCRYSTAL to calculate orbital-specific IPD values, Fig. 5(a)
illustrates that the differences between the IPDs of different
orbitals are minimal, in agreement with the observation of Son
et al. [29]. Figure 5(b) shows the IPD values for the 2p orbital
calculated with XCRYSTAL, comparing them with the two-step-
HFS result [29], and the results from the modified-EK and the
SP models, taken from Ref. [19]. We can see that XCRYSTAL
reflects a similar trend as the two-step-HFS model, but lies
closer to the IPD values determined from the modified-EK
model as Q is increased.

B. Band structure at WDM temperatures

We proceed with calculations of the temperature-
dependent band structure for Al at WDM conditions. We
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FIG. 5. ITonization potential depression calculated for x-ray-
excited solid Al as a function of charge state. (a) Result from
XCRYSTAL obtained for all core orbitals of aluminum. (b) Comparison
between the XCRYSTAL result for the 2p orbital, the two-step HFS
model result [29], the result from the modified-EK model, and the
result from the SP model, taken from Ref. [19]. The result from
XCRYSTAL has been interpolated onto integer values of Q.

start with the discussion of Al at T = 0 eV. In Fig. 6 we
present the first 10 energy bands of a nonzero bandwidth
at T = 0 eV, along the path I'-X-W-L-I'-K-X in the BZ.
This path was chosen for the comparison of our predictions
with Refs. [80,81]. The energy axis on the left is given in
Rydbergs (Ry) and was shifted by 41.54 Ry (4-20.98 eV),
in order to adjust the energy at the I' point to the energy of
the lowest delocalized state, Epindeloc. An unshifted energy
axis (in eV) is presented on the right. As was previously
mentioned in Sec. III, our choice of a cubic unit cell implies
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FIG. 6. Band structure of aluminum at 7 = 0 eV along the
path I'-X-W-L-T'"-K-X calculated using XCRYSTAL. The blue line
represents the XCRYSTAL result, and the red line traces out the lines
that would be obtained when using the conventional primitive FCC
unit cell, to help guide the eye for comparison with Refs. [80,81].
The horizontal black line indicates the Fermi energy. The energy axis
on the left is given in Rydbergs (Ry) and was shifted by +1.54 Ry
(420.98 eV), so that the energy at the I" point starts at the origin. An
unshifted energy axis given in eV is presented on the right.
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FIG. 7. Band structure of the first 30 delocalized energy bands
of aluminum at temperatures 7 = 25, 50, 75, and 100 eV, along the
path ['-X-W-L-I"'-K-W-U-X, calculated with XCRYSTAL. The black
line denotes the constant potential Vj. The colors are there to aid in
grouping together those bands that separate from the rest for higher
temperatures. The energies on the y axis are given in eV.

that k-dependent quantities, such as the energies E, x shown
in Fig. 6, that lie in the first BZ of FCC, but outside of
our cubic BZ, are shifted to a higher band, n. Therefore,
the result from any XCRYSTAL calculation shows many more
bands as compared to conventional methods. This is simply a
consequence of having chosen a cubic unit cell. Both the blue
lines and the red lines presented in Fig. 6 are the result from
the same XCRYSTAL calculation. The blue lines show the result
as calculated using XCRYSTAL, whereas the red line traces
out the bands which would be obtained for the conventional
primitive unit cell. One can see excellent agreement with
the well-known results of Refs. [80,81]. The solid black line
denotes our value for the Fermi energy e, calculated as the
chemical potential  at T = 0 eV, with a predicted value of
—10.12 eV. Keeping the shift of Eyyip deloc (=—20.98 V) in
mind, the Fermi energy is calculated relative to the bottom of
the conduction band, as e = 4 — Epin deloc- It is found to be
0.8 Ry = 10.86 eV, whereas the experimental value is 11.7 eV
[83]. The value for the constant potential Vy at T = 0 eV is
—18.34 eV, which is above the energy value of the lowest-
lying delocalized energy band at Epindeloc. This indicates
that the bands in Fig. 6 with an (unshifted) energy below
Vo = —18.34 eV correspond to electronic states in which
the electron is quasi-bound and tunnels between atomic sites.
They are not localized enough to be considered part of the
core orbitals [cf. Eq. (17)]. Between each symmetry point (I,
X, W, etc.) in Fig. 6, there are 50 k points shown, which is the
value we shall retain for the remaining band structure plots.
We do not perform an entire XCRYSTAL run with such a fine k
grid, instead taking the converged electronic density from the
run with the parameters mentioned previously (Sec. Il G), and
performing a single XCRYSTAL matrix diagonalization in the
hybrid basis.

In Fig. 7 we show the first 30 energy bands with a nonzero
bandwidth at temperatures of T = 25, 50, 75, and 100 eV. For
these plots, we traced out the path I'-X-W-L-I"'-K-W-U-X to
cover all lines of high symmetry in the BZ. In addition to

the interesting observation that at 7 = 75 eV there appear to
be no orbital states present directly above Vj, we can perceive
three general features in Fig. 7 as the electronic temperature
rises: (1) all energy bands are lowered, (2) two band gaps start
to form and progressively separate, and (3) the bandwidths
become smaller. The conclusion is that with the increasing
temperature, we observe a formation of quasi-atomic 3s and
3p lines, that was also reported in Ref. [39].

The physical mechanism behind this observation is the
following: As the temperature rises, thermal excitations start
to generate partial vacancies within the bound 1s, 2s, and 2p
orbitals. This causes the nucleus to experience less screening,
which in turn makes its potential V (r) more attractive, thereby
dragging down all energies. In addition, it is apparent that
with increasing electronic temperatures, the bands start to lose
their width and their delocalized character, thereby exhibiting
features of a more atomic nature.

IV. CONCLUSION AND OUTLOOK

In this work, we have developed an ab initio method
for calculating quantum states of hot thermalized electrons
confined to a cold ionic crystal lattice. It has been imple-
mented into a new toolkit, XCRYSTAL. Using a mean-field
HFS approach in combination with the Bloch formalism, we
constructed a hybrid basis consisting of both plane waves
and localized atomic orbitals, with respect to which we rep-
resented the electronic states in this type of transient WDM
system. Allowing for an interwoven optimization between
core and valence electrons, we accurately reproduced the ex-
perimental data obtained from the LCLS experiment [18,19]
on Al plasmas in WDM conditions, in a highly efficient
manner. Additionally, our model allowed for the calculation
of band structures at various temperatures, 7' ~ 0-100 eV.
We concluded that the incorporation of the full crystal struc-
ture had only a minor effect on the results calculated for
comparison with Refs. [18,19] and argued that the role of
optimized core orbitals is vital in describing these types of
systems. In addition, the band structure of Al was shown to
be in good agreement with previous work at zero temperature
[80,81]. The computationally efficient scheme in XCRYSTAL
facilitated the calculation of the band structure to temperatures
and densities typical for WDM conditions.

The new tool XCRYSTAL provides not only the calcula-
tion of bands and energy levels but gives full access to the
electronic wave functions in a thermalized electron plasma
at a certain temperature. This will enable us in the future
to model atomic processes in a dense plasma environment,
which is critical for a proper description of WDM forma-
tion. Until now, the respective cross sections and rates were
adapted from isolated-atom models (see, e.g., Ref. [84]).
In particular, XCRYSTAL enables access to the evaluation of
the electron-impact-ionization cross section in solid-density
plasmas, also measured experimentally [85]. It is the ultimate
goal of XCRYSTAL to provide fast and accurate data of WDM
properties for electronic Monte Carlo simulations of WDM,
so as to contribute to the description of matter exposed to
high-intensity x-ray pulses, in a similar manner the codes
XATOM [71,72], XMDYN [72,86], and XMOLECULE [87,88] do.

033061-11



BEKX, SON, ZIAJA, AND SANTRA

PHYSICAL REVIEW RESEARCH 2, 033061 (2020)

The inclusion of molecular dynamics is conceptually possible
as was mentioned in Sec II B. For application of this work in
an astrophysical context, it is conceivable that the inclusion
of the effects of an external magnetic field will be necessary
[89]. It would be possible to perturbatively treat the effect of
an external magnetic field through an interaction Hamiltonian
in XCRYSTAL. For magnetic fields that are nonperturbatively
strong, their inclusion would break some of the symmetries
being exploited in XCRYSTAL. We believe that the present work
will pave the way for a more accurate theoretical description

J

of nonisothermal WDM, and will significantly advance the
understanding of this extreme state of matter.
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APPENDIX A: NORMALIZATION OF CORE BLOCH WAVES

In this appendix, we will derive the normalization of the core Bloch wave functions v, k(r) as defined in Eq. (6), from the
normalization of the total electronic wave function ¢, x (r). The wave functions ¢, x (r) are Bloch functions [see Eq. (1)]. These
wave functions are orthonormal within the entire crystal volume, (¢, x|y k) = 8w Sk k- Therefore, we have

1 . -
(Onxlowx) = / dro; (O o (r) = v / dPre” ™k (0™ T oy o (r)
1% \%4

1 : K 1 kK kK
— ‘7 Z/ d3reﬂk'(r+R)M;k(r + R)elk '(r+R)H-n’.k’(r +R) = V Z o~ ik—k ).R/ d3re—ik—k )Arﬂz,k(r)ﬂnr,kr (r)
R Q

1%

N 11 i (k—K). 1 i (k—K).
= bk / @re” C T (O 0 (1) = Shiw | dPre T (O 40 (1) = S,
Q

R Q

(AD)
Q

where R denotes a lattice translation vector. We used (1/Neen) Y g e kIR — 5 1 and V = N, Q2. This implies that we

normalize the u, x(r) within the unit cell volume €2 as

/ Priy (), 1 (1) = Q.
Q

For core electrons, we know a priori that our atomic orbital wave functions obey (¢, |¢>n/c) =34

(A2)

, . However, for consistency,
nenc

we should also normalize w,,. k(r) to €2, with respect to a unit cell volume €2, just as was the case for i, k(r). This is why the
factor factor N in Eq. (6) was split up as N = N,N,. Imposing the preferred normalization, we find

Q= /Qd3VM:C,k(1')Mnc,k(r) — sz /S; d3reik-(l‘—l'nc)e—ik-(r—rnc)¢:c (I’ _ rnc)(ﬁnc (I’ _ rnc)

= sz /;2 d3r¢;’lkc (r — rnc)¢nc (I‘ — r”C) = N;v

(A3)

revealing that N, = /€. Furthermore, the tne k(T) are orthogonal to each other, but only for k = k’:

nc

iK-(r—r,.) ,~iK-(r=r, )
/;2d3ru,’;ch(r)un,@k,(r) = Q/ dPre® )™ c’p* (r - rnc)d)n%(r — I‘n’c)

Q

= QKK f d3r€i(k7k,)-r¢;c (r — rnc)(pn/c (l‘ - r”l/c)a
Q

(A4)

which is equal to €23, , only if k = k’. In the second line, we used the fact that the n¢ label on r,. depends only on which atom
we are considering, and unless we are considering the same atom, the integrand will be zero for all values of r within the unit
cell because we are assuming nonoverlapping spheres.

Let us now derive N, for a proper normalization of v, k(r):

Ve k(0) = Noe™ () and (Ve i |V k) = Sy Skcre (A5)
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which yields

(Ve |V i) = / dry (O (@) =N, f dPre T (0 T, 10 (r)
14 \%4

— Nj § / dSre—ik(r-&-R)MZC’k(r_i_R)eik/.(r-‘rR)Mné,k/(r +R) :Nj § e—i(k—k’)»R/ d3re—i(k_k/).r/i:c,k(r)/“Ln(’j,k’(r)
Q
R

2 3. . —i(k—Kk')- 2
= NealN, Sk i / dre” STt () 10 (0) = NeenN; B0, Sk e
Q

R Q

(A6)

showing that N, = 1/ «/V . To summarize, the total wave function has the Bloch-wave form:

1. .
wn,k(r)=ﬁe"‘"un,k(r), satisfying (@ kl@w k) = Suw ks

and we use the following ansatz with a hybrid basis:

1 )
() = D oK) KT LN ", ()W k().

Here the core wave functions . x(r) are given by

1 .
wnc’k(r) = ﬁelk'rﬂngk(r)’ Satleylng <¢nc,k|Wr1’C,k’) = 811Cn’66k,k’9

(AT)

(A8)

nc

(A9)

which is also represented as a Bloch wave, with the periodic function

P i (1) = QY e EROG, (r—Rye).
1

(A10)

Note that 1,k and p,,. x are normalized to €2 with respect to the unit cell €2.

APPENDIX B: ACCELERATING SCF CONVERGENCE

In this appendix, we will elaborate on a new scheme for
improving SCF convergence, which proved very successful
for our computational framework.

The convergence of the SCF method is generally rather
slow. Therefore, much effort has been invested into methods
improving it [81]. A simple example of such a method is
linear mixing, described in Ref. [81]. In an attempt to steer
the convergence, one uses the information from the previous
iterations, i.e., instead of using the potential V;(r) in the
ith SCF iteration, one uses VM (r) = aV;(r) + (1 — a)VM,(r)
with a free parameter o € [0, 1]. We distinguish here between
the potential V;(r) obtained from the electronic density using
Eq. (19), and the “mixed” potential ViM (r) obtained from
performing the linear mixing. A different quantity, such as
the electron density p, may also be used in the mixing [81].
Building on this notion of steering convergence, we have
developed a method that adjusts the @ parameter per iteration,
using the information from all previous iterations. In this way,
we are working with @ — «;.

Using the information from previous iterations, we impose
for the ith SCF iteration that

VM) =) waVn(n), (BI)

m=1

with weights {w,,}, which are normalized to 1, i.e,
Zin:l wy, = 1. It is intuitively understandable that we expect
the weight w; associated with the ith iteration to be larger if
the error associated with that iteration is smaller. With that
in mind, we define ¢; = ||e;||~', for some suitably defined

(

error vector e;. It is related to w; through the normalization
condition >, _, w,, = 1:
Ci
w; = P = C,’ki.
Zm:] Cm

Note that as more SCF iterations are being considered, a
specific ¢, will remain unchanged, whereas k,,, and therefore
wy,, will be updated for every iteration. We can easily combine

(B2)

1000 A —— Adaptive a
— a=0.6
— a=1.0
(9]
C
o
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o
2
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@
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£
=]
=z
10 A
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Temperature [eV]
FIG. 8. The number of SCF iterations necessary to reach conver-
gence (with a convergence criterion of 107® %) using static linear
mixing with @ = 1 and « = 0.6 as well as our adaptive linear mixing

for Al plasma calculations at various electronic temperatures. For this
plot, [K|my = 4.0 a;' (Ng = 461) is used.
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this into the following adaptive linear mixing scheme:

VM) =) wnVn(r) =k Y enVin(r)
m=1 m=1

i—1

= kiciVi(r) + ki ) CnVin(r)

m=1

ki
= kic;Vi(r) + k—V,-_l(")~ (B3)
i1

From this, we can identify o; = k;c; = w;. We can also easily
show that k;/k;_; = 1 — «;, by using (k,'_l)_l +c¢i = (k,')_l.
Multiplying both sides of this equation by k;, we get o;; + (1 —
a;) = 1, as expected. In the implementation of XCRYSTAL, we
defined the error vector to be e; = |Vi(r) — Vi_1(r)|/Vi_1(r).

For the first iteration, no mixing is done as the error vector
cannot be defined yet. To demonstrate how the new adaptive
linear mixing scheme works for our particular framework,
we compare the performance of the adaptive linear mixing to
static linear mixing, with two different mixing parameters o,
in Fig. 8. It illustrates not only that the adaptive linear mixing
is useful for speeding up the convergence, but that its appli-
cation is necessary for high-temperature cases to achieve con-
vergence. The static linear mixing shown in Fig. 8 exhibits an
exponential behavior with increasing temperatures and even-
tually fails to converge within a convergence criterion of 107°
% for T >35¢eV (¢ =0.6) and T > 15 eV (a = 1.0). We
used a relative difference of the total, Fermi-Dirac-weighted
energy of the system Zn’k E, xii, x between iterations as the
SCF-convergence parameter, achieving convergence if this
relative difference was smaller than 1076 %.
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