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X-ray-induced atomic transitions via machine learning: A computational investigation
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Intense x-ray free-electron laser pulses can induce multiple sequences of one-photon ionization and accompa-
nying decay processes in atoms, producing highly charged atomic ions. Considering individual quantum states
during these processes provides more precise information about the x-ray multiphoton ionization dynamics than
the common configuration-based approach. However, in such a state-resolved approach, extremely huge-sized
rate-equation calculations are inevitable. Here we present a strategy that embeds machine-learning models
into a framework for atomic state-resolved ionization dynamics calculations. Machine learning is employed
for the required atomic transition parameters, whose calculations possess the computationally most expensive
steps. We find for argon that both feedforward neural networks and random forest regressors can predict these
parameters with acceptable, but limited accuracy. State-resolved ionization dynamics of argon, in terms of
charge-state distributions and electron and photon spectra, are also presented. Comparing fully calculated and
machine-learning-based results, we demonstrate that the proposed machine-learning strategy works in principle
and that the performance, in terms of charge-state distributions and electron and photon spectra, is good. Our
work establishes a first step toward accelerating the calculation of atomic state-resolved ionization dynamics
induced by high-intensity x rays.
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I. INTRODUCTION

The enormous peak brightness of x-ray free-electron lasers
(XFELs) [1–5], such as the European XFEL [6], offers ex-
citing new opportunities for the structure determination of
biomolecules with almost atomic resolution [7–13]. However,
due to the high-intensity x rays the electronic structure of the
investigated sample is unavoidably damaged [14–17]. As a
consequence, the sample undergoes structural disintegration
[18], which limits such applications.

A critical process, underlying these damages, is x-ray
multiphoton ionization dynamics in atoms and molecules
[19]. High-intensity x rays induce multiple sequences of one-
photon ionization accompanied by Auger-Meitner decay or
x-ray fluorescence. As a result, atoms or molecules often
become very highly ionized during the interaction with in-
tense XFEL pulses [20–24]. A validated approach to simulate
the x-ray multiphoton ionization dynamics is by solving a
coupled set of rate equations [20,25,26] describing the time-
dependent populations of the electronic configurations visited
during the ionization dynamics. Such a configuration-based
rate-equation approach has been widely used and successfully
applied for interpreting and designing many XFEL experi-
ments [20–43].
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However, the configuration-based approach does not in-
clude individual quantum states and individual state-to-state
transitions and, thereby, cannot capture state-resolved ion-
ization dynamics. A state-resolved approach delivers more
detailed information about the x-ray multiphoton ionization
dynamics, especially regarding resonant excitations and spec-
tra. This has recently been demonstrated for neon atoms
[44]. To explore state-resolved ionization dynamics based on
time-dependent quantum state populations, it is necessary to
include all possible electronic quantum states that may be
formed by removing zero, one, or more electrons from the
ground state of the neutral atom. The corresponding number
of involved states is dramatically larger than the number of
electronic configurations. For example, even for an isolated
argon atom without considering resonant or relativistic effects
the number of involved states is 262144 [44], whereas only
1323 electronic configurations are involved [34]. Thus, apart
from very light atoms like neon, solving rate equations in
an extremely large space of states is unavoidable. Therefore,
the huge-sized rate equation calculations are performed via a
more efficient Monte Carlo on-the-fly rate-equation method
[21,38]. However, even with such a Monte Carlo method, the
computational effort for the state-resolved ionization dynam-
ics calculations is inevitably large (as will be demonstrated
in Sec. III C). The main bottleneck in the state-resolved ion-
ization dynamics calculations is the first-principle calculation
of all required atomic transition parameters, i.e., transition
energies, cross sections, and rates, which has to be performed
on the fly.

With machine learning nowadays being a thriving and ac-
tively investigated field, it is natural to ask whether this critical
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challenge of high computational effort might be addressed
by applying a suitable machine learning strategy. Machine
learning, deep learning included, has already successfully
supported natural science in various ways [45–47]. A proto-
type example is the application to protein structure predictions
with atomic accuracy [48]. Other important applications of
machine learning include the prediction of x-ray absorption
spectra [49–52], the identification of phase transitions in con-
densed matter [53], the characterization and calibration of
laser pulses [54–57], as well as its use in electronic-structure
theory [58–63], just to name a few (for more see, e.g.,
Refs. [45,46] and references therein). One high-impact role
that machine learning has been playing in electronic-structure
theory so far is in speeding up the construction of potential-
energy surfaces [64–67]. A recent review about the progress
of machine learning in the context of potential-energy surfaces
can be found in Ref. [68]. Furthermore, another interest-
ing approach is to reduce the high computational effort in
configuration-interaction calculations by preselecting only the
most important configurations via machine-learning models
[69,70].

In this work, we present a strategy that embeds machine-
learning models for predicting atomic transition parameters
into a Monte Carlo on-the-fly rate-equation method for de-
scribing atomic state-resolved ionization dynamics. Recently,
a state-resolved Monte Carlo implementation [44], based
on a framework for performing quantum-state-resolved first-
principle calculations of atomic transition parameters [71],
was introduced in the ab initio electronic-structure and ion-
ization dynamics toolkit XATOM [16,72,73]. We here combine
the state-resolved Monte Carlo implementation with machine-
learning models for predicting atomic transition parameters.
This machine-learning-based implementation can reproduce
the results for neon published in Ref. [44]. However, for
neon, the computational effort is too small to gain much with
it. Therefore, here, we choose to focus on the much more
challenging problem of state-resolved ionization dynamics of
argon. Our work establishes a first step towards accelerating
huge-sized rate-equation calculations for easily examining x-
ray-induced ionization dynamics for a variety of atoms and
x-ray parameters.

The paper is organized as follows: In Sec. II, a descrip-
tion of the methods used to obtain the results presented in
Sec. III can be found. In Sec. III A, we demonstrate how to
collect data of x-ray-induced atomic transitions via a Monte
Carlo approach, before analyzing the performance of the
machine-learning models (i.e., neural networks and random
forest regressors) in Sec. III B. The performance, in terms of
charge-state distributions (CSDs) and spectra, is the topic of
Sec. III C. The paper finishes with a conclusion and future
perspectives in Sec. IV.

II. THEORETICAL DETAILS

A. State-resolved Monte Carlo calculations

We perform state-resolved x-ray multiphoton ionization
dynamics calculations using the state-resolved Monte Carlo
implementation [44] in the XATOM toolkit [16,72,73]. This
implementation is based on a nonrelativistic quantum-state-

resolved electronic-structure framework [71], also embedded
in XATOM. It performs first-principle calculations of atomic
first-order-corrected transition energies as well as state-to-
state cross sections and transition rates.

To provide an overview of the accuracy of the quantum-
state-resolved electronic-structure framework employed, we
list selected K and L fluorescence and KLL Auger-Meitner
transition energies for Ar1+ and Ar2+ (hypersatellites) in
Table I. Transition energies are calculated with two differ-
ent orbital optimization strategies within this framework:
based on first-order-corrected energies calculated with or-
bitals and orbital energies optimized (i) for the initial
electronic configuration only and (ii) for the initial and fi-
nal electronic configurations individually. Both strategies are
compared with relativistic calculations [74,75,77,79] and ex-
perimental measurements [74,76,78,79], which are in almost
perfect agreement with one another (see Table I). Relativistic,
quantum-electrodynamic, and finite-nuclear-size effects [74]
are not included in the quantum-state-resolved electronic-
structure framework employed. As a consequence, transition
energies calculated with both strategies are less accurate and
exhibit no spin-orbit splitting. Nonetheless, the selected tran-
sitions in Table I demonstrate an accuracy of more than 90%
(initial optimization) or 97% (individual optimization), re-
spectively. The individual optimization delivers more accurate
results, however, at the expense of computational efficiency.
Therefore, in what follows, we optimize for the initial elec-
tronic configuration only (as done in Refs. [44,71]). The main
focus in this work is on the usage of machine learning for
atomic transition parameters, whose accuracy does not affect
the general machine-learning approach.

Furthermore, a Monte Carlo on-the-fly rate-
equation method [21,38] is employed for describing the
time evolution of the atomic quantum state populations.
The number of coupled rate equations (= the number of
individual states involved in the x-ray multiphoton ionization
dynamics) is extremely large. For instance, for argon atoms,
this number is 218 when all subshells are accessible for
one-photon ionization, but relativistic and resonant effects
are not included [44]. Therefore, the Monte Carlo method is
critical since it permits us to efficiently perform huge-sized
rate-equation calculations by stochastically sampling possible
ionization pathways.

In the present work, we restrict the time propagation of the
x-ray multiphoton ionization dynamics to a time interval of 1
ps. This implies that decay processes that occur on timescales
much longer than 1 ps are assumed not to be of interest.
Therefore, the rates are set to zero when they are smaller
than �thres = 10−7 a.u. (corresponding to the timescale of
240 ps). In what follows, these comparatively slow processes
are referred to as quasiforbidden transitions. This is reason-
able since processes occurring later are actually modified by
plasma processes. Thus, the model of an isolated atom as-
sumed in our calculations breaks down after some time. Note
that, at this point, the few-femtosecond ionizing pulse is long
over.

Let us briefly explain what we mean by an individual
quantum state and an individual state-to-state transition in the
following. In our state-resolved approach, a state I is defined
by the electronic configuration, 1sN1s 2sN2s 2pN2p · · · , together
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TABLE I. Accuracy of the underlying quantum-state-resolved electronic-structure framework in XATOM. Selected fluorescence and Auger-
Meitner (hypersatellite) transition energies for argon are calculated with this framework [71] based on orbitals and orbital energies optimized
(i) for the initial electronic configuration only and (ii) for the initial and final electronic configurations individually. Results are compared with
(iii) more accurate relativistic calculations and (iv) experimental data (references are given next to values in the table), which contain energy
splittings due to spin-orbit coupling.

Transition energy EIi→I f (eV) Difference (%)

Process (i) XATOM (ii) XATOM–ind. (iii) Relativistic (iv) Experiment (iv) − (i) (iv) − (ii)

Ar1+, 1s12s22p63s23p6 (2S) 2931.5 2946.4 2957.9 [74] 2957.7 [74] 0.9 0.4
→ 1s22s22p53s23p6 (2P) 2955.9 [74] 2955.6 [74] 0.8 0.3

Ar1+, 1s12s22p63s23p6 (2S) 3140.3 3180.4 3191.5 [74] 3190.5 [74] 1.6 0.3
→ 1s22s22p63s23p5 (2P) 3191.3 [74] 3190.5 [74] 1.6 0.3

Ar1+, 1s22s22p53s23p6 (2P) 202.4 215.3 219.5 [74] 220.2 [74] 8.8 2.3
→ 1s22s22p63s13p6 (2S) 221.5 [74] 221.8 [74] 9.6 3.0

Ar2+, 1s02s22p63s23p6 (2S) 3105.9 3118.0 3131.5 [75] 3133.0 [76] 0.9 0.5
→ 1s12s22p53s23p6 (1P)

Ar1+, 1s12s22p63s23p6 (2S) 2646.9 2650.6 2661.8 [77] 2660.6 [78] 0.5 0.4
→ 1s22s22p43s23p6 (1D)

Ar1+, 1s12s22p63s23p6 (2S) 2634.8 2638.6 2649.9 [77] 2650.6 [78] 0.6 0.5
→ 1s22s22p43s23p6 (1S)

Ar2+, 1s02s22p63s23p6 (1S) 2765.4 2766.4 2779.2 [79] 2779.6 [79] 0.5 0.5
→ 1s12s22p43s23p6 (2D)

Ar2+, 1s02s22p63s23p6 (1S) 2752.5 2762.6 2769.6 [79] 2768.9 [79] 0.6 0.2
→ 1s12s22p43s23p6 (2S)

with additional quantum numbers (L, S, ML, κ ) (that specify
a so-called zeroth-order LS eigenstate [71]). For each state,
there is a corresponding (term-specific) first-order-corrected
energy ELSκ that is the same for all states within a term
2S+1L(κ ). Note that the spin projection quantum number MS

is missing in the description of an individual quantum state.
Since in our approach none of the interaction Hamiltonians
couples to the spin [44,71], transition probabilities are in-
dependent of MS and, thus, we are not interested in spin
projection quantum numbers. From now on the index i refers
to the initial state (before a certain process is happening),
while for the final target state we use the index f . Then,
an individual state-to-state transition is a transition from an
individual quantum state I i to I f with first-order-corrected
transition energy E (1)

I i→I f , cross section σI i→I f for photoab-
sorption or transition rate �I i→I f for Auger-Meitner decay or
fluorescence, respectively. (The corresponding equations are
given in Ref. [71].)

B. The machine-learning models

The tasks of the machine-learning models are to predict for
a given transition from an individual quantum state I i to I f the
first-order-corrected transition energy E (1)

I i→I f (E model) and
the cross section σI i→I f for photoabsorption (P model) or the
transition rate �I i→I f for Auger-Meitner decay (AM model)
and fluorescence (F model). These four tasks are solved by
separate machine-learning models. All are regression prob-
lems [80] with the following inputs (i.e., features) and outputs
(i.e., labels).

The features are given by the following quantities based on
our definition of an individual quantum state in Sec. II A:

(i) occupation numbers ni
occ of the initial electronic con-

figuration, i.e., (Ni
1s, Ni

2s, Ni
2p, . . . );

(ii) quantum numbers qni of the initial state, i.e.,
(Li, Si, MLi , κi );

(iii) type of process p being considered, i.e., (involved
hole, first involved electron, second involved electron {for
AM, otherwise zero}, kind of process {1:P, 2:AM, 3:F});

(iv) quantum numbers qn f of the final state, i.e.,
(L f , S f , ML f , κ f ).

The first case gives Norb features, where Norb is the number
of subshells involved in the initial electronic configuration,
and the rest provides four features per each case. Thus, the
total number of features Nfeatures in a feature vector is given by

Nfeatures = Norb + 12. (1)

Note that the type of process being considered can be in-
terchanged with the occupation numbers n f

occ of the final
electronic configuration. Here, the former is employed in the
feature vector to reduce the number of features, which is
especially important for heavy atoms and/or the inclusion of
resonant effects.

It is also worthwhile to mention that (as can be seen from
Ref. [71]) cross sections and decay rates are invariant un-
der a change of the angular-momentum projection quantum
numbers MLi → −MLi and simultaneously ML f → −ML f —a
relation the machine-learning models fail to learn. Therefore,
we force the machine-learning models to preserve this sym-
metry by using MLi � 0 as a feature only. More precisely,

if MLi

⎧⎨
⎩

> 0 : MLi and ML f

= 0 : MLi = 0 and |ML f |
< 0 : |MLi | and − ML f

(2)

are taken as features for the projection quantum numbers.
Another important point is that the individual models are

not given all features as inputs, only those that are relevant.
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Transition energies are independent of MLi and ML f —another
relation the machine-learning model fails to learn. Hence, for
the energy model, they are not used and, therefore, NE

features =
Nfeatures − 2. Similarly, for the other three models the kind of
process (P, AM, or F) is an unnecessary feature as it is fixed a
priori by the model used. Additionally, features for involved
holes and electrons are only important if they exist for the pro-
cess in question. Consequently, we have NP

features = Nfeatures −
3, NAM

features = Nfeatures − 1, and NF
features = Nfeatures − 2.

The label is always only one number since each task has its
own machine-learning model:

ypred =

⎧⎪⎪⎨
⎪⎪⎩

E (1)
I i→I f in eV for E model

σI i→I f in a.u. for P model
�I i→I f in a.u. for AM model
�I i→I f in a.u. for F model.

(3)

Data preparation depends on the type of machine-learning
model used. For the neural networks, the widely recom-
mended Z-score normalization is applied to each feature xk

[81], i.e.,

x′
k = xk − μk

σk
, (4)

with mean μk and standard deviation σk of the kth feature with
respect to all training data. Consequently, the prepared input
data form a distribution with zero mean and unit standard de-
viation. For the random forest regressors, however, no feature
normalization is required since it is not distance-based.

The energy values cover a wide range from 0 eV to the
energy of the incoming x rays, typically a few thousand elec-
tronvolts. For the neural network, they are also normalized
by Z-score normalization [see Eq. (4)] in order to keep their
values in a smaller range. For the random forest regressor, the
pure energy values are used.

Cross sections and rates cover several orders of magni-
tude. Thus, logarithmic scaling might be useful and is, in
fact, applied for the random forest regressors. For the neural
networks, however, we prefer to use pure cross section and
rate values by, instead, respecting the wide range in the loss
function and the output activation (see Sec. II C) without any
scaling. The advantage is that this avoids back-scaling, which
in combination with Z-score normalization is prone to errors,
especially for very small cross sections and rates.

C. Neural network

Neural networks [80,82,83] are the central tool of deep
learning. In general, they consist of a sequence of several
sets of linear transformations followed by nonlinear activa-
tions. Each step in this sequence is called a layer [59]. The
number of layers in the neural network determines its depth.
Based on a chosen loss function and an optimizer, they are
trained via back-propagation [84]. The basic idea of a (deep)
neural network is that each layer is effectively learning a
more complex representation of the raw input features and
that this reduces the number of parameters needed to be
fitted [85].

TABLE II. Neural network architecture: number of units per
layer for each neural network trained in this work (see Sec. II C).

Model In 1 2 3 4 5 Out

E 15 512 256 128 64 32 1
P 14 1024 512 256 128 64 1
AM 16 1024 512 256 128 64 1
F 15 1024 512 256 128 64 1

1. Hyperparameter tuning

Before explaining the neural network architecture and
the hyperparameters employed in the present work, let us
briefly explain the general way we have made these decisions.
This will make some of our reasoning in the following two
paragraphs clearer. The neural network architecture and hy-
perparameters are determined by “trial and error.” Due to high
training efforts and fluctuations in loss values from training
to training, a more systematic and automated hyperparameter
optimization, e.g., by a grid search [80], would not be well
suited for our purpose. It is especially worthwhile to note
that our models are system-specific. As will be explained
in Sec. II E, for each machine-learning-based Monte Carlo
calculation, the models need to be retrained. If we also had to
re-optimize the hyperparameters for (almost) every machine-
learning-based Monte Carlo calculation, this would be in clear
contrast to our goal of speeding up the calculations. Moreover,
for speeding up calculations, models should also be chosen
such that training is not more time consuming than really
necessary. Consequently, our aim is not to find the perfect
hyperparameters and the best possible model performance for
a given training set. Note that differences between different
models are often anyhow only very small. Instead, it is more
critical to build models, hyperparameters included, that allow
us to train them for different training sets and training set sizes
with a good (but not necessarily perfect) performance within
an acceptable amount of time.

2. Network architecture

For our neural networks, we employ the popular deep
learning library Keras [86] of the TensorFlow machine-
learning platform [87]. Our neural networks are standard
feedforward neural networks with seven layers, input and
output layer included, and with the number of units given in
Table II. This neural network architecture has sufficient model
capacity to approximately fit the data, but not enough to nearly
perfectly interpolate the training data (see Sec. III B). For ar-
gon, interpolating training data as suggested by the “modern”
interpolation hypothesis [88] is a tough task because it actu-
ally requires very large neural networks and, concomitantly,
very long training times (see Sec. III B). Therefore, we have
chosen this network architecture as a compromise between
computational effort and numerical accuracy. Of course, other
neural network architectures with comparable capacity would
work similarly well.

For the activation function, the hyperbolic tangent (tanh) is
chosen. Indeed, nowadays, in the deep learning community
rectified linear units (ReLU) or variants thereof are much
more recommended [80,89]. Nonetheless, in our numerical
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investigations we have found that for the situations considered
in this work, tanh matches or sometimes even outperforms the
other available activation functions. To improve the training
process with tanh activation, weights are initialized following
the “GlorotUniform” initializer explained in Ref. [90]. Energy
values are normalized to zero mean and are in principle un-
bounded. Thus, for the energy model a linear output layer is
a rational choice. On the other hand, cross sections and rates
are unnormalized and cover a range between zero and unity.
Hence, we chose a sigmoid output layer. Of course, in the
typical ranges of output values (≈10−3 to 10−7) sigmoid is
almost constant. But for the present models, this seems not
to be a very serious problem. Overfitting to the training data
is reduced by regularizing the models with dropout [91] with
a soft probability of 0.01 (E) or 0.05–0.1 (P, AM, and F),
respectively. We do not regularize our models very strongly
due to the model capacity being too low for interpolating
training data.

3. Optimization

The neural networks are trained on mini batches of size
211 using the Adam optimization algorithm [92] with early
stopping and a maximum of 1200 epochs (i.e., forward and
backward passes through the neural network). We have chosen
Adam as it is known to be fairly robust to the choice of
hyperparameters, like the learning rate. The learning rate for
Adam is set to 0.0005 (E) and 0.001 (P, AM, and F). Most
important for the learning is the loss function on which the
optimization is performed. For the energy model, the mean
squared error (MSE) on the training set is employed. MSE on
a general dataset D with size ND in one dimension is given by

LMSE
D = 1

ND

ND∑
j=1

(
ycalc

j − ypred
j

)2
, (5)

where ycalc
j is the label value of the jth example in D and ypred

j
is the prediction, respectively. However, MSE only works well
if labels cover a similar range. Otherwise, errors in small label
values will be overlooked. Therefore, for the other three mod-
els, we define a mean squared logarithmic error (MSLE) as

LMSLE
D = 1

ND

ND∑
j=1

(
log10

[
ycalc

j + ε
]

− log10

[
ypred

j + ε
])2

, (6)

on which they are trained. In this expression, ε = 10−10

is used for numerical stability. Values smaller than ε are
practically treated as zero. The value of 10−10 makes sense
since smaller photoionization cross sections are negligible.
Due to the choice of sigmoid output activation, it is guaranteed
that all ypred

j > 0. (They are set to zero later if they are found
to be very small). Note that MSLE basically measures by how
many orders of magnitude ycalc

j and ypred
j differ.

4. Performance measure

Finally, we need to evaluate how well the trained model
behaves on a test set not seen during training. A way of
measuring the performance of the model is to compute the

MSE (for E) or MSLE (for P, AM, and F) on the test set.
In addition to this, for each example in the test set the ab-
solute error ycalc

j − ypred
j or the logarithmic error log10[ycalc

j +
ε] − log10[ypred

j + ε] can be calculated and represented in a
histogram. For the AM or F models, however, there is one
problem with the (quasi-)forbidden transitions. If ycalc

j = 0 but

ypred
j > 0 or vice versa, the logarithmic error mainly depends

on our choice of ε. As a consequence, MSLE can be quite
large and (at least) for a human-based interpretation loses its
usefulness. Therefore, we perform the following: We measure
the accuracy on the whole test set (or any other dataset we are
interested in). The accuracy,

AD = # of correct predictions

ND
, (7)

here is a measure of how good the machine-learning model
learns whether a transition is allowed or (quasi-)forbidden,
i.e., “# of correct predictions” includes the cases in which
ycalc

j > 0 and ypred
j > 0 or ycalc

j = 0 and ypred
j = 0. Knowing

the accuracy, all wrong predictions, i.e., ycalc
j = 0 but ypred

j > 0

or ycalc
j > 0 but ypred

j = 0, can, then, be excluded from the
computation of MSLE and error histograms without any loss
of information. It should be stressed that during training only
MSLE is evaluated, but the accuracy is not. Embedding ac-
curacy into training by, e.g., using a preceding classification
model may be pursued in a future investigation.

D. Random forest regressor

A powerful alternative to neural networks is the random
forest regressor technique [93,94]. They are known to be much
faster and much easier to tune with respect to hyperparameters
than neural networks. But they have a limited capacity due to
a lack of the depth that deep neural networks can have [95].

Random forest regressors are a decision-tree-based ensem-
ble method. Briefly explained, the algorithm hierarchically
separates the input space into subsets with respect to a specific
feature and relation operators, i.e., it creates a decision tree.
For each node (i.e., subset), the most important feature and
the best split are controlled by a loss function; here we use
MSE (for all models). To improve generalization, several of
these trees are built and the final prediction is obtained as an
average over all trees.

For our random forest regressors, we made use of the
scikit-learn implementation [96] with 100 trees in the forest.
In accordance with the “modern” interpolation hypothesis
[88], we barely regularize our models (i.e., the whole training
dataset is used for building each tree and nodes are expanded
in an unrestricted manner). This enables us to perfectly fit the
training data and does not bound the test performance by a
poor training performance. The only regularization performed
here is that only NModel

features − 6 features are randomly chosen at
each node. As for the neural networks, these regularizations
are determined by “trial and error” with respect to the model
performance, the time efficiency, and the robustness to differ-
ent training sets. Performance is measured in the same manner
as for the neural networks (using MSE for the E model and
MSLE for the P, AM, and F models).
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FIG. 1. Structure of the machine-learning-based state-resolved Monte Carlo implementation. The state-resolved Monte Carlo part in
Fortran is called XATOM_MC, while XATOM_ML is the machine-learning part in Python. The arrows indicate that data are streamed into (→) or
are obtained from (←) the FIFO files.

E. Machine-learning-based state-resolved
Monte Carlo implementation

The state-resolved Monte Carlo calculations, described in
Sec. II A, are computationally very expensive for situations in
which a large number of orbitals is involved (i.e., for heavier
atoms or when resonant excitations are included), caused by
an exponentially large number of states involved in the x-ray
multiphoton ionization dynamics (see Ref. [44]). We approach
this challenge by employing a machine-learning strategy to
support the high-level Monte Carlo calculations. For this,
we implement a machine-learning-based version of the state-
resolved Monte Carlo implementation within XATOM [73],
which closely couples the Monte Carlo calculation (Sec. II A)
with a machine-learning algorithm (Secs. II C or II D). It is
sketched in Fig. 1. The state-resolved Monte Carlo implemen-
tation written in Fortran is coupled to the machine-learning
part written in Python via FIFO (first-in-first-out) special files.
This enables a hand-in-hand exchange of the most important
information or data without storing them physically on the
disk.

We separate the Monte Carlo part into two iterative phases:
(i) an initial training and test phase and (ii) a final produc-
tion phase. During the first NTT

traj Monte Carlo trajectories
(training and test phase, where TT indicates training and test
phase), the electronic structure as well as the atomic transi-
tion parameters, i.e., transition energies, cross sections and
rates, are explicitly calculated via quantum-state-resolved
first-principle calculations. The calculated atomic transition
parameters are collected and redirected to a FIFO file as a
combined set of training and test data. The data are split up
randomly into training data (85% of the data calculated) and
test data (15% of the data calculated). Based on these data, the
machine-learning models are trained and their performance is
evaluated. The trained model parameters are redirected into
another FIFO file. Based on them the machine-learning al-
gorithms are reconstructed in Fortran. This does not include
any complicated training procedures. It just means evaluat-
ing the sequence of linear functions and activation functions,
whose parameters are determined by the read-in parame-
ters. Using reconstructed machine-learning models eliminates
the need for further calls of the machine-learning part in
Python. Hence, no further communication between Fortran
and Python, requiring further data sharing, is necessary in

the final production phase. In the production phase a lot of
further Monte Carlo trajectories (NProd

traj ) are run until either
the maximum number of trajectories is reached or CSDs are
converged. During these Monte Carlo trajectories no further
quantum-state-resolved first-principle calculations are per-
formed. On the one hand, atomic transition parameters stored
in memory are employed. This is the case when the transition
at hand, for which we want to know the atomic transition
parameters, has already been visited during the training and
test phase and atomic transition parameters are stored. On the
other hand, atomic transition parameters for transitions newly
visited and, thus, not stored yet are predicted on the fly via the
reconstructed machine-learning models.

Results of x-ray multiphoton ionization dynamics calcu-
lations in Sec. III C are obtained in a way that all Monte
Carlo trajectories add up to a total number of 80 000 (=NTT

traj +
NProd

traj ).

III. RESULTS AND DISCUSSION

We examine the performance of the machine-learning-
based state-resolved Monte Carlo implementation for atomic
argon at a photon energy of 5 keV. For such a photon energy, in
principle all electrons can be ionized via x-ray sequential mul-
tiphoton ionization, i.e., a repeated sequence of one-photon
ionization and inner-shell relaxation events. Therefore, no
resonant excitation is involved in the x-ray multiphoton ion-
ization dynamics. Following Ref. [44], we use a temporal
Gaussian pulse envelope with 10 fs (full width at half max-
imum) and a fluence of 1012 photons/µm2. Neither relativistic
effects [34], nor nonsequential two-photon absorption, higher-
order many-body processes such as shake-off, nor volume
integration are included in the calculations (see Ref. [44] and
references therein). Due to the lack of volume integration,
a quantitative comparison with experimental results is not
directly possible.

A. Data collection

Before exploring the machine-learning-based results, we
start by considering how to choose the number of Monte Carlo
trajectories for the training and test phase and the production
phase. For the machine-learning-based state-resolved Monte
Carlo implementation, the quantity that can easily be tuned
in order to determine the size of the training and test datasets

013265-6



X-RAY-INDUCED ATOMIC TRANSITIONS VIA MACHINE … PHYSICAL REVIEW RESEARCH 6, 013265 (2024)

FIG. 2. Number of atomic transition parameters Ndata collected as
a function of the number of Monte Carlo trajectories Ntraj for argon
at 5 keV. The arrows indicate the three different cases considered in
this work (see Table III).

is the number of Monte Carlo trajectories during the training
and test phase (NTT

traj ). Figure 2 shows the number of atomic
transition parameters (Ndata) collected as a function of the
number of Monte Carlo trajectories (Ntraj). Of course, this
relation slightly varies from one Monte Carlo calculation to
another, but, nonetheless, Fig. 2 gives a very good orientation
on Ndata. As can be seen, for argon at 5 keV, Ndata is very
high (≈107). This is related to the huge number of individual
states involved in the calculations (Sec. II A). Moreover, Ndata

seems not to be saturated as Ntraj increases, within the range of
Ntraj we used (up to Ntraj = 80 000). This makes successfully
training the machine-learning models a tough task, as we are
going to demonstrate in Sec. III B. On the other hand, this
presents a situation in which a successful implementation of
machine learning can be really helpful, in contrast with light
atoms like neon. For our studies in Secs. III B and III C, we
have chosen three different NTT

traj such that they cover a wide
range of the curve in Fig. 2, i.e., NTT

traj = 4000, 9000, and
28 000, as listed in Table III.

To gain an overview of the remaining number of Monte
Carlo trajectories in the production phase, in Fig. 3 we
show argon CSDs obtained using the state-resolved Monte
Carlo implementation (no machine learning) [44] with dif-
ferent numbers of Monte Carlo trajectories Ntraj. The error
bars represent the statistical error estimate of the Monte
Carlo calculation for each charge state q, given by εq =√

Pq(1 − Pq)/(Ntraj − 1), where Pq is the population probabil-
ity of the charge state q. Note the proportionality of the Monte
Carlo error to 1/

√
Ntraj − 1, causing comparably large errors

for small Ntraj. Figure 3 demonstrates that for 10 000 Monte
Carlo trajectories the CSD is almost converged. It should be
mentioned that more Monte Carlo trajectories are necessary

TABLE III. Number of training and test Monte Carlo trajectories
NTT

traj as well as the corresponding training and test dataset size (NTT
data)

for the three different cases considered in this work for argon at
5 keV.

Label NTT
traj NTT

data

(i) 4000 2 686 711
(ii) 9000 4 680 860
(iii) 28 000 8 965 379

FIG. 3. Convergence behavior of argon CSDs as a function of
the number of Monte Carlo trajectories Ntraj. Results are obtained
with the state-resolved Monte Carlo implementation of Ref. [44] (no
machine learning). The error bars indicate the statistical error.

for convergence of state-resolved quantities such as spectra.
Due to this and in order to be safely sure that Monte Carlo
errors are sufficiently small for our purpose, we utilize here
80 000 Monte Carlo trajectories in total (i.e., training and
test plus residual production trajectories). Note further that
CSDs in Fig. 3 are converged when Ndata is still far from
a saturation point (Fig. 2). This demonstrates that only a
small fraction of frequently visited transitions is critical for
the ionization dynamics calculations. This is also the reason
why the Monte Carlo method is so powerful [38] and why
the machine-learning-based state-resolved Monte Carlo im-
plementation works (see Sec. III C).

B. Performance of machine-learning models

Let us next discuss machine-learning results for argon,
employing both neural networks (Sec. II C) and random forest
regressors (Sec. II D). We examine also how the machine-
learning performance depends on the training set size. In
particular, the three different dataset sizes (i.e., combined set
of training and test data) listed in Table III are considered.
According to the feature for the kind of process (p = 1, 2, or
3; see Sec. II B), each dataset is separated into the individual
subdatasets for the P model (25%–28% of NTT

data), the AM
model (57%–59% of NTT

data), and the F model (15%–16% of
NTT

data). For the E model, duplications with respect to the energy
label are removed. (Thus, 29%–35% of NTT

data are left over for
the subdatasets for the E model.) Moreover, 85% of randomly
selected data are employed as data for training a model, while
the remaining 15% serve as test data.

To inspect the model’s performance on the unseen test
dataset, we show three-dimensional scatter plots of predicted
data in Figs. 4(a)–4(d) and 5(a)–5(d) and the distribution
of absolute or logarithmic errors in Figs. 4(e)–4(h) and
5(e)–5(h). For Figs. 4(a)–4(d) and 5(a)–5(d), the vertical axis
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FIG. 4. Performance of the neural networks (NN) in terms of (a)–(d) scatter plots and of (e)–(h) error histograms: (a), (e) the transition
energy E in eV; (b), (f) the photoionization cross section (P) in logarithmic scaling; (c), (g) the Auger-Meitner decay rate (AM) in logarithmic
scaling; and (d), (h) the fluorescence rate (F) in logarithmic scaling. The color bars in panels (a)–(d) show the relative number of pairs
(ycalc, ypred), scaled by (a) 10−2 or (b)–(d) 10−3. The dotted white line indicates the identity mapping. We consider the test dataset of case (ii).

FIG. 5. Performance of the random forest regressors (RF) in terms of (a)–(d) scatter plots and of (e)–(h) error histograms: the panels show
the same quantities as in Fig. 4.
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TABLE IV. Test error statistics for the neural networks (NN) and
random forest regressors (RF): MSE loss (LMSE) [Eq. (5)] in eV2

for the energy model (E) and MSLE loss (LMSLE) [Eq. (6)] for the
photoionization cross section (P), Auger-Meitner decay rate (AM),
and fluorescence rate (F) models, evaluated on the test datasets of all
three cases (Table III). For the AM and F models, additionally the
accuracy (A) [Eq. (7)] is given, in %.

NN RF

Model L or A (i) (ii) (iii) (i) (ii) (iii)

E LTest 13.1 12.2 9.4 30.4 27.0 24.8
P LTest 0.42 0.41 0.43 0.36 0.32 0.26
AM LTest 0.44 0.46 0.49 0.32 0.32 0.29

ATest 87.7 86.6 84.3 87.7 87.6 87.9
F LTest 0.13 0.14 0.15 0.11 0.10 0.09

ATest 90.9 91.0 89.5 89.0 89.3 89.6

is the predicted energy in eV [Figs. 4(a) and 5(a)] or the
predicted cross section [Figs. 4(b) and 5(b)] or rate [Figs. 4(c),
5(c) and 4(d), 5(d)] in logarithmic scaling, while the horizon-
tal axis is the underlying calculated value. For both, 100-eV
bins [Figs. 4(a) and 5(a)] or 0.1 bins [Figs. 4(b), 5(b), 4(c),
5(c), and 4(d), 5(d)], respectively, are used. The color bars
show the relative number of scatter points, scaled by 10−2

[Figs. 4(a) and 5(a)] or 10−3 [Figs. 4(b), 5(b), 4(c), 5(c),
and 4(d), 5(d)], i.e., the number of pairs of calculation and
prediction within a bin divided by the total number of test data
for the model in question. The three-dimensional plots sup-
plement the common two-dimensional scatter plots by further
information about the distribution of scatter points, which is
sensible when the number of data is large, i.e., here, on the
order of 105. Moreover, for brevity, only results for the case
(ii) are given in the figures (for the other cases see below in
the context of Table IV).

It becomes evident from Figs. 4(e) and 5(e) that transition
energies are mostly predicted with better than 10-eV accuracy
[i.e., the sum of error bars within the 10-eV window yields
99% (NN) or 94% (RF) for case (ii)] and with at most around
50 eV difference. The good performance of the energy model
is underlined by Figs. 4(a) and 5(a), looking very similar to the
identity mapping of ypred = ycalc. In contrast with the energy
model, cross section and rate models perform less accurately
for argon. Most predictions [85%–98% for case (ii)] deviate
from the calculation by less than an order of magnitude [see
first-order windows in Figs. 4(f)–4(h) and 5(f)–5(h)]. How-
ever, deviations up to four orders of magnitude are possible.
Comparably poor predictions can occur for all cross sec-
tions or rates, even though higher calculated values seem to be
a little bit less inaccurate [see Figs. 4(b)–4(d) and 5(b)–5(d)].
Nonetheless, of course, a better accuracy is actually needed
the higher the calculated cross section or rate. Using MSLE
loss during training, the models cannot respect this in the
model training and evaluation. Moreover, we observe that
fluorescence rates are predicted the best, while Auger-Meitner
decay rates possess the largest deviations. Interestingly, for
photoionization and Auger-Meitner decay, there is a tendency
that predictions are smaller than the calculated cross sec-
tions or rates [see Figs. 4(b), 4(c) and 5(b), 5(c)].

TABLE V. Training times, real and CPU, in minutes for the
neural networks (NN) and the random forest regressors (RF) for
all four models. We consider the training datasets of all three cases
(Table III).

Real time (min) CPU time (min)

Data set Model NN RF NN RF

(i) E 92 5 2674 5
P 112 4 4339 4

AM 228 9 8904 9
F 40 2 1549 2

(ii) E 153 9 4401 9
P 187 8 7233 8

AM 399 22 15733 22
F 102 4 3965 4

(iii) E 247 16 7526 16
P 346 15 13833 15

AM 691 45 28627 45
F 211 8 8523 8

It is also worthy to note that 84%–91% of transitions
for Auger-Meitner or fluorescence decay are classified as
allowed or (quasi-)forbidden when also being allowed or
(quasi-)forbidden, respectively. The test accuracy is listed in
Table IV for both the neural network and the random forest re-
gressor. For the other transitions that are classified incorrectly,
the corresponding rates, i.e., those the transition actually has
or the one the actually (quasi-)forbidden transition receives,
are mostly also small (≈10−6 a.u.). Some of them are, how-
ever, comparably high with up to 10−3 a.u. (not shown for
brevity). Recall that these wrongly classified transitions are
not included in any other quantity to measure the test perfor-
mance, like the error distribution, to stress that this does not
cause alone the deviations from a perfect performance.

Next, we examine how the performance of the machine-
learning model depends on the training set size. Table IV
reports test loss and accuracy for all three dataset cases in
Table III and for both the neural network and the random
forest regressor. (For more details on these quantities see
Sec. II C.) More training data improve the energy model,
which is already quite good, whereas the cross section and rate
models only marginally profit for the random forest regressor
or do not profit at all for the neural networks. A possible
explanation for the lack of improvement, especially for the
neural networks, might be a too low model capacity that slows
down the gain of better generalization (see below in the con-
text of Table VI). In this context, it is important to emphasize
that using more data for training does not have an essential
impact on the machine-learning model’s performance, but
enhances training times more than linearly. Table V compares
training times for all three different dataset cases (Table III).
Calculations were performed on AMD EPYC 7302 16-Core
processors with a maximum number of 64 virtual cores
(threads).

We now contrast the neural network and the random forest
regressor. As expected, both behave generally fairly similarly
(compare Figs. 4 and 5). From the results in Table IV, we
conclude that neural networks are better suited for predicting
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TABLE VI. Training and validation performance of the neural
networks (NN): MSE loss (LMSE) [Eq. (5)] in eV2 for the energy
model (E) and MSLE loss (LMSLE) [Eq. (6)] for the photoionization
cross section (P), Auger-Meitner decay rate (AM), and fluorescence
rate (F) models, evaluated on the training (Tr) and validation (V)
datasets of all three cases (Table III). For the AM and F models,
additionally the accuracy (A) [Eq. (7)] is given in %.

Model L or A (i) NN (ii) NN (iii) NN

E LTr 8.2 8.0 5.9
LV 11.6 10.7 8.1

P LTr 0.22 0.29 0.36
LV 0.42 0.42 0.43

AM LTr 0.39 0.42 0.48
ATr 91.4 88.7 85.3
LV 0.44 0.46 0.50
AV 87.8 86.6 84.3

F LTr 0.09 0.11 0.13
ATr 96.5 95.2 91.9
LV 0.14 0.14 0.15
AV 90.9 90.6 89.6

energies. However, for cross sections and rates, the random
forest regressors outperform the neural networks. Random
forest regressors for cross section and rate predictions exhibit
an improvement with more data, while those for neural net-
works decline. As a consequence, this increases the difference
between neural networks and random forest regressors with
increasing training set sizes. Most importantly, neural net-
works have a critical disadvantage. Training is very expensive
(see Table V). It can cost several hours for a single neural
network, although multiple cores are utilized (real time �
CPU time). Unlike neural networks, random forest regressors
are trained in less than an hour even for the largest training
sets on a single core (real time = CPU time).

To complete our understanding of the neural networks’
performance, we finally briefly examine the training and val-
idation losses in Table VI. (For the random forest regressors,
those investigations are not possible since training data are
interpolated and, thus, always have near zero loss.) Note that
per default in TensorFlow some of the data are separated from
the training data and are used as validation data. Here, we use
10% of the training data for validation. The results in Table VI
demonstrate that the capacities of the cross section and rate
models are too low to nearly perfectly fit the training data.
The task of predicting cross sections and rates is too complex.
This can be seen by the large training losses, increasing with
more training data. As a consequence, validation and test data
cannot be predicted very accurately either. Whether a network
architecture with a higher model capacity can significantly
overcome this limitation remains an open question at the
moment (that might be answered in the future). However, it
is most likely that a higher model capacity will lead to a
substantial increase in training time. Therefore, the chosen
network architecture is a compromise between computational
effort and numerical accuracy. In contrast, for the energy
model, the capacity seems to be sufficient since predicting
transition energies is an easier task. In addition, Fig. 6 shows
the evolution of training and validation losses with the number

FIG. 6. Loss curves of the neural networks (NN): loss evaluated
on the training data (blue) and the validation data (orange) as a
function of the number of epochs trained for all four models. In panel
(a) the MSE loss [Eq. (5)] in Z-score scaling and in panels (b)–(d) the
unscaled MSLE loss [Eq. (6)] is shown. We consider the training
dataset of case (ii).

of epochs trained for the case (ii) only. We remark that using
dropout during training increases the training loss and, hence,
it is normal that validation losses can be smaller than train-
ing losses. For the final loss, dropout is not included. Thus,
the training losses in Table VI are smaller than in Fig. 6.
Moreover, we note that the losses for the Auger-Meitner decay
and fluorescence rate models are clearly larger in Fig. 6 than
in Table VI due to wrongly classified transitions. As can be
seen, loss curves are quite smooth and almost converged. Even
early stopping before the maximal number of 1200 epochs
due to increasing validation loss is possible [see Fig. 6(d)].
Especially for the cross section and rate models, the losses
decrease only by a few percent (<10%) during the last 600
epochs. As a consequence, training longer would not have a
notable effect on training, validation, and test performances.
Since training times are approximately linear in the number
of epochs trained, we may, on the contrary, save some training
time by using fewer epochs without a noticeable reduction in
performance.

C. Results for machine-learning-based state-resolved
Monte Carlo calculations

Having investigated the performance of different machine-
learning models in the previous section, we now study
the performance of x-ray multiphoton ionization-dynamics
calculations carried out with the machine-learning-based
state-resolved Monte Carlo implementation introduced in
Sec. II E. For simplicity, we only employ the neural networks
of Sec. III B as machine-learning models in the production

013265-10



X-RAY-INDUCED ATOMIC TRANSITIONS VIA MACHINE … PHYSICAL REVIEW RESEARCH 6, 013265 (2024)

FIG. 7. Comparison of machine-learning-based CSDs with the
fully calculated CSD. Results are obtained with the state-resolved
Monte Carlo implementation without machine learning [44] (fully
calculated) and with the machine-learning-based (ML-based) state-
resolved Monte Carlo implementation [Sec. II E] for different
numbers of training and test Monte Carlo trajectories NTT

traj (Table III).
The error bars indicate the statistical error of the Monte Carlo
calculation.

phase. Random forest regressors perform comparably to neu-
ral networks, as shown in Sec. III B. However, they are a bit
harder to embed in the state-resolved Monte Carlo implemen-
tation due to the large number of individual trees, which all
need to be redirected to the FIFO file and reconstructed in
Fortran (see Sec. II E). We compare machine-learning-based
state-resolved Monte Carlo calculations for argon with state-
resolved Monte Carlo calculations using the implementation
introduced in Ref. [44] (in which no machine learning is
employed).

Figure 7 compares argon CSDs for all three previously
considered dataset cases, which correspond to different num-
bers of training and test Monte Carlo trajectories (Table III).
All machine-learning-based CSDs match the overall behav-
ior of the fully calculated CSD (i.e., in which no machine
learning is employed). Especially for low charge states (i.e.,
q � 7), the agreement is good for all three machine-learning
cases. For larger charge states, however, deviations beyond
the Monte Carlo errors can be observed, which are enhanced
the smaller the number of training and test Monte Carlo
trajectories [cases (i) and (ii)]. This is because of the machine-
learning predictions of atomic transition parameters for the
transitions newly visited in the production phase. As seen in
Sec. III B, the predictions for cross sections and rates made by
the neural networks are not very accurate. Since the transitions
newly visited in the production phase are not directly sampled
from the same distribution as the training and test data used
in Sec. III B, they are generally expected to be predicted
even less accurately (not shown for brevity) [49,80]. The
fact that the machine-learning-based CSDs are, nonetheless,
quite good relies on the use of atomic transition parameters

FIG. 8. Similar to Fig. 7, but all atomic transition parameters are
predicted by the previously trained neural networks for the different
datasets (Table III).

already calculated. For ≈14% [case (i)], ≈24% [case (ii)],
or ≈40% [case (iii)] of individual initial states all possible
atomic transition parameters are calculated in the training and
test phase, and are used in the production phase (see Sec. II E).
It also explains the improvement with more training and test
Monte Carlo trajectories attributed to more calculated atomic
transition parameters.

To illustrate this point, in Fig. 8, we show compar-
isons of CSDs where the machine-learning-based CSDs are
obtained by using only machine-learning predictions for
atomic transition parameters. In particular, we do not use
the machine-learning-based implementation as described in
Sec. II E, combining both calculated and predicted atomic
transition parameters. Instead, for Fig. 8, only the produc-
tion phase is run with all atomic transition parameters being
predicted by the previously trained neural networks. As can
be seen, when only predicted atomic transition parameters
are used the overall behavior of the machine-learning-based
CSDs still roughly matches that of the fully calculated CSD.
But the agreement is no longer close to being quantitative.

In this context, let us briefly come back to the random
forest regressors (Sec. III B), which perfectly interpolate the
training data. Thus, employing random forest regressors, it
would barely make a difference whether atomic transition
parameters already calculated are used or whether all atomic
transition parameters are predicted by the random forest re-
gressors. In particular, Figs. 7 and 8 would look very similar
to each other and this would make the above investigation
impossible. Moreover, having at hand the atomic transition
parameters already calculated in the training and test phase
(see Sec. II E), we do not consider this as an advantage of the
random forest regressors.

Figures 9(a) and 9(b) show the photoelectron spectra,
Figs. 9(c) and 9(d) show the Auger-Meitner electron spectra,
and Figs. 9(e) and 9(f) show the fluorescence spectra with
an energy resolution of 1 eV. At this energy resolution, the
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FIG. 9. Comparison of machine-learning-based (ML-based) and fully calculated spectra for (a), (b) photoelectron (P); (c), (d) Auger-
Meitner electron (AM); and (e), (f) fluorescence (F). Calculations obtained with the state-resolved Monte Carlo implementation without
machine learning [44] (blue) are compared with those obtained with the machine-learning-based state-resolved Monte Carlo implementation
(Sec. II E) for case (i) in Table III (magenta). Additionally, results with all atomic transition parameters being predicted by the previously
trained neural networks (pink) are given. The peak labels are explained in Tables VII–IX.

Auger-Meitner electron and the x-ray fluorescence spectra
form a quasicontinuum over most parts of the energy ranges
shown. Like the CSD, fully calculated results obtained with
the implementation of Ref. [44] are compared with machine-
learning-based results obtained with the implementation of
Sec. II E, as well as those that are based only on machine-
learning predictions. [For brevity, only case (i) of Table III is
shown.] Some of the dominant peaks that can be assigned to
at most two dominant processes are labeled with roman num-
bers; the corresponding transitions are specified in Table VII

[for Figs. 9(a) and 9(b)], Table VIII [for Figs. 9(c) and 9(d)],
and Table IX [for Figs. 9(e) and 9(f)].

Most importantly, we observe in Fig. 9 that the machine-
learning-based spectra obtained with the implementation of
Sec. II E (magenta lines) are in overall very good agreement
with the fully calculated ones, apart from small details. This
is due to the fact that spectral features are dominated by
peaks belonging to very low charge states (see Tables VII–IX).
But for low charge states, the corresponding atomic transition
parameters are mostly all already calculated in the training and

TABLE VII. Peak assignment in the photoelectron spectra [Figs. 9(a) and 9(b)]. Calculated transition energies, E calc
Ii→I f , and transition

energies predicted by the neural network [case (i)], E pred
Ii→I f , are listed for the underlying process.

Label Process E calc
Ii→I f (eV) E pred

Ii→I f (eV)

(i) Ar, 1s22s22p63s23p6 (1S) → 1s12s22p63s23p6 (2S) 1792 1784
(ii) Ar1+, 1s22s22p53s23p6 (2P) → 1s12s22p53s23p6 (3P) 1737 1734

Ar3+, 1s22s22p63s13p4 (2D) → 1s12s22p63s13p4 (1D) 1731
(iii) Ar1+, 1s12s22p63s23p6 (2S) → 1s02s22p63s23p6 (1S) 1555 1593
(iv) Ar2+, 1s22s22p43s23p6 (1D) → 1s12s22p43s23p6 (2D) 1672 1671

Ar2+, 1s22s22p43s23p6 (1S) → 1s12s22p43s23p6 (2S) 1679
(v) Ar, 1s22s22p63s23p6 (1S) → 1s22s12p63s23p6 (2S) 4675 4666
(vi) Ar, 1s22s22p63s23p6 (1S) → 1s22s22p53s23p6 (2P) 4751 4746
(vii) Ar, 1s22s22p63s23p6 (1S) → 1s22s22p63s13p6 (2S) 4968 4961
(viii) Ar, 1s22s22p63s23p6 (1S) → 1s22s22p63s23p5 (2P) 4987 4967
(ix) Ar1+, 1s12s22p63s23p6 (2S) → 1s12s12p63s23p6 (1S) 4629 4638
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TABLE VIII. Peak assignment in the Auger-Meitner electron spectra [Figs. 9(c) and 9(d)]. Calculated transition energies, E calc
Ii→I f , and

transition energies predicted by the neural network [case (i)], E pred
Ii→I f , are listed for the underlying process.

Label Process E calc
Ii→I f (eV) E pred

Ii→I f (eV)

(i) Ar1+, 1s12s22p63s23p6 (2S) → 1s22s22p43s23p6 (1D) 2647 2634
(ii) Ar1+, 1s12s22p63s23p6 (2S) → 1s22s12p53s23p6 (1P) 2561 2564
(iii) Ar1+, 1s12s22p63s23p6 (2S) → 1s22s02p63s23p6 (1S) 2498 2503
(iv) Ar1+, 1s12s22p63s23p6 (2S) → 1s22s22p53s23p5 (1D) 2902 2903
(v) Ar2+, 1s02s22p63s23p6 (1S) → 1s12s22p43s23p6 (2D) 2765 2762
(vi) Ar1+, 1s22s12p63s23p6 (2S) → 1s22s22p53s13p6 (1P) 27 16
(vii) Ar2+, 1s22s12p53s23p6 (1P) → 1s22s22p43s23p5 (2P) 36 32
(viii) Ar2+, 1s22s22p43s23p6 (1D) → 1s22s22p53s23p4 (2D) 211 212
(ix) Ar7+, 1s22s22p53s23p0 (2P) → 1s22s22p63s03p0 (1S) 98 104
(x) Ar10+, 1s22s12p43s13p0 (3D) → 1s22s22p33s03p0 (2D) <0 47

test phase. Thus, they are unaltered by machine learning and
the good agreement mainly relies on atomic transition param-
eters already calculated. The small deviations in the spectra
are caused by the influence of the error between predictions
and calculations on the x-ray multiphoton ionization dynam-
ics; here mostly indirectly via the impact on the population
of the underlying initial states, so that there is no energy shift
[e.g., peak (ix) in Fig. 9(d) or peak (v) in Fig. 9(f)]. Shifts in
energy affect peaks that are too small to be visible.

Let us also examine the machine-learning-based spectra
obtained by using predicted atomic transition parameters only
(pink lines in Fig. 9). Interestingly, even in this situation the
spectra roughly capture the overall behavior of the fully cal-
culated spectra. Indeed, peak positions are shifted in energy,
however, mostly within less than 10 eV (see Tables VII–IX
and Sec. III B). Also the peak heights do not match very well.
Nonetheless, the neural networks are good enough to recog-
nize general tendencies in the x-ray multiphoton ionization
dynamics, e.g., more Auger-Meitner decay than fluorescence
decay [compare peak (i) in Fig. 9(c) to peak (i) in Fig. 9(e)].
Furthermore, it is worth mentioning that for high charge states
LLM Auger-Meitner decay [i.e., 2s–2p3l (l = s, p)] is often
actually forbidden due to calculated transition energies being
smaller than zero. However, the neural network is unable to
learn this. Consequently, actually forbidden transitions can
take place in the machine-learning-based calculations [see,
e.g., peak (x) in Fig. 9(d)]. In the present situation, this has
only a minor impact.

Next, we investigate the time effort of the produc-
tion phase in the machine-learning-based state-resolved
Monte Carlo implementation (Sec. II E). Table X lists
the computational times for a production phase con-

sisting of 5000 Monte Carlo trajectories based on the
three cases in Table III. For comparison, a fully calcu-
lated state-resolved Monte Carlo calculation (i.e., using the
implementation in Ref. [44]) is also included with the same
number of 5000 Monte Carlo trajectories. All calculations
are performed on Intel Xeon E5-2630L with a single core. A
significant reduction in the computational times can be found
for the production phases. Using atomic transition parameters
already calculated and machine-learning predictions for those
not already calculated is on average six to ten times faster
than the full calculation. The more atomic transition param-
eters are already calculated, the faster is the production phase
[compare cases (i)–(iii) in Table X] since fewer predictions
made by the machine-learning models are required. [But note
that this gain is at the expense of a more expensive train-
ing and test phase and machine-learning model training (see
Table V).] Although machine-learning models are employed
in the production phase, there is still a non-negligible time
effort of about 2 hours for just 5000 Monte Carlo trajectories.
Predicting a single transition via the reconstructed deep neural
networks is indeed fast (<5 ms). However, predicting a huge
number of transitions (order of 106) is notably expensive.

To evaluate the overall saving in computational times for
the machine-learning-based state-resolved Monte Carlo im-
plementation, timings for the training and test phase, for
the training of the machine-learning models, and for the
production phase must be compared with the full state-
resolved Monte Carlo calculation. However, such timings
mainly depend on the available computer architecture (i.e.,
parallelization of the calculations, cluster usage, number of
available cores). Therefore, we do not further discuss this
point here. Having at hand Tables V and X enables us to

TABLE IX. Peak assignment in the fluorescence spectra [Figs. 9(e) and 9(f)]. Calculated transition energies, E calc
Ii→I f , and transition energies

predicted by the neural network [case (i)], E pred
Ii→I f , are listed for the underlying process.

Label Process E calc
Ii→I f (eV) E pred

Ii→I f (eV)

(i) Ar1+, 1s12s22p63s23p6 (2S) → 1s22s22p53s23p6 (2P) 2931 2935
(ii) Ar1+, 1s12s22p63s23p6 (2S) → 1s22s22p63s23p5 (2P) 3140 3153
(iii) Ar2+, 1s02s22p63s23p6 (1S) → 1s12s22p53s23p6 (1P) 3106 3111
(iv) Ar3+, 1s12s22p43s23p6 (2D) → 1s22s22p33s23p6 (2D) 2973 2973
(v) Ar9+, 1s22s12p53s03p1 (1D) → 1s22s22p53s03p0 (2P) 359 357
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TABLE X. Timings for the production phase of the machine-
learning-based state-resolved Monte Carlo implementation based on
the cases in Table III and for NProd

traj = 5000. Average real times
are compared with the full calculation with Ntraj = 5000 using the
implementation in Ref. [44] [no machine learning (ML)].

No ML ML (i) ML (ii) ML (iii)

Average 15 h 27 min 2 h 28 min 2 h 6 min 1 h 30 min
real time

estimate for a given computer architecture whether the em-
bedding of machine learning is more time efficient than the
full calculation.

Finally, another advantage of the machine-learning-
based state-resolved Monte Carlo implementation should be
stressed. In the production phase it is not necessary to perform
electronic-structure calculations [71], which are the funda-
mental basis for the calculation of individual state-to-state
cross sections and transition rates. To reduce the compu-
tational time, electronic-structure information is stored in
memory. However, storing electronic-structure information
for argon uses more than 100 times more memory than for
storing just atomic transition parameters. In particular, the
amount of memory used for storing the relevant information,
i.e., electronic-structure information and atomic transition
parameters, during 5000 Monte Carlo trajectories is on the
order of 104 megabytes. As a consequence, with the machine-
learning-based state-resolved Monte Carlo implementation
the memory usage can be dramatically reduced. In particular,
the amount of memory used for storing the relevant informa-
tion, i.e., only atomic transition parameters, in the production
phase is on the order of 102 megabytes.

IV. CONCLUSION

In this paper, we have presented a machine-learning-based
state-resolved Monte Carlo implementation for computing x-
ray multiphoton ionization dynamics using the XATOM toolkit.
The objective of machine learning is here to accelerate the ex-
tremely time-consuming state-resolved calculations of atomic
transition parameters. In particular, in an initial training
and test phase of the Monte Carlo calculation, quantum-
state-resolved first-principles calculations of atomic transition
parameters are carried out and these data serve for training
and testing of the machine-learning models. The trained and
tested machine-learning models are then employed in a final
production phase for predicting atomic transition parameters
for transitions newly visited in this phase.

We have compared the performance of neural networks
and random forest regressors as possible machine-learning
models. Both types of machine-learning models exhibit a
similar accuracy for the prediction of atomic transition param-
eters, although neural networks have the critical disadvantage
of very expensive training. Subsequently, we have discussed
state-resolved CSDs as well as electron and photon spectra
for argon, which have not been presented before. We compare
results obtained by the machine-learning-based state-resolved
Monte Carlo implementation embedding the neural networks
to fully calculated results obtained with the implementation in

Ref. [44]. Our work demonstrates that the proposed machine-
learning-based state-resolved Monte Carlo implementation
works in principle and that the performance, in terms of
CSDs and spectra, is good. The achieved level of accuracy
in CSDs and spectra is satisfactory in view of the fact that,
for instance, higher-order many-body processes are neglected
[44] and that calculated cross sections and rates are not perfect
either [71]. Once the machine-learning models are trained, the
final production phase can be performed faster than the full
calculation. However, two main shortcomings have become
evident: (i) the accuracy of the machine-learning predictions
is limited, especially for less likely transitions, and (ii) training
the neural networks is also quite time consuming.

In summary, let us briefly answer the question whether
state-resolved ionization dynamics calculations can be accel-
erated by the presented machine-learning-based state-resolved
Monte Carlo implementation. When a computer cluster
is available, running several fully calculated Monte Carlo
calculations—each with only a small number of trajectories—
in parallel on several cluster nodes is indeed the more
powerful method. This is attributed to large training times
of the machine-learning models, limited prediction accuracy,
and the need for fully calculated training and test Monte
Carlo trajectories anyhow in the machine-learning-based cal-
culations. But, if the computational resources are restricted,
i.e., only a single or few computers and/or rather limited
memory are available, then the machine-learning-based state-
resolved Monte Carlo implementation is a promising option.
After an expensive training and test phase, state-resolved ion-
ization dynamics calculations can be performed more easily
for a sufficiently large number of Monte Carlo trajectories.
Another optional application of the machine-learning-based
state-resolved Monte Carlo implementation would be its use
in an x-ray parameter scan, i.e., performing a lot of x-ray
multiphoton ionization dynamics calculations with different
fluence and/or pulse duration values. In this case, the advan-
tage is that machine-learning models need to be trained only
a single time and can then be reused in all other calculations.
Note that for a scan of the photon energy, this would not be
possible because cross sections are photon-energy specific.

There are several promising perspectives for future devel-
opments of the machine-learning-based state-resolved Monte
Carlo implementation. First, an important point is further fea-
ture engineering by adding more features and then sending the
resulting feature vectors through, for instance, autoencoders
[97] or using principal component analyses [80]. A better
suited feature representation might help the machine-learning
models to learn and, thus, can improve the performance. Other
interesting directions for improving the machine-learning
models would be ensemble methods, like gradient boosted
trees [98], batch normalization [80], advanced random for-
est methods [95], inclusion of feedback, like in recurrent
neural networks [80], or combining the power of neural net-
works and random forest regressors [94,99]. Training times
for neural networks are often reduced by using GPUs in-
stead of CPUs [80]. A further point is that for a new Monte
Carlo calculation using a different atomic species and/or
a different photon energy in principle the machine-learning
models have to be reoptimized on the newly collected atomic
transition parameters. A question here is whether information
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gained from previous Monte Carlo calculations can be trans-
ferred to a new Monte Carlo calculation and whether this
can accelerate training and/or improve the machine-learning
models’ performance. Lastly, another interesting aspect is that
the main computational effort of the state-resolved Monte
Carlo calculations is due to the extremely huge number of
atomic transition parameters that need to be calculated or
predicted. But are atomic transition parameters for all tran-
sitions really required? Or could a machine-learning model
maybe select the most dominant transitions for a visited initial
state, so that predictions (or calculations) could be restricted
to this subset of dominant transitions (in spirit of proposals
made in Refs. [69,70,100] for configuration-interaction calcu-
lations)? Such developments are crucial before many practical
applications can really profit from the presented machine-
learning-based state-resolved Monte Carlo implementation.

An attractive application of great scientific interest is the
extension of the machine-learning-based state-resolved Monte
Carlo implementation to atoms as heavy as xenon. Especially
for heavy atoms, relativistic, quantum-electrodynamic, and
finite-nuclear-size effects play an important role [34]. It is,

therefore, desirable to embed them into the quantum-state-
resolved electronic-structure calculations [44,71], although
this further expands substantially the number of atomic
transition parameters required and the computational effort.
Consequently, accelerating huge-sized ionization dynamics
calculations will be a promising perspective for the realiza-
tion of more accurate calculations. It is also an important
step toward the quantitative exploration of a wide variety
of different atomic systems and toward the optimization of
x-ray beam parameters for applications of x-ray free-electron
lasers.
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