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Abstract
We introduce a new computational method on unstructured grids in the three-
dimensional (3D) spaces to investigate the electronic structure of polyatomic 
molecules. The Voronoi-cell finite difference (VFD) method realizes a simple 
discrete Laplacian operator on unstructured grids based on Voronoi cells and 
their natural neighbors.  The feature of unstructured grids enables us to choose 
intuitive pictures for an optimal molecular grid system. The new VFD method 
achieves highly adaptability by the Voronoi-cell diagram and yet simplicity by the 
finite difference scheme.  It has no limitation in local refinement of grids in the 
vicinity of nuclear positions and provides an explicit expression at each grid 
without any integration.  This method augmented by unstructured molecular 
grids is suitable for solving the Schrödinger equation with the realistic 3D 
Coulomb potentials regardless of symmetry of molecules.  For numerical 
examples, we test accuracies for electronic structures of one-electron 
polyatomic systems: linear H2+ and triangular H3++.  We also extend VFD to the 
density functional theory (DFT) for many-electron polyatomic molecules.



Introduction
• Voronoi-cell FD (VFD): based on Voronoi diagram and its 

natural neighbors

• Unstructured grids: optimal molecular grids

• High adaptability like FE: no limitation on local grid refinement

• Simplicity like FD: a simple and explicit matrix form of the 
discrete Laplacian operator

• Direct solutions of the Schrödinger / Poisson equations on 
unstructured grids

• No integration for constructing the Hamiltonian matrix

• 3D realistic Coulomb potential
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Voronoi diagram

Voronoi cell: uniquely defined on unstructured grids in n-dimension

Ti = {x 2 Rn : d(x,xi)  d(x,xj) for 8j 6= i}

node ij: natural
neighbor of i

Voronoi vertex

Voronoi facet: sij
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Voronoi-cell FD
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(Gauss’s theorem)

i) volume and surface integrals are computed by Voronoi volumes 
and Voronoi facet areas

ii) a simple difference scheme is used for directional derivatives
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PDE solver by VFD
Schrödinger equation

Poisson equation
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Molecular grids

(a) Non-overlap (b) Overlap (c) Squeezed

FIG. 2: (Color online) 2D sketches of different types of molecular grids

For the angular part, the Lebedev quadrature[35] is widely used for multicenter numerical

integration[36]. For the spherical atomic grids, the angular grid distribution of the Lebedev

quadrature is adopted. For a given lmax, the number of angular grids is estimated by Nang ≈
4
3(lmax + 1)2.

Therefore, there are only three parameters to construct atomic grids: Nr and L for the

radial part, and lmax for the angular part of individual atomic grids. Then the atomic grids

are placed at each nuclear position of a molecule and the molecular grids are constructed

according to different types in Fig. 2. Note that grid distribution of the overlap composite

grids in this manner is exactly matched to one used in Becke’s basis-set-free DFT calculation

based on multicenter numerical integration[37, 38]. Differences from Becke’s scheme are that

in VFD there is no single-center decomposition and the Schrödinger equation is directly

solvable on this grid distribution, which remarkably simplify numerical procedures. We

emphasize that any distributions of unstructured grids can be chosen in VFD and there are

no additional costs to utilize grids after the distribution of grids is set.

III. RESULTS AND DISCUSSION

A. Electronic structure of one-electron systems

First, three different types of molecular grids are tested. Fig. 3 shows accuracy as a func-

tion of Nr for different types. The y-axis represents errors |ε| on the ground-state energies of

H+
2 that are differences between computed values with VFD and the exact value[39]. Nr is

9

non-overlap overlap squeezed

Molecular grids are intuitively 
constructed by combination of 
spherical atomic grids in 3D

– radial part:

– angular part: Lebedev grids

r(x) = L
1 + x
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Accuracy assessment

0.0

0.5

1.0

 50  100  150  200  250  300  350  400  450  500

|!
| 
/ 
1
0

-3
 (

a
.u

.)

Nr

lmax=20
lmax=26
lmax=32

0.0

0.5

1.0

 10  15  20  25  30  35  40  45

|!
| 
/ 
1
0

-3
 (

a
.u

.)

lmax

Nr=120
Nr=150
Nr=200
Nr=400

Errors of H2+ ground energies 
by varying Nr and lmax

Errors of H2+ bound energies
Symmetry Exact LCAO–GTO VFD

ε(a.u.) |ε|(%) ε(a.u.) |ε|(%)

1σg −1.102 634 21 1.41 × 10−6 0.000 −1.22 × 10−4 0.011

1σu −0.667 534 39 1.69 × 10−6 0.000 −1.55 × 10−4 0.023

1πu (2) −0.428 771 82 1.09 × 10−4 0.026 −7.92 × 10−5 0.018

2σg −0.360 864 88 5.29 × 10−5 0.015 −6.65 × 10−5 0.018

2σu −0.255 413 17 2.49 × 10−4 0.097 −7.14 × 10−5 0.028

3σg −0.235 777 63 3.46 × 10−3 1.468 −1.20 × 10−4 0.051

1πg (2) −0.226 699 63 4.23 × 10−3 1.867 −1.81 × 10−4 0.080

Basis set: aug-cc-pV6Z / Grid parameters: Nr=400, L=1, lmax=47 / H+
2 : R=2.0 a.u.

Symmetry FE LCAO–GTO VFD Difference

1a′1 −1.909 570 99 −1.909 569 −1.909 787 −2.18 × 10−4

1e′(2) −1.138 578 −1.138 979 −4.02 × 10−4

1a′′2 −0.869 699 −0.870 008 −3.10 × 10−4

2a′1 −0.704 969 −0.705 131 −1.62 × 10−4

2e′(2) −0.534 978 −0.535 372 −3.93 × 10−4

3e′(2) −0.484 387 −0.485 081 −6.94 × 10−4

Basis set: aug-cc-pV6Z / Grid parameters: Nr=400, L=1, lmax=41 / H++
3 : R=1.68 a.u.
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Errors of triangular H3++ bound energies



DFT results

2D sketch of unstructured 
molecular grids for benzene

LDA energies (in a.u.) of benzene
Symmetry LCAO–GTO VFD Difference

1a1g −9.791 −9.797 −0.006

1e1u(2) −9.791 −9.797 −0.006

1e2g(2) −9.790 −9.797 −0.007

1b2u −9.790 −9.796 −0.006

2a1g −0.778 −0.775 0.003

2e1u(2) −0.676 −0.673 0.003

2e2g(2) −0.545 −0.543 0.002

3a1g −0.478 −0.477 0.001

2b2u −0.411 −0.410 0.001

1b1u −0.407 −0.404 0.003

3e1u(2) −0.379 −0.377 0.002

1a2u −0.341 −0.340 0.001

3e2g(2) −0.305 −0.303 0.002

1e1g(2) −0.240 −0.240 0.000

Etotal −230.177 −230.211 −0.034

Basis set: 6-311++G(3df,3pd) / Grid parameters: Nr=200, L=0.5, lmax=26
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Conclusion
• VFD is a new numerical grid method based on Voronoi diagram 

and applied for electronic structure calculations of polyatomic 
molecules.

• VFD allows us to employ intuitive pictures for unstructured 
molecular grids.

• With realistic Coulomb potential, eigenvalues of 1-e systems are 
solved within ~10-4 a.u. accuracy.  DFT calculations show ~0.01% 
total energy difference from large-basis-set LCAO results.

• VFD is extensible to time-dependent problems due to ease of 
the potential matrix and applicable to problems demanding 
highly adaptive refinement.
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