Multiple orbital contribution in multiphoton ionization of H₂O in intense ultrafast laser fields

Son, Sang-Kil and Chu, Shih-I Department of Chemistry, University of Kansas

Abstract

We present all-electron time-dependent density-functional theory (TDDFT) investigation of multiphoton ionization (MPI) of H_2O in intense ultrafast linearly-polarized laser pulses with arbitrary molecular orientation.

A new time-dependent Voronoi-cell finite difference (TDVFD) method featuring highly adaptive molecular grids and an efficient time propagator is applied for accurate TDDFT solutions, taking into account the detailed electronic structure and responses in multiple orbital dynamics.

Our results demonstrate that the inner orbital dominantly contributes to the overall orientation dependence of H_2O MPI.

Voronoi-cell finite difference

- Based on Voronoi diagram and natural neighbors
- Laplacian operator at each grid evaluated by Voronoi volume, area, and distance
- Simple like FD, adaptive like FE, formulated like FV
- Direct solution of the Schrödinger, Kohn-Sham, and Poisson equations on unstructured grids
- Extensible to time-dependent problems

Background picture adopted from http://en.wikipedia.org/wiki/Voronoi_diagram

Discrete Laplacian in VFD

Voronoi diagram:

$$T_i = \{ \mathbf{x} \in \mathbb{R}^n : d(\mathbf{x}, \mathbf{x}_i) < d(\mathbf{x}, \mathbf{x}_j) \text{ for } \forall j \neq i \}$$

Sukumar and Bolander, CMES **4**, 691 (2003) Sukumar, Int. J. Numer. Meth. Engng **57**, 1 (2003) Son (unpublished) Laplacian definition from Gauss's theorem

$$\boldsymbol{\nabla}^2 \boldsymbol{\varphi} = \lim_{\int_V d\tau \to 0} \frac{\int_S \boldsymbol{\nabla} \boldsymbol{\varphi} \cdot \mathbf{n} \, d\sigma}{\int_V d\tau}$$

Discrete Laplacian after Voronoi discretization

$$\left(\boldsymbol{\nabla}^{2}\boldsymbol{\varphi}\right)_{i} = \frac{1}{v_{i}}\sum_{j}^{\text{natural neighbors}} \frac{\varphi_{j} - \varphi_{i}}{h_{ij}} s_{ij}$$

Symmetric Laplacian matrix

$$\tilde{L}_{ij} = \begin{cases} -\frac{1}{v_i} \sum_{k}^{\text{neighbors}} \frac{s_{ik}}{h_{ik}} \\ \frac{1}{\sqrt{v_i v_j}} \frac{s_{ij}}{h_{ij}} \\ 0 \end{cases}$$

(i = j)(i, j: neighbors)(otherwise)

VFD on molecular grids

- Unstructured: capable of any types of grid distribution
- Non-uniform: denser grids near nuclei, sparser grids in long distances
- Intuitively constructed by a combination of atomic spherical grids

TDDFT solved by TDVFD

Time-dependent Kohn-Sham equation for N-electron system in laser fields

$$i\frac{\partial}{\partial t}\psi_{i\sigma}(\mathbf{r},t) = \left[-\frac{1}{2}\boldsymbol{\nabla}^2 + u_{\text{eff},\sigma}(\mathbf{r},t)\right]\psi_{i\sigma}(\mathbf{r},t),$$
$$(i = 1, 2, ..., N_{\sigma}).$$
$$u_{\text{eff},\sigma}(\mathbf{r},t) = u_{\text{ne}}(\mathbf{r}) + u_{\text{h}}(\mathbf{r},t) + u_{\text{xc},\sigma}^{\text{LB}\alpha}(\mathbf{r},t) + \mathbf{F}(t) \cdot \mathbf{r}$$

The split-operator technique in the energy representation

$$\begin{split} \psi(\mathbf{r}, t + \Delta t) &= e^{-i\hat{U}(\mathbf{r}, t)\frac{\Delta t}{2}}\psi(\mathbf{r}, t)e^{-i\hat{H}_{0}(\mathbf{r})\Delta t}e^{-i\hat{U}(\mathbf{r}, t)\frac{\Delta t}{2}}\psi(\mathbf{r}, t) + O(\Delta t^{3})\\ \hat{H}_{0}(\mathbf{r}) &= -\frac{1}{2}\boldsymbol{\nabla}^{2} + u_{\mathrm{eff},\sigma}(\mathbf{r}, 0),\\ \hat{U}(\mathbf{r}, t) &= \mathbf{F}(t)\cdot\mathbf{r} + \left[u_{\mathrm{xc},\sigma}^{\mathrm{LB}\alpha}(\mathbf{r}, t) - u_{\mathrm{xc},\sigma}^{\mathrm{LB}\alpha}(\mathbf{r}, 0)\right]\\ &+ \left[u_{\mathrm{h}}(\mathbf{r}, t) - u_{\mathrm{h}}(\mathbf{r}, 0)\right], \end{split}$$

- H₀(**r**) is accurately solved within VFD; exp[-iH₀(**r**)Δt] is solved by the spectral decomposition.
- $U(\mathbf{r},t)$ is diagonal in VFD; thus $\exp[-iU(\mathbf{r},t)\Delta t/2]$ is trivial.

Tong & Chu, *Phys. Rev.A* **57**, 452 (1998) / Son & Chu, *Chem. Phys.* (submitted)

Electronic structure calculations

						ID			
Orbital				LSDA			Bα		
Orbital	Molecule	Orbital	FD	LCAO	VFD	GPS	VFD	EXP	
binding	N_2	$3\sigma_g$	10.3	10.4	10.4	15.5	15.5	15.5	
• • • •		$1\pi_u$	11.2	11.9	11.9	16.9	16.9	16.8	
energies		$2\sigma_u$	14.8	13.4	13.5	18.5	18.5	18.6	
$(in \alpha)$		$2\sigma_g$	28.5	28.2	28.2		33.0	37.3	
(111 E V)		$1\sigma_u$	407.0	380.0	380.1		402.8	409.9	
		$1\sigma_q$	407.1	380.1	380.2		402.8	409.9	
	CO_2	$1\pi_q$	10.4	9.3	9.4		14.7	13.8	
		$1\pi_u^{j}$	14.0	13.0	13.0		18.2	17.6	
		$3\sigma_u$	12.4	12.8	12.8		18.2	18.1	
		$4\sigma_q$	12.4	13.8	13.8		19.2	19.4	
		$2\sigma_u$	25.8	28.2	28.1		33.3	36.9	
		$3\sigma_q$	26.4	29.1	29.1		34.2	38.0	
		$2\sigma_{a}^{s}$	244.9	271.1	271.1		291.7	297.5	
		$1\sigma_u^{j}$	429.3	508.6	508.9		533.7	540.8	
		$1\sigma_{q}$	429.3	508.6	508.9		533.7	540.8	
	H ₂ O	$1b_1$	7.6	7.4	7.4		12.5	12.6	
	_	$3a_1$	9.3	9.4	9.4		14.5	14.8	Son & Chu
		$1b_2$	13.3	13.3	13.3		18.2	18.7	Chem. Phys.
		$2a_1$	24.4	25.2	25.2		30.1	32.4	
		$1a_1$	488.0	506.4	506.6		531.0	539.7	(submitted)

FD parameters: 4th-order scheme, $\Delta x=0.1$ a.u. and $r_{max}=10$ a.u.

LCAO parameters: aug-cc-pVQZ

LBα parameters: α=1.19 and β=0.01 GPS: Telnov & Chu, PRA **79**, 041401(R) (2009)

VFD parameters: N_r =300, L=0.5 a.u., I_{max} =25, and r_{max} =20 a.u.

CO₂ MPI

The TDDFT results agree well with recent experiments of CO₂ MPI.

^a Pavičić et al., Phys. Rev. Lett. **98**, 243001 (2007)
^b Thomann et al., J. Phys. Chem. A **112**, 9382 (2008)
^c Le et al., J. Mod. Opt. **54**, 967 (2007)

Present work: Son & Chu, *Phys. Rev.* A **80**, 011403(R) (2009)

Orientation effect on H₂O MPI

The field polarization is changing.

 H_2O is contained in the yz-plane.

HOMO (1b₁) –12.6 eV HOMO-1 (3a1) -14.8 eV HOMO-2 (1b₂) -18.7 eV

- Increasing Θ_1 toward x
 - Maximize MPI of HOMO
 - Minimize MPI of HOMO–I
 - No effect on MPI of HOMO-2
- Increasing Θ_2 toward y
 - No effect on MPI of HOMO
 - Minimize MPI of HOMO–I
 - Maximize MPI of HOMO-2

Multiple orbital contribution in H₂O MPI

H₂O at 800 nm, 5×10^{13} W/cm² orientation-dependent plot w.r.t. Θ_2

- HOMO is dominant to the orientation-dependent MPI pattern when Θ_1 changes.
- The change of Θ_2 in the yz-plane does not affect HOMO ionization because HOMO has a nodal plane of the yz-plane.
- HOMO–1 shows dominant contribution to the overall pattern when Θ_2 changes.

Son & Chu, Chem. Phys. (submitted)

Conclusion

- TDDFT is a promising tool to investigate attosecond electronic dynamics of many-electron systems in strong laser fields.
- TDVFD provides accurate TDDFT solutions for polyatomic molecules on highly adaptive molecular grids.
- Detailed electronic structure and responses in multiple orbital dynamics are important in strong-field electronic dynamics.
- For MPI of aligned H₂O, the inner orbital (HOMO-I) shows dominant contribution to the ionization process when the field is applied in a specific direction w.r.t. the molecular alignment.
- It will be possible to selectively probe individual orbitals in strong-field electronic dynamics.

References

- N. Sukumar, Int. J. Numer. Meth. Engng 57, 1 (2003)
- N. Sukumar & J. E. Bolander, CMES 4, 691 (2003)
- S.-K. Son & S. I. Chu, *Phys. Rev. A* **80**, 011403(R) (2009)
- S.-K. Son & S. I. Chu, Chem. Phys. (submitted)

