Theoretical study of strong-field multiphoton ionization of polyatomic molecules: A new time-dependent Voronoi-cell finite difference method

July 23, 2010 Son, Sang-Kil CFEL Theory Group, DESY

Overview

- Strong-field phenomena and challenges in numerical simulation
- TDVFD: time-dependent Voronoi-cell finite difference method on multicenter molecular grids
- Orientation-dependent multiphoton ionization of polyatomic molecules including multielectron effects

Strong-field phenomena & numerical challenges

Strong-field multiphoton phenomena

A strong external laser field tilts and oscillates the Coulomb potential.

multiphoton excitation / ionization

Multiphoton excitation (MPE), ionization (MPI), and dissociation (MPD), above-threshold ionization (ATI) and dissociation (ATD), multiple highorder harmonic generation (HHG), Coulomb explosion (CE), etc

Molecular alignment

- Laser-induced molecular alignment with an intermediateintensity laser field
- Probe aligned molecules with a linearly polarized strong laser field
- Measure ionization yields as a function of the orientation angle

Orientation-dependent MPI

- Orientation-dependent MPI plot is reflected by the molecular orbital symmetry.
- Most of theoretical models consider only HOMO in many-electron systems.

Numerical simulation for strong-field processes

- Challenges in *ab initio* calculations for strong-field processes
 - electronic structure for bound / continuum states
 - short- and long-range interactions of the Coulomb potential
 - multielectron effect
 - large spatial dimension & efficient time propagator required
- Many theoretical treatments are limited to simple oneelectron models without detailed electronic structures.

TDDFT

• Time-dependent Kohn-Sham equations for *N*-electron system in laser fields

$$i\frac{\partial}{\partial t}\psi_{i\sigma}(\mathbf{r},t) = \left[-\frac{1}{2}\boldsymbol{\nabla}^2 + u_{\text{eff},\sigma}(\mathbf{r},t)\right]\psi_{i\sigma}(\mathbf{r},t),$$
$$(i = 1, 2, ..., N_{\sigma}).$$
$$u_{\text{eff},\sigma}(\mathbf{r},t) = u_{\text{ne}}(\mathbf{r}) + u_{\text{h}}(\mathbf{r},t) + u_{\text{xc},\sigma}(\mathbf{r},t) + \mathbf{F}(t) \cdot \mathbf{r}$$

- TDDFT considers responses in multiple orbital dynamics, which are ignored in most of model calculations based on the single-active electron approximation.
- Self-interaction-correction and proper long-range potential are necessary to investigate strong-field multiphoton processes.
 Chu, J. Chem. Phys. 123, 062207 (2005)

Grid method

 Generalized pseudospectral method (GPS) and TDGPS on non-uniform grids developed by Prof. Chu's group

Atoms in the spherical coordinates Yao & Chu, Chem. Phys. Lett. **204**, 381 (1993) Diatomic molecules in the prolate spheroidal coordinates

 (ξ, η, ϕ)

Chu & Chu, Phys. Rev. A 63, 013414 (2001)

Electronic structure: machine accuracy using small # of grids

Beyond atoms and diatomic molecules: A new method for polyatomic molecules in demand

TDVFD & multicenter molecular grids

Voronoi diagram

- On randomly distributed grids
- Discretize the whole space into Voronoi cells encapsulating each grid
- PDE solvers utilizing geometrical advantages of the Voronoi diagram

NEM: Braun & Sambridge, Nature 376, 655 (1995)

VFD: Sukumar & Bolander, CMES 4, 691 (2003) / Sukumar, Int. J. Numer. Meth. Engng 57, 1 (2003)

Voronoi diagram: $T_i = \{ \mathbf{x} \in \mathbb{R}^n : d(\mathbf{x}, \mathbf{x}_i) < d(\mathbf{x}, \mathbf{x}_j) \text{ for } \forall j \neq i \}$ All points in T_i are closer to \mathbf{x}_i than any other grids.

Voronoi-cell finite difference

VFD has been extended for accurate electronic structure and dynamics calculations for the first time. Son (submitted) / Son & Chu, Chem. Phys. **366**, 91 (2009)

Discrete forms in VFD

Laplacian

After symmetrization

$$\tilde{L}_{ij} = \begin{cases} -\frac{1}{v_i} \sum_{k}^{\text{neighbors}} \frac{s_{ik}}{h_{ik}} & (i=j) \\ \frac{1}{\sqrt{v_i v_j}} \frac{s_{ij}}{h_{ij}} & (i, j: \text{ neighbors}) \\ 0 & (\text{otherwise}) \end{cases}$$

Gradient

From an alternative form of Gauss' theorem

$$G_{ij}^{(x)} = \begin{cases} 0 & (i=j) \\ \frac{1}{2v_i} \frac{s_{ij}}{h_{ij}} (\mathbf{r}_j - \mathbf{r}_i) \cdot \hat{\mathbf{e}}_x & (i, j: \text{ neighbors}) \\ 0 & (\text{otherwise}) \end{cases}$$

 $G_{ij}^{(y)}$ and $G_{ij}^{(z)}$ are defined likewise.

Integration

Simple nodal quadrature using Voronoi volumes

$$\int_{V} f(\mathbf{x}) dV \approx \sum_{i} f(\mathbf{x}_{i}) v_{i}$$

Son (submitted) / Son & Chu, Chem. Phys. 366, 91 (2009)

Multicenter molecular grids

prepare optimal atomic grids

combine atomic grids located at each nuclear position remove overlapped grids (optional)

Molecular grids are intuitively constructed by a combination of spherical atomic grids in 3D.

Molecular grids

water: H_2O

VFD works on multicenter molecular grids.

benzene: C₆H₆

How to resolve Coulomb singularity

$$\tilde{\psi} = r\psi$$

in the spherical coordinates

$$\tilde{\psi} = \sqrt{\xi^2 - \eta^2} \psi$$

in the prolate spheroidal coordinates

 $\tilde{\psi}_i = \sqrt{v_i}\psi_i$

after the Voronoi discretization

Accuracy assessment

Errors of H₂⁺ bound states (one-electron system)

Symmetry	Exact	LCAO–GTO ^a		$\overline{\mathrm{VFD}^{b}}$	
		error (a.u.)	$ \mathrm{error} (\%)$	error (a.u.)	error (%)
$1\sigma_g$	$-1.102 \ 634$	1.41×10^{-6}	0.00	4.09×10^{-4}	0.04
$1\sigma_u$	-0.667 534	1.69×10^{-6}	0.00	5.04×10^{-4}	0.08
$1\pi_u$ (2)	$-0.428\ 772$	1.09×10^{-4}	0.03	2.86×10^{-4}	0.07
$2\sigma_g$	-0.360 865	5.29×10^{-5}	0.01	2.42×10^{-4}	0.07
$2\sigma_u$	-0.255 413	2.49×10^{-4}	0.10	2.52×10^{-4}	0.10
$3\sigma_g$	-0.235 778	3.46×10^{-3}	1.47	3.99×10^{-4}	0.17
$1\pi_g$ (2)	$-0.226\ 700$	4.23×10^{-3}	1.87	5.92×10^{-4}	0.26
$1\delta_g$ (2)	-0.212 733	5.40×10^{-2}	25.40	8.40×10^{-4}	0.40
$2\pi_u$ (2)	-0.200 865	6.02×10^{-2}	29.97	3.00×10^{-4}	0.15
$4\sigma_g$	$-0.177\ 681$	1.39×10^{-3}	0.78	2.96×10^{-4}	0.17
$3\sigma_u$	-0.137 313	6.44×10^{-3}	4.69	3.28×10^{-4}	0.24
$5\sigma_g$	$-0.130\ 792$	3.77×10^{-2}	28.82	3.66×10^{-4}	0.28

^{*a*}Basis set: aug-cc-pV6Z

^bGrid parameters: $N_r=200, L=1, \text{ and } l_{\max}=26$

DFT results

LDA energies (in a.u.)

Molecule	Orbital	FD	LCAO	VFD	GPS
N ₂	$3\sigma_q$	-0.379	-0.383	-0.383	-0.383
	$1\pi_u^{\tilde{v}}$	-0.411	-0.437	-0.438	-0.438
	$2\sigma_u$	-0.543	-0.494	-0.494	-0.493
	$2\sigma_q$	-1.048	-1.039	-1.038	-1.040
	$1\sigma_u^{j}$	-14.958	-13.965	-13.971	-13.964
	$1\sigma_g$	-14.959	-13.967	-13.972	-13.966
	$E_{\rm total}$	-114.100	-108.698	-108.737	
H ₂ O	$1b_1$	-0.281	-0.272	-0.273	
	$3a_1$	-0.341	-0.346	-0.346	
	$1b_2$	-0.487	-0.488	-0.488	
	$2a_1$	-0.898	-0.926	-0.927	
	$1a_1$	-17.935	-18.610	-18.620	
	$E_{\rm total}$	-74.286	-75.912	-75.942	

FD: 4th-order FD on uniform equal-spacing grids, $\Delta x=0.1$ a.u. LCAO: aug-cc-pVQZ basis-set VFD: $N_r=300$, L=0.5, and $I_{max}=32$ (Lebedev) GPS: Chu & Chu, Phys. Rev. A 64, 063404 (2001)

Time propagation

- The split-operator technique in the energy representation $\psi(\mathbf{r}, t + \Delta t) = e^{-i\hat{U}(\mathbf{r}, t)\frac{\Delta t}{2}}\psi(\mathbf{r}, t)e^{-i\hat{H}_{0}(\mathbf{r})\Delta t}e^{-i\hat{U}(\mathbf{r}, t)\frac{\Delta t}{2}}\psi(\mathbf{r}, t) + O(\Delta t^{3})$ where $\hat{H}_{0}(\mathbf{r}) = -\frac{1}{2}\nabla^{2} + u_{\text{eff},\sigma}(\mathbf{r}, 0),$ $\hat{U}(\mathbf{r}, t) = \mathbf{F}(t) \cdot \mathbf{r} + \left[u_{\text{xc},\sigma}^{\text{LB}\alpha}(\mathbf{r}, t) - u_{\text{xc},\sigma}^{\text{LB}\alpha}(\mathbf{r}, 0)\right]$ $+ \left[u_{\text{h}}(\mathbf{r}, t) - u_{\text{h}}(\mathbf{r}, 0)\right]$
- $H_0(\mathbf{r})$ is accurately solved within VFD; $\exp[-iH_0(\mathbf{r})\Delta t]$ is solved by the spectral decomposition: $e^{-i\hat{H}_0(\mathbf{r})\Delta t} = \sum_k e^{-i\varepsilon_k\Delta t} |\phi_k\rangle\langle\phi_k|$
- $U(\mathbf{r},t)$ is diagonal in VFD; thus $\exp[-iU(\mathbf{r},t)\Delta t/2]$ is trivial.

Tong & Chu, PRA 57, 452 (1998) / Chu & Chu, PRA 63, 023411 (2001) / Son & Chu, Chem. Phys. 366, 91 (2009)

Orientation dependent MPI of polyatomic molecules

DFT/SIC results

Orbital binding energies (in eV) computed by VFD with experimental (EXP) vertical ionization potentials

Molecule	Orbital	LDA	$LB\alpha$	EXP
N_2	$3\sigma_g$	10.4	15.5	15.5
	$1\pi_u$	11.9	16.9	16.8
	$2\sigma_u$	13.5	18.5	18.6
	$2\sigma_g$	28.2	33.0	37.3
	$1\sigma_u$	380.1	402.8	409.9
	$1\sigma_g$	380.2	402.8	409.9
H_2O	$1b_1$	7.4	12.5	12.6
	$3a_1$	9.4	14.5	14.8
	$1b_2$	13.3	18.2	18.7
	$2a_1$	25.2	30.1	32.4
	$1a_1$	506.6	531.0	539.7

VFD: N_r=300, L=0.5, r_{max}=20 a.u., and I_{max}=25 (Womersley) EXP: Siegbahn et al., ESCA Applied to Free Molecules (1969) / Ning et al., Chem. Phys. **343**, 19 (2008) Conventional DFT functionals contain spurious selfinteraction energy.

Proper long-range potential with self-interaction-correction (SIC)

$$u_{\rm eff} \sim -\frac{1}{r} \quad \text{as } r \to \infty$$

MPI of N₂

strong mixing of their contributions to the total ionization probability.

Effects of intensity

3×10¹⁴ W/cm²

 $---- 5 \times 10^{14} \text{ W/cm}^2$

 CO_2 with 800 nm

Stronger intensity, less anisotropic

MPI of CO₂

Orientation dependence of total ionization probability 800 nm, 5×10¹³ W/cm² 90° 135° 45° 180° 0° 315° 225 270°

Orientation dependence of individual ionization probability from multiple orbitals

TDDFT: Son & Chu, Phys. Rev. A 80, 011403(R) (2009)
EXP: Thomann et al., J. Phys. Chem. A 112, 9382 (2008)
MO–ADK: Le et al., J. Mod. Opt. 54, 967 (2007)

TDDFT results in good agreement with recent experiments

Selectively probing of multiple orbitals in H₂O

- Increasing Θ_1 toward x
 - Maximize MPI of HOMO
 - Minimize MPI of HOMO–I
 - No effect on MPI of HOMO–2
- Increasing Θ_2 toward y
 - No effect on MPI of HOMO
 - Minimize MPI of HOMO–I
 - Maximize MPI of HOMO-2

MPI of H₂O

when Θ_1 changes

when Θ_2 changes

First prediction of HOMO-I dominance in the overall orientation dependence of MPI

Son & Chu, Chem. Phys. **366**, 91 (2009)

Conclusion

- VFD is based on Voronoi diagram and natural neighbors: simple like FD / adaptive like FE / formulated like FV.
- TDVFD provides accurate TDDFT solutions for polyatomic molecules on multicenter molecular grids.
- Detailed electronic structure and responses in multiple orbital dynamics are important in strong-field electronic dynamics.
- Orientation-dependent studies of MPI of N₂, H₂O, and CO₂ demonstrate the importance of multielectron effects such as multiple orbital contributions.

Acknowledgment

• University of Kansas

Prof. Shih-I Chu and colleagues

Thank you!