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Abstract

We introduce a new numerical grid-based method on unstredttgrids in the three-dimensional real-space to invetgtitfze
electronic structure of polyatomic molecules. The Voreoeli finite difference (VFD) method realizes a discrete Laplacian operator
based on Voronoi cells and their natural neighbors, feaduhigh adaptivity and simplicity. To resolve multicenteou@®mb
singularity in all-electron calculations of polyatomic facules, this method utilizes highly adaptive moleculddgvhich consist

of spherical atomic grids. It provides accurate afiitient solutions for the Schrodinger equation and the Baiggjuation with

the all-electron Coulomb potentials regardless of the dinate system and the molecular symmetry. For numericahpies,

we assess accuracy of the VFD method for electronic strestof one-electron polyatomic systems, and apply the mdthte
density-functional theory for many-electron polyatomicletules.
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1. Introduction in electronic wavefunctions, which is called Coulomb singu
) ) larity [5] that significantly &ects accuracy of electronic bound

The structure and motion of electrons in molecules are thgiates. The realistic Coulomb potential also influenceblfig
most fundamental topics in atomic and molecular physics. Txcited and continuum electrons due to its long-range tiehav
capture a picture of and ultimately gain a control of the €lec 14 gptain both the short- and long-range manners of thestiali
tronic motions within molecules in attosecond science ] d cqoylomb potential, Chu and colleagues [6, 7, 8, 9, 10] have de
man_ds accurate antheient n_um_erical simulations for the glec- veloped generalized pseudospectral (GPS) method on aronun
tronic structure and dynamics in molecules. For the eleatro o m grid system which has denser grid points near the nuclea
structure of the ground and low-lying excited states, thestmo positions and sparser grid points away from the nuclei. For
conventional methods is the basis set expansion method basgiomic systems with the spherical coordinates [7] and diato
on linear combination of atomic orbitals (LCAO) [2]. Despit gystems with the prolate spheroidal coordinates [8, 9, thél,
its great achievement in quantum chemistry, it may not be adegps method has achieved machine accuracy for electronic
quate to explore electronic dynamics covering long-range m girctures and a remarkable success in calculations afgstro
tions of the electrons, because its computational spacei@ly  fig|g electronic dynamics such as multiphoton ionizatiod an

confined to the localized atomic orbitals. On the other side,  pjgh-order harmonic generation (for examples, see Re&ijfl]
merical grid-based methods to solve the Hamiltonian diyect eferences therein).

represented in real-space grids [3] have been employecefor d ) ) ) .
scribing electronic dynamics in atomic and molecular pty:si ~ AS_the number of nuclei goes beyond uniatomic and di-
The computational space can be enlarged by including longdtomic systems, however, it is not trivial to employ a coor-
range grid points to simulate the excited and continuunestat dinate system suitable for arbitrary geometries of polyato
in electronic dynamics. Nonetheless, the grid-based ndethomolecules. From this viewpoint, numerical methods on un-
may need local refinement of grid points for accurate eleatro Structured grids [11], which have no fixed connectivity besw
structure calculations due to the characteristics of thel@ob ~ 9rid points, become much attractive for calculations ofypol
potential, which is one of complications in the widely useitu ~ &tomic molecules, because the unstructured grid scheme en-
form grid methods [4]. ables us to use highly adaptive nonuniform molecular grids w
The Coulomb potentiakl/r) in the all-electron Hamiltonian ~Variable resolutions around nuclear positions, regasdiéshe
of atoms and molecules incorporates cusps at nuclearqusiti coordinate system and the molecular symmetry.

For a molecular grid system, it is natural to consider that
Email addresssangkil. son@ctel .de (Sang-Kil Son) molecular g_rl_ds conS|_st of spherical atomic _grlds centexed
1present address: Center for Free-Electron Laser Scierfé8Y,D22607 nu_dear p.OS_ItIOI’_1§, VV_h|Ch can _be called mU|t|C_enter molecul
Hamburg, Germany grids. This intuitive idea was introduced and implementgd b
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Becke [12] and Becke and Dickson [13] for basis-set-free DFTVFD provides a simple and explicit matrix form of the dis-
calculations. Becke’s procedure was based on multicenter n crete Laplacian operator, which realizes a direct soluticthe
merical integration [14] and solved the Schroddinger eigmat Schrodinger equation on unstructured grids, as well asna si
by means of the single-center decomposition with sphdyical ple implementation of the Poisson equation. (iii) No massiv
averaged approximation [15], rather than a direct solution integration: the potential matrix is given by a value at eguéti
molecular grids. A direct solution on such a multicenter@eel  point and the Hamiltonian matrix is constructed without any
ular grid distribution is most desirable but not trivial tvicon-  tegration. (iv) Realistic Coulomb potential: VFD allows tas
ventional numerical grid-based methods. use the realistic Coulomb potential in 3D rather than model p

To directly solve the Schrodinger equation or more genertentials, so that we correctly simulate the short- and lcargge
ally the partial dfferential equations (PDE) on unstructured features of the Coulomb potential.
grids (e.g. multicenter molecular grids), one can imaghee t  This paper is organized as follows. In Sec. 2, we introduce
Voronoi diagram [16], enclosing each grid point in each.cell the Voronoi-cell finite difterence method including the Voronoi
Because the Voronoi diagram is geometrically attractivd an discretization, discrete Laplacian operator, symmeteoiito-
versatile, there have been tremendous applications imwsri nian matrix, and nodal integration scheme. We also propose a
areas of science and engineering over one century [17, 18fnulticenter molecular grid system suitable for arbitramgges
However, a PDE solver exploiting geometrical advantages obf polyatomic molecules. Section 3 contains numericalltesu
the Voronoi diagram has not been considered until relativel performed by the VFD method. Electronic structures of Imea
recent years. In geophysics and solid mechanics, the haturlly and triangular B are computed for accuracy tests of the
element method (NEM) [19] and the natural neighbor GalerkinSchrodinger equation with the realistic Coulomb potdntia-
method (NNGM) [20, 21] have been developed to realize PDEeuracy of VFD nodal integration is also discussed. We pitesen
solutions on unstructured grids with the help of the Voradiei numerical grid-based DFT calculations for nitrogen, wadad
agram. The concept of the Voronoi diagram has been employdienzene molecules. Eigenvalues and total energies are com-
within the finite volume method [22, 23] and the particleelt  pared with uniform grid calculations and LCAO calculations
method [24]. Recently, Sukumar [25] and Sukumar and Bolanwith huge basis sets. It is followed by conclusion in Sec. 4.
der [26] proposed the discrete Laplacian operator on uoistru
tured grids based on the finitefidirence scheme with Voronoi
cells and natural neighbors, and named it the Voronoi-cetkfi
difference (VFD) method. Because there is no restriction 012.1. Voronoi discretization

the location of grid points, the VFD method with arbitrary-un | et ys consider an arbitrarily distributed grid-point sef in
structured grids is regarded as a meshfree (or meshlesspchet n_gimensions. A Voronoi cell surrounding a grid pointxgfis

which is of current interest in computer modeling and simula gefined by a set of points that are closekt¢han to any other
tion in engineering applications [27, 28]. Even though aeid qid points [18],
to exploit the Voronoi diagram in the electronic structuad-c
culation has been reported [29], no practical implememtati Ti = {x e R" - d(x, xi) < d(x,x;) for Vj # i}, 1)
this direction has been accomplished until recently. : . .

In this paper, we extend VFD to solve the Schrbdinger,Whered(X’y) = |x - yll i an Euclidean distance between two

Kohn-Sham, and Poisson equations for accurate eIectronR:O!mS)i adndfy. ('jtf's well knowg that the Voronoi dlagran; IS
structures of polyatomic molecules with the all-electreals  Uniquely defined for a given grid-point set [18]. Figure 10

istic Coulomb potential on multicenter molecular grids lire t one example of a_Voron0| diagramin 2D and some re_Iat_ed sym-
three-dimensional (3D) real-space. There have been mahy gr bols that are defl_ned as fO||OWS. F_rom_the Voronq| diagram,
based approaches suggested to attack the multicenterr@oulo the whole space IS uniquely discretized into Voronoi ceihz;_l
singularity with local grid refinement in real-space: for-ex each V9r0n0| cellis enclosed by surfaces between two adface
amples, finite element [30, 31, 32, 33], spectral elemeri, [34 Voronoi cells. ) ) i . ) )
curvilinear adaptive coordinate [35, 36], multigrid [3B,39], Th-e Voronol c_eII IS denoted a5 enclos_mg theth ,g”d point,
multiresolution analysis with wavelet [40, 41, 42], muditer and its volume is given by;. A Voronoi facets; is the sur-
B-spline [43], and a hybrid combination of basis set expamsi face Where tw_o adj_ace_fﬁ andT; meet together. Note_ that the
and discrete variable representation [44] (for more exas)pl Vor0n0|. facgt is a line in 2D (also calle_d the Vprono! edge) as
see Ref. [3] and references therein). In addition, one of th hown in F'_g' 1 aqd a polygpn plane in 3Dy is a distance
most popular grid-based methods has been the high-order fini°etween théth andjth grid points,

difference method with the pseudopotential on uniform Carte- hj = 11X} = il )
sian grids [45, 46], and alternatively the plane-wave metho

combined with the pseudopotential also has been widely use@ne of the Voronoi properties is thaj is the perpendicular bi-
for periodic systems [47]. Notable features of the proposedector ofh;;. A natural neighbor [48] is defined by the fact that
VFD method over these previous approaches are summarizédwo grid points share a common Voronoi facet, they are nat-
as follows: (i) High adaptivity: by means of unstructureddgr  ural neighbors. A Voronoi vertex is defined as the point where
there is no restriction on local grid refinement for polyaibom Voronoi facets converge. In other words, the Voronoi faeet b
molecules regardless of molecular symmetry. (ii) Simptici tween two neighboring grid points is surrounded by the Voron
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2. Theory and computational details



which is exact in the limit of a vanishing volume. Hemes
the normal unit vector of the surfac& To find the discrete
Laplacian form at a grid poirnt imagine the Voronoi cell corre-
sponding to théth grid point. After the Voronoi discretization,
the volume integral is given by the Voronoi volume

dr - v, (6)
VCTi

and the surface integral is decomposed into the areas of the
Voronoi facetss;,

neighbors
f Ve -ndo — Z (Ve); - nijsj. (7
SCaTi ]
Figure 1: Voronoi diagram. wheredT; indicates the boundary surface Bf andn;; is the

normal vector of the corresponding Voronoi fasgt The inner

productindicates a directional derivativeggfwhich is given by
vertices belonging to the two grid points. Therefore, amarfe  the projection oWy on the normal vector of the Voronoi facet.
sj in 3D (or a length in 2D) can be computed using the posi-Because a line between neighboring grid poirasd j is per-
tion of the surrounding vertices. In the 3D case, the areb®ft pendicular to the corresponding Voronoi facet, the dimewl
polygon is computed by the summation of the signed areas aferivative at theth grid point in the direction to neighboring
triangles, grid pointj can be evaluated by the simpléfdrence scheme,

M
> APk P ) ) Vo), -nij ~ S ®)
P hij

1
Sj=§

whereq = (X + X;)/2, {pk} (K = 1,...,Mwithp; = pm+1)  Thusthe discrete Laplacian at tik grid point of the Voronoi-
are position vectors of the vertices, aMlis the number of cell finite difference can be evaluated as

surrounding vertices fog;. The signed ared is given by neighbors

IA(PK, Pis1, @)1 = 1I(Pk = A) X (P2 — G)ll, and the sign oA (V%) = 2 LI INNy )

is positive whemy, pk+1, andq are oriented counterclockwise Vi 5 hij

and negative when clockwise. The Voronoi cglls further de- . _ _ _
composed into polygonal pyramids that have their apex at thi0te that this scheme relies on two computational approxima
ith grid point and their base as each Voronoi facet. Thean  tons: firstly the volume of Voronoi cell is small in Eq. (Spa

be computed by the sum of volumes of these polygonal pyrasecondly a finite dference scheme is used for the directional

mids derivative in Eq. (8).
1 eighbors Using the Voronoi-cell finite dference scheme, let us con-
Vi=g Z hijsj, (4)  sider the Schrodinger equation for one electron in 3D,
j

wherej runs over natural neighboring grid points of iiegrid () = e (x), (10)

point.

Therefore, for a given set of arbitrarily distributed grid
points,v;, sj, andh;; are easily calculated in the Voronoi di-
agram. For numerical determination of the Voronoi diagram i
3D, we employ the @uLL package [49].

1
[—Evz +U(X)

wherey(x) is a wavefunction (eigenfunction) aads an energy
(eigenvalue). The boundary condition of the wavefunct®n i
zero at a large distance, i.g(x) = 0 as|x] — 0. Note that the
atomic units are used throughout the paper.

The matrix form of this eigenvalue problem to be solved is

2.2. Voronoi-cell finite gference HC = CE, (112)

The discrete Laplacian operator in the VFD scheme was prayhereC is the eigenvector matrik is the diagonal matrix of
posed by Sukumar and colleagues [25, 26], and its symmetrigigenvalues, and is the Hamiltonian matrix which is given by

form has been applied to solve the time-dependent Schgédin H = _L /2 + U. From the discrete Laplacian in Eq. (9),is
equation [50, 51]. Here we focus on the explicit express@ins expressed as

the Hamiltonian matrix elements to solve the time-indegend

vy . . . neighbors
Schrddinger equation in detail. 1 K
From the Gauss’ theorem [52], the Laplacianedf written v Zk: hic (i=1).
as, Lij=1 15 Co (12)
Js Ve -ndo R (i, j: neighbors)
V2= lm = (5) 1 .
fde—0 [ dr 0 (otherwise)



andU is diagonal and simply given by a potential value at eachwhile FE performs calculations by use of interpolations. In

grid point without any integration, fact, VFD can be equivalently derived from the second-order
non-Sibsonian interpolation based on Voronoi diagram & th
Uij = 6i;U(x). (13)  FE framework [20]. Note that advantage of VFD over FE is its

) o ) ) ) simple and explicit expressions.
Using Fhe Symmetrization technique introduced in Ref. [51]  Also the VFD method is compared with the finite volume
one obtains the symmetric form of Eq. (11), (FV) method [56, 57, 58] because both are based on the Gauss’
A6 - &E 14 theorem and utilize cell volumes for the basic formulae. How
-7 (14) ever, VFD difers from FV in the integration method as the
whereG = V3C andfl = —L/2+ U = —V3LV-$/2+ U. Here {(/)Ilowmg. YFD smg)lyhrepla?es the vquIme_ wtigral with the
V is a diagonal matrix of Voronoi volume¥j; = d;;vi. Since or0n0|_vo qme an _t e, surface integra W",[ the summation
. . 1 1 . ~ of the directional derivatives over natural neighbors,le/RiVv
it is diagonal, evaluations df 2 andV~2 are trivial. NowL

. i d its f-di | matrix el i . b generally evaluates those integrals using the quadratettead
IS Symmelic and ltsb-ciagonal matrix elements are given by i additional background grid points.
Lij = Lj 1/Vi/Vj = sj/hij \WiVj (i, j: neighbors).

After H is solved, the eigenvectors are recoveredhy= 2.4. Application to density-functional theory

V-G,

& The density-functional theory (DFT) states the total eperg
CI(k) = W (15)  can be obtained by energy functional [59],
|
Etotal = Elp] = Ts[p] + o] + Enelp] + Exclpo], (17)

Whereci(k) and cfk) are values at théth grid point of thekth

eigenvector oH andH, respectively. Note that for electronic wherep is the total densityT[p] is the noninteracting kinetic
structure calculations of polyatomic molecule¥, has cuspsin  energy functionaly[o] the classical electron—electron repulsion
the vicinity of nuclear positions due to the Coulomb singitya  energy functional, and,[p] the nucleus—electron Coulomb
If grid distribution is designed to let be small enough around interaction energy functional. For simplicity, the exchas
nuclear positions, the solution off‘*can be smoothed out near correlation functionalE,.[o] used in this paper is the local
cusps ofc™ because of Eq. (15). A multicenter molecular grid density approximation (LDA) [60], combined with the Vosko—
distribution is introduced in Sec. 2.5 for this purpose. Wilk—Nusair (VWN) correlation functional [61] whose pract
Also {v;} work as weight functions when integration is re- cal implementation is found in Ref. [62].
quired. Since the whole space is discretized by the Voronoi In the Kohn—Sham DFT formulation [63], one solves the
cells, the integration over the space is approximated by th&chrodinger-like equation,
nodal quadrature method [53] without additional backgtbun

cells or gid points |57+ e 1 = a0, a8)
j\; f(x)dr ~ Z f(xi)vi. (16)  where the ffective potentialiez(X) is expressed by
i
The numerical error of this nodal quadrature is analyzed in Ueir() = Une(X) + Un(X) + Uee(X)- (19)
Sec. 3.2. Here,une(X) is given by nucleus—electron Coulomb interaction
_ _ and ux:(X) used is the LDA potential. Both are simply given
2.3. Comparison with other methods by a value at each grid point. The Hartree potentigk) is

A remarkable distinction between VFD and ordinary finite computed by solving the Poisson equation,
difference (FD) method with regular uniform grids is that VFD
on unstructured grids can accommodate any types of grid dis-
tr|bqt|ons: j’hus the VFD method is compared with the 9€M%s discrete formuy, is simply solvable by a linear system solu-
eralized finite cﬁference (G_FD) method [54, 55] that also can tion of the Laplacian matrix in VFD,
accommodate irregular grids. GFD usually employs the Tay-
lor expans_ion and solves a Iine_ar system of_(_equations to com- Lup = —4np, (21)
pute the first and second derivative quantities at every grid
point. Therefore GFD does not provide explicit expressionsvhereu,, andp are vector forms of the Hartree potential and the
of the Laplacian matrix elements and in many cases the mdetal density, respectively, represented in grid poirnitss the
trix involved in the linear system of equations becomes ill-sparse Laplacian matrix in VFD derived from Eq. (9).
conditioned, whereas VFDfiers the explicit forms of the The boundary condition for the Hartree potential is asymp-
Laplacian matrix elements that unconditionally exist. totically given byQ/r whereQ is the total charge of electrons,

The VFD method is comparable with the finite element (FE)when a radiug is large enough. In present calculations, the
method because of high adaptivity of grid distributions.eTh maximumr is about 150 a.u. This boundary condition is easily
difference is that VFD expressions are given only at each gridmplemented as follows. The known conditions are put into th

4

V2un(x) = —4np(X). (20)



outermost grid points and employed to solve unknaymval-
ues. Letw; be theith element of theu,, vector. Theith row in
Eq. (21) is expressed g6; Lijw; = —4np; where]j runs over
all grid points. Then the unknown potential valugs } are
determined by

boundary

Z Lik Wk,
K

wherej’ runs over grid points inside the boundakyuns over
the boundary grid points, angk = Q/r¢. For the symmetric
Laplacian matrix, one can obtain the following expression
after the transformation,

Z Lij/Wj/ = —47rpi - (22)

J

boundary

Z Eij/Wj/ \/V_]/ = —47Tpi \/\7, - Z Eika \/V_k (23)
i k

T
non-overlap —e—

overlap —6— |
squeezed —=—

3] (a.u.)

50 200 250

Figure 3: Comparison of numerical accuracy fafetient types of multicenter
molecular grids.

Note that the Poisson equation is solved with the same local For the angular part, the Lebedev quadrature [65] is widely

grid refinement as the Schrodinger equation or the KohnmSha
equation.

2.5. Multicenter molecular grids

In the real-space grid method, local refinement around nu-

clear positions is required to capture the Coulomb singylar
It is natural and intuitive to consider spherical atomiaigrio-

cated at nuclear positions and combine them together to haRd . - ¢ -
Figure 2 shows 2D sketche®olecular grids are constructed according tifetent types in

more grid points near the nuclei.
of three diferent types of multicenter molecular grids in this
manner of composite grids. Note that all calculations argedo

in 3D molecular grid systems. (a) Non-overlapping compos-

ite grids: the atomic grids are combined and the grid poimts i

used for multicenter numerical integration [14]. The amagul
grid distribution of the Lebedev quadrature is adopted fare
the spherical atomic grids. For a givegy, the number of an-
gular grids is estimated bylang ~ 4(Imax+ 1)?/3.

Therefore, there are only three parameters to construct
atomic grids:N; andL for the radial part, andi,a for the an-
gular part of individual atomic grids. Then the atomic grée
aced at each nuclear position of a molecule and multicente

Fig. 2. Note that the grid distribution of the overlappingreo
posite grids in this manner is exactly matched to the one used

in Becke’s basis-set-free DFT calculation [12, 13]ffBiences
from Becke’s scheme are that in VFD there is no single-center

the overlapping region are removed except ones closer to tHiCOmposition and the Schrodinger equation is directly-so
atom that each grid point belongs to. As a result, the spher@ble on this grid distribution, which remarkably simplifige

of the atomic grids is cut out when it overlaps with others. (b
Overlapping composite grids: all overlapping grid points a
kept except two grid positions exactly coincide. (c) Sqeeez
composite grids: to avoid the overlap, the maximum radius o

numerical algorithm and implementation.

f3. Results and Discussion

the atomic grids is varied when it meets with others. As a re3.1. Electronic structure of one-electron systems

sult, the sphere of the atomic grids is squeezed. Among these

three types, the non-overlap one has the smallest numbedof g
points because some grid points in the overlap are cut out.

To achieve more local refinement in the vicinity of nuclear
positions, the radial part of the spherical atomic gridsdeey-
ated by an algebraic mapping function [64],

1+X

r(x) = Lm (-1<x<1), (24)

wherelL is a mapping parameter andis defined as uniform
grid points in 1D,

2
=N

-1 (=1--,N), (25)
whereN; is the number of radial grids. Thus, the grid location
in the radius ranges from/(2N; + 1) to LN, realizing dense
grid points near the nuclear position, but not coincidinghwi
the nuclear position.

First, three diferent types of multicenter molecular grids pro-
posed in Sec. 2.5 are tested. Figure 3 compares numerical ac-
curacy for choosing three fikerent types as a function of;.
They-axis represents absolute err@ion the ground-state en-
ergy of H;, defined by diferences between computed values
with VFD and an exact value [66]N; is varied, and_=1 and
Imax=20 are fixed. AsN; increases, the ground energies are
converged to the exact value. Unresolved errors at Ibfgee
due to smallax Which can be reduced &s.y increases. The
squeezed type always shows better convergence and the over-
lap type does worse than others, while the non-overlap tgpe b
comes close to the squeezed type whiiincreases. The rea-
son of inferior convergence of the overlap type is not cleal a
it may need further analysis. Because the non-overlap tgpe h
the smallest total number of grid points at givénand| max, we
will use the non-overlap type for further calculations.

Next, we perform accuracy tests for, vith respect toN,
andlmax. Figures 4(a) and 4(b) plot absolute err@ijson the
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Figure 2: 2D sketches of fierent types of multicenter molecular grids
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Figure 4: Accuracy on the ground-state energies ptbmputed by VFD.

ground-state energy of}as a function oN; andlmay, respec-
tively. The internuclear distance is fixedR@£2.0 a.u. Errors
are getting smaller ad, andlnax increase, confirming that ac-
curacy of the VFD method is systematically improved by in-
creasing the number of grid points to compute electroniestr
tures with the realistic Coulomb potential. Note that loxnt
excited states show similar trends of convergence as thangro
state. Figure 4 indicates that the ground-state energgesoar-
verged up to the third decimal place, iJ6},< 1x 1073 a.u. with

Ny > 100 andmax > 20, orN; > 120 andmax > 17.

Table 1 lists electronic energies of low-lying bound states
of H3 up to first 16 states. All computed energies are lower
by less than 57 x 10* a.u. from the exact values [66] and
all error percentages are less than 0.12B6=400, L=1 and
Imax=47 are used with the non-overlap type of molecular grids.
The matrix dimension with these parameters is approximpatel
2 millions (Ngig=2,086,662) but it becomes very sparse be-
cause VFD considers only closest natural neighbors of each
grid point. Eigenvalues of this huge real symmetric sparae m
trix are determined by the implicitly restarted Lanczos moelt
of Areack [67] and the large sparse matrix solver ofrP
piso [68]. The computation time to solve selected eigenval-
ues of the 2,086,662,086,662 matrix takes about 1.2 h on
the lab workstation equipped with two Intel Xeon X5355 (quad
core, 2.66 GHz) CPUs. For comparison, Table 1 includes re-
sults from LCAO performed by @uess [69] with a huge basis
set of aug-cc-pV6Z [70] that converges systematically ® th
complete basis set limit. For the ground and first excitetbsta
the LCAO results agree well with exact values but there are re
markable discrepancies in higher excited states. Thistisure
prising because atomic-centered basis functions in LCAO ar
optimized for the ground state calculation. On the otherdhan
VFD results show fair agreements for all ground and excited
states.

Next, we compute the simplest one-electron triatomic
molecule, H*, that has the equilateral triangular shape. It has
been known that triangular }1 does not exist [71] but there
have been a few results for the ground state with a fixed in-
ternuclear distance computed by LCAO and the finite element
(FE) method [30] as the accuracy assessment beyond atoms
and diatomic molecules. We note that there have been recent



Table 1: Electronic energies (in a.u.) and absolute efépref the ground and excited states of ldt R=2.0 a.u. The number in parentheses in orbital symmetry
indicates degeneracy and the number in brackets indidatgsotver of 10.

Orbital Exact LCAQP VFD¢

o] (a.u.) 10| (%) o] (a.u.) 10l (%)
1oy ~1.102 634 11[-6] 000  122[-4] 001
lry ~ -0.667534 169[-6] 000  155[-4] 0.02
1y (2) —-0.428772 109[-4] 003  792[-5] 002
27q  —0.360865 P9[-5] 001 6655 002
20, ~0.255 413 249[-4] 010  714[-5] 003
30 ~0.235778 6[-3] 147  120[-4] 005
1rg(2) -0.226 700 @3[-3] 187  181[-4] 008
164(2) -0.212733 50[-2] 2540  257[-4] 012
2ry(2) —-0.200 865 @2[-2] 2997 7.81[-5] 0.04
4oy ~0.177 681 1B9[-3] 078  770[-5] 0.04
30, ~0.137 313 &4[-3] 469  855[-5] 0.06
50 ~0.130 792 F7[-2] 2882  105[-4] 008

aReference [66]
bBasis set: aug-cc-pV6Z

¢Grid parametersN,=400,L=1, andlnax=47

Table 2: Electronic energies (in a.u.) of the ground andteddtates of equilat-
eral triangular @* atR=1.68 a.uA=Eygp — E_ cao and the number in brackets

indicates the power of 10.

Orbital FE LCAOP VFD® A
1a, ~1.9009571 -1.909569 —1.909787 —2.18[-4]
1€(2) ~1.138578 -1.138979 -4.02[-4]
1a) ~0.869699 —0.870008 -3.10[-4]
24, ~0.704969 -0.705131 -1.62[-4]
2¢/(2) ~0.534978 -0.535372 -3.93[-4]
3¢(2) ~0.484387 -0.485081 -6.94[-4]
1€'(2) ~0.481488 -0.481732 -2.44[-4]
34, ~0.479498 -0.480741 -1.24[-3]
28] ~0.415434 -0.422375 -6.94[-3]
4al ~0.362325 -0.362826 -501[-4]
4€(2) ~0.283203 -0.295392 -1.22[-2]

aReference [30]
bBasis set: aug-cc-pV6Z

¢Grid parametersN,=400,L=1, andlmax=41

discussions on existence of triangulaj"Hn strong magnetic
fields [71]. Table 2 lists the ground- and excited-statetedeic
energies of " from VFD. For comparison, it includes the re-
sults from FE [30] and from LCAO with the aug-cc-pV6Z basis from LCAO calculations with the aug-cc-pVQZ basis set [72].
set. The distance between nuclei is fixedratl.68 a.u. For
grid parameterd\;=400,L=1, andl,ox=41 are used. Note that analytical integration, while an exact value Bf[o] is com-
all VFD results in Table 2 are converged up to the third detimaputed by the multicenter numerical integration [14] andyful
place with respect to the number of grid points. ffBiences
between VFD and LCAOA=Eyrp — E cao) get increased for

higher excited states.

3.2. Tests of nodal integration

LCAO calculations and corresponding exact values of iratisgr
Error percentage$(%) of VFD integrals from exact values are
also included. Molecular systems are He, nd HO repre-
senting one-, two-, and three-center problems, respégtiver
mapping parametert=1 is used for He and ] andL=0.5 for

all nuclei of H,O to refine more grid points around a heavy atom
which has a steeper Coulomb potential. The computed irtegra
include normalizatiom[p], nucleus—electron interaction func-
tional Ene[p], and exchange-only local density approximation
(XLDA) functional Ex[],

(7] = N1| f Ax)dr. (26)

Endf] = [ ) e @)
1/3

Ef7] = -5 (f) R (28)

whereNgiec is the number of electrons, axg andZ, are the
nuclear position and charge of tlh nucleus, respectively.
Here,p is converged Gaussian-type orbital (GTO)-based den-
sity which consists of linear combination of GTOs obtained

Note that exact values @i p] and E¢[p] are computed by the

converged with large quadrature points. In Table 3, thererro
percentages on the normalization of the density are less tha
0.68%, and decrease as the number of grid points increases.
Also the error percentages on other energy functionalslare a
most the same as ones on the normalization for the same num-

Since energy functionals for DFT calculations in Eq. (17) in ber of grid points. Note that these integration errors do not
volve integrals over the whole space, accuracy of VFD nodatontaminate solutions of the eigenvalue problem becawse th
quadrature integration of Eq. (16) must be preliminarily as Hamiltonian matrix in VFD is constructed without any intagr
sessed for DFT energy calculations. Table 3 shows VFD intion.
tegrals computed by Eq. (16) using converged density from Because eigenvectors in VFD computed by Eqgs. (14) and

7



Table 3: Tests of VFD integrals for one-, two-, and threeteeproblems

Molecule  Grid (N;/Imax) np] 6 (%) Endlp] 6 (%) Ex[o] 6 (%)

He 12020 1006337 0.63 -6.610 486 0.65 -0.858 062 0.62
20026 1003578 0.36 -6.591954 0.36 -0.855769 0.35
30032 1002310 0.23 -6.583447 0.23 -0.854706 0.23
40038 1001628 0.16 -6578890 0.16 -0.854130 0.16
Exact 1000 000 -6.568 063 -0.852 750

H, 12420 1006433 0.64 -3588689 0.63 -0554628 0.62
20026 1003620 0.36 -3578969 0.36 -0.553154 0.35
30032 1002325 0.23 -3574453 0.23 -0552465 0.23
Exact 1000 000 -3.566 205 -0.551 199

H,O 12020 1006816 0.68 -199463401 0.70 -8.099123 0.65
20026 1003743 0.37 -198845443 0.38 -8.075928 0.37
30032 1002376 0.24 -198567578 0.24 -8.065431 0.24
Exact 1000 000 -198083473 -8.046 506

(15) are always normalized to the unity by means of the VFD

) L Table 4: XLDA ies (in a.u.) of HatR=1.4 a.u.
integration in Eq. (16), ave energies (in a.u,) of # ay

Method  Grid (Ni/lmax) EHOMO Etotal
No NFC? 30/10 -0.3602 -1.0844
f O dr = ¥ v =Y ¥ =1 (29) 5015  -0.3432 -1.0606
i i 80/17 -0.3391 -1.0541
the density computed by VFD becomes smaller than the true 12920 -0.3367 -1.0506
density by the amount of the normalization factfp]. Even 20026 -0.3344 -1.0475
though this factor surely diminishes when the number of grid 30032 —0.3334 -1.0461
points becomes larger, itfacts the exchange—correlation and NFC 3010 -0.3305 -1.0499
Hartree potentials computed by the density and succegsivel 5015 -0.3304 -1.0457
quality of DFT calculations. From this consideration, theane 8017 -0.3311 -1.0448
sity obtained by VFD can be scaled by the normalization fac- 12020 -0.3313 -1.0444
tor computed from the GTO-based density in order to coryectl 20026 -0.3314 -1.0440
compute the exchange—correlation and Hartree potentials, 30032 -0.3314 -1.0439
Exact -0.3315 -1.0437

Prorm = p X N[p]. (30) aVFD without the normalization factor correction

bVED with the normalization factor correction

N . . Cc
For energy functionals, we also use energy functionals with ~Reference [73]

the normalization factor correction to reduce errors ogogr

at normalization, Note that the HOMO and total energies are getting close to ex-

Elonorml act values no matter whether the normalization factor cerre
Enormlp] = npl (31) tion is included or not. However, the results with the colige
show faster convergence than ones without the correctidn an
This artificial normalization factor is introduced to comgate  reach to sfficient accuracy|§| < 1072 a.u.) with a relatively
for inaccuracy of the simplest nodal quadrature in Eq. (16). small number of grid pointgy; > 120 andmax > 20.
is possible to avoid this factor if the high-order schementg-
gration is employed.

To examine how this normalization factor on the density af-
fects DFT results, we compare XLDA energies of With and In the previous sections, we have shown that VFD pro-
without the normalization factor correction in Table 4. Tihe  vides an accurate andfieient Schrodinger equation solver for
ternuclear distance of Hs fixed atR=1.4 a.u. Table 4 includes one-electron polyatomic molecules involving the multiezn
the highest occupied molecular orbital (HOMO) and totalrene Coulomb singularity, and developed VFD implementation for
gies, denoted asyomo and Eial, respectively. Exact XLDA  DFT including the Kohn—Sham and Poisson equation solvers
values for this diatomic molecule are obtained by the GP%nd the normalization factor correction for accurate eperg
method that accurately computesuo = —0.331 463 a.u. and functional calculations. Now we explore the capability loét
Eiotal = —1.043 685 a.u. with only 20 and 6 grid points for the VFD method to perform DFT calculations of many-electron
& andn coordinates in the prolate spheroidal coordinates [73]polyatomic molecules.

8
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Table 5: LDA energies (in a.u.) of NatR=2.072 a.u.

Orbital FD? LCAOP VFD¢ GPS
Ko -0.379 -0.383 -0.383 -0.383
1ny -0411 -0.437 -0.438 -0.438
20 -0.543 -0.494 -0.494 -0.493
20y —-1.048 -1.039 -1.038 -1.040
loy -14958 -13965 -13971 -13964
log -14959 -13967 -13972 -13966
Etotal -114100 -108698 -108737

aGrid parametersAx=0.1 a.u. andmax=10 a.u.
bBasis set: aug-cc-pvVQZ

CGrid parametersN; =300, L=0.5, and max=32
dReference [9]

Figure 5: 2D sketch of multicenter molecular grids for bereze

Table 6: LDA energies (in a.u.) of 40 with R(O-H)=1.810 a.u. and’(H-O-

H)=104.48.

We present VFD-LDA results for nitrogen g\ water Orbital FO* LCAQP VFD°
(H20), and benzene ¢Els) molecules. Figure 5 shows a 2D 1b; -0.281 -0272 -0.273
sketch of grid distribution for gHg assuring high adaptivity 3a; -0.341 -0.346 -0.346
of multicenter molecular grids in VFD. Tables 5 to 7 include 1b, -0487 -0488 -0.488
LDA orbital and total energies of N H,, and GHs, respec- 2a; -0.898 -0926 -0.927
tively, computed by VFD and other methods. It is worthwhile 1y -17935 -18610 -18620
to note that all calculations are performed with the realist Etotal —74286 -75912 -75942

Coulomb potentials rather than the pseudopotentials, deror aGrid parametersAx=0.1 a.u. andmay=10 a.u.

to compare accuracy regarding the Coulomb singularity. FD PBasis set: aug-cc-pvQZ

indicates the fourth-order finite firence method on uniform ~  C"d parametersi; =300,1=0.5, andima=32

equal-spacing grids performed byfrus [74]. The LCAO

results is performed by Giess [69] with aug-cc-pVQZ [72]

for N2 and HO; and 6-31%+G(3df,3pd) [75] for GHs. Note

that these LCAO results are nearly converged to the complete

basis set limit. The GPS results for diatomig [@] are also  Table 7: LDA energies (in a.u.) ofdlg with R(C-C)=2.640 a.u. andR(C-
included for comparison. Molecular geometries used are (if)=2-048 a.u.

N»: R(N=N)=2.072 a.u.; (i) HO: R(O-H)=1.810 a.u. and Orbital FO'  LCAOP VFD®
/(H-O—H)=104.48; (jii) C¢Hs: R(C—C)=2.640 a.u. antR(C— ley -0249  -0240  -0.240
H)=2.048 a.u. Computational parameters for the VFD method 3ex -0310  -0305  -0.303
areN;=300,L=0.5, andax=32 for all nuclei of N and HO; Au -0.347 -0.341 -0.340
andN;=200,L=0.5, and,x=26 for all nuclei of GHg. Total 3ew -0.382 -0.379 -0.377
numbers of multicenter molecular grids axgiq=592,532 for 1by, -0.397 —0.407 —0.404
N2, Ngrig=1,115,453 for HO, andNgiq=1,943,646 for GH. 2byy -0415  -0411  -0410
In Tables 5-7, one can see that the valence-electron orbital 3aug 0481 -0478 0477
: - 2eyy -0.531 —-0.545 -0.543

energies by VFD are comparable to ones by LCAO within less
: . ) : 2ey, -0.643 -0.676 -0.673

than 0.003 a.u., while core-electron orbital energies stigw
. 2a1g -0.741 -0.778 -0.775
crepancies of 0.005-0.010 a.u. For the total energy, the VFD 1b _9.152 _9.790 _9.796
results successfully reproduce the LCAO results by less tha 1e21“ —8‘858 _9'790 _9'797
0.039 a.u. (0.01-0.04%) deviations. FariN Table 5, the VFD 1elg 9151  -9791  -9.797
results are in excellent agreement with both LCAO and GPS re- 1a . 9'152 9'791 9'797
. . 19 —J. —J. —J.

sults, that the latter represents the most accurate résuhs Eou 518656 —230177 —230211

case. On the other hand, the conventional FD on uniform grids
is not adequate to handle the Coulomb singularity,féecting
orbital and total energies significantly. For,Nhe valence-
electron orbital energies by FD are deviated from the LCAO
values by 0.004-0.049 a.u., the core-electron orbitalggeer

9

aGrid parametersAx=0.1 a.u. andmax=15 a.u.
bBasis set: 6-314+G(3df,3pd)
CGrid parametersN; =200, L=0.5, and max=26



by 0.993 a.u., and the total energy by 5.402 a.u. (5.0%). Thel1]
total energy for HO differs from the LCAO value by 1.626 a.u.
(2.1%) and for GHg the deviationis 11.521 a.u. (5.0%). More- (2]
over, FD with equal-spacing grids unavoidably uses a very|s
large number of grid points to resolve the Coulomb singular-
ity. For the N case, the FD grid parameters ag=0.1 a.u.
andrma=10 a.u., corresponding to the number of grid points
Ngrig=4,187,857. In the meantime, the VFD grid parameters
used for N produceNyit=592,532 and the maximum radius
becomes 150 a.u. Therefore, VFD utilizes less number of grid(®!
points covering much larger computational spaces than FD.
Note that the proposed VFD method is the first-order scheme
in the sense that it considers only nearest natural neighdpor [7]
grids, while FD used here is the fourth-order scheme. Naneth
less, the numerical accuracy arfl@ency of VFD are superior

to ones of FD, mainly due to the benefit of the highly adaptive [g]
multicenter molecular grids.

(4]

9]
4. Conclusion
We introduced the Voronoi-cell finite fierence (VFD) [10]
method that realized a direct solution of the Schrodingeiae
tion for polyatomic molecules on unstructured grids. Beeau [11]
of nodal adaptivity in the VFD method based on Voronoi
cells and natural neighbors, we can utilize intuitive piegl [12]

for a molecular grid system that combines spherical atomic
grids centered at nuclear positions, instead of regularand [13]
form grid distributions. With the VFD method, we solved the
Schrodinger equation for one-electron systems withinuabo [14]
10~ a.u. accuracy (0.1%) and showed that its accuracy was sys-
tematically improved by increasing the number of grid pgint
It was followed by extension to solve the Poisson and Kohn-¢
Sham equations as well as nodal quadrature integratiomfor i
plementation of DFT. We presented numerical LDA calcula-
tions for several polyatomic molecules. The VFD resultsever [
superior in accuracy to the ordinary FD results with uniform(ig;
equal-spacing grids and comparable to the LCAO results with
huge basis sets within about 0.04% deviation. 1]
This VFD method opens a new path to numerically solve
electronic structures of polyatomic molecules with the all
electron realistic Coulomb potential. As an accurate and efl20]
ficient Kohn—Sham equation solver for polyatomic molecules 21
the VFD method has been advantageously suitable for timé-
dependent DFT calculations [50, 51] because it does not
demand massive integration to construct the time-dependef?#2]
Hamiltonian. In the present work, we have discussed only-nea[23]
est natural neighbors as the first-order VFD method. It is als
possible to include further neighbors to improve accuracy f
the high-order VFD method in the future work. [24]
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