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Abstract

We introduce a new numerical grid-based method on unstructured grids in the three-dimensional real-space to investigate the
electronic structure of polyatomic molecules. The Voronoi-cell finite difference (VFD) method realizes a discrete Laplacian operator
based on Voronoi cells and their natural neighbors, featuring high adaptivity and simplicity. To resolve multicenter Coulomb
singularity in all-electron calculations of polyatomic molecules, this method utilizes highly adaptive molecular grids which consist
of spherical atomic grids. It provides accurate and efficient solutions for the Schrödinger equation and the Poisson equation with
the all-electron Coulomb potentials regardless of the coordinate system and the molecular symmetry. For numerical examples,
we assess accuracy of the VFD method for electronic structures of one-electron polyatomic systems, and apply the methodto the
density-functional theory for many-electron polyatomic molecules.
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1. Introduction

The structure and motion of electrons in molecules are the
most fundamental topics in atomic and molecular physics. To
capture a picture of and ultimately gain a control of the elec-
tronic motions within molecules in attosecond science [1] de-
mands accurate and efficient numerical simulations for the elec-
tronic structure and dynamics in molecules. For the electronic
structure of the ground and low-lying excited states, the most
conventional methods is the basis set expansion method based
on linear combination of atomic orbitals (LCAO) [2]. Despite
its great achievement in quantum chemistry, it may not be ade-
quate to explore electronic dynamics covering long-range mo-
tions of the electrons, because its computational space is usually
confined to the localized atomic orbitals. On the other side,nu-
merical grid-based methods to solve the Hamiltonian directly
represented in real-space grids [3] have been employed for de-
scribing electronic dynamics in atomic and molecular physics.
The computational space can be enlarged by including long-
range grid points to simulate the excited and continuum states
in electronic dynamics. Nonetheless, the grid-based method
may need local refinement of grid points for accurate electronic
structure calculations due to the characteristics of the Coulomb
potential, which is one of complications in the widely used uni-
form grid methods [4].

The Coulomb potential (=1/r) in the all-electron Hamiltonian
of atoms and molecules incorporates cusps at nuclear positions
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in electronic wavefunctions, which is called Coulomb singu-
larity [5] that significantly affects accuracy of electronic bound
states. The realistic Coulomb potential also influences highly
excited and continuum electrons due to its long-range behavior.
To obtain both the short- and long-range manners of the realistic
Coulomb potential, Chu and colleagues [6, 7, 8, 9, 10] have de-
veloped generalized pseudospectral (GPS) method on a nonuni-
form grid system which has denser grid points near the nuclear
positions and sparser grid points away from the nuclei. For
atomic systems with the spherical coordinates [7] and diatomic
systems with the prolate spheroidal coordinates [8, 9, 10],the
GPS method has achieved machine accuracy for electronic
structures and a remarkable success in calculations of strong-
field electronic dynamics such as multiphoton ionization and
high-order harmonic generation (for examples, see Ref. [6]and
references therein).

As the number of nuclei goes beyond uniatomic and di-
atomic systems, however, it is not trivial to employ a coor-
dinate system suitable for arbitrary geometries of polyatomic
molecules. From this viewpoint, numerical methods on un-
structured grids [11], which have no fixed connectivity between
grid points, become much attractive for calculations of poly-
atomic molecules, because the unstructured grid scheme en-
ables us to use highly adaptive nonuniform molecular grids with
variable resolutions around nuclear positions, regardless of the
coordinate system and the molecular symmetry.

For a molecular grid system, it is natural to consider that
molecular grids consist of spherical atomic grids centeredat
nuclear positions, which can be called multicenter molecular
grids. This intuitive idea was introduced and implemented by
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Becke [12] and Becke and Dickson [13] for basis-set-free DFT
calculations. Becke’s procedure was based on multicenter nu-
merical integration [14] and solved the Schrödinger equation
by means of the single-center decomposition with spherically-
averaged approximation [15], rather than a direct solutionon
molecular grids. A direct solution on such a multicenter molec-
ular grid distribution is most desirable but not trivial with con-
ventional numerical grid-based methods.

To directly solve the Schrödinger equation or more gener-
ally the partial differential equations (PDE) on unstructured
grids (e.g. multicenter molecular grids), one can imagine the
Voronoi diagram [16], enclosing each grid point in each cell.
Because the Voronoi diagram is geometrically attractive and
versatile, there have been tremendous applications in various
areas of science and engineering over one century [17, 18].
However, a PDE solver exploiting geometrical advantages of
the Voronoi diagram has not been considered until relatively
recent years. In geophysics and solid mechanics, the natural
element method (NEM) [19] and the natural neighbor Galerkin
method (NNGM) [20, 21] have been developed to realize PDE
solutions on unstructured grids with the help of the Voronoidi-
agram. The concept of the Voronoi diagram has been employed
within the finite volume method [22, 23] and the particle-in-cell
method [24]. Recently, Sukumar [25] and Sukumar and Bolan-
der [26] proposed the discrete Laplacian operator on unstruc-
tured grids based on the finite difference scheme with Voronoi
cells and natural neighbors, and named it the Voronoi-cell finite
difference (VFD) method. Because there is no restriction on
the location of grid points, the VFD method with arbitrary un-
structured grids is regarded as a meshfree (or meshless) method
which is of current interest in computer modeling and simula-
tion in engineering applications [27, 28]. Even though an idea
to exploit the Voronoi diagram in the electronic structure cal-
culation has been reported [29], no practical implementation in
this direction has been accomplished until recently.

In this paper, we extend VFD to solve the Schrödinger,
Kohn–Sham, and Poisson equations for accurate electronic
structures of polyatomic molecules with the all-electron real-
istic Coulomb potential on multicenter molecular grids in the
three-dimensional (3D) real-space. There have been many grid-
based approaches suggested to attack the multicenter Coulomb
singularity with local grid refinement in real-space: for ex-
amples, finite element [30, 31, 32, 33], spectral element [34],
curvilinear adaptive coordinate [35, 36], multigrid [37, 38, 39],
multiresolution analysis with wavelet [40, 41, 42], multicenter
B-spline [43], and a hybrid combination of basis set expansion
and discrete variable representation [44] (for more examples,
see Ref. [3] and references therein). In addition, one of the
most popular grid-based methods has been the high-order finite
difference method with the pseudopotential on uniform Carte-
sian grids [45, 46], and alternatively the plane-wave method
combined with the pseudopotential also has been widely used
for periodic systems [47]. Notable features of the proposed
VFD method over these previous approaches are summarized
as follows: (i) High adaptivity: by means of unstructured grids
there is no restriction on local grid refinement for polyatomic
molecules regardless of molecular symmetry. (ii) Simplicity:

VFD provides a simple and explicit matrix form of the dis-
crete Laplacian operator, which realizes a direct solutionof the
Schrödinger equation on unstructured grids, as well as a sim-
ple implementation of the Poisson equation. (iii) No massive
integration: the potential matrix is given by a value at eachgrid
point and the Hamiltonian matrix is constructed without anyin-
tegration. (iv) Realistic Coulomb potential: VFD allows usto
use the realistic Coulomb potential in 3D rather than model po-
tentials, so that we correctly simulate the short- and long-range
features of the Coulomb potential.

This paper is organized as follows. In Sec. 2, we introduce
the Voronoi-cell finite difference method including the Voronoi
discretization, discrete Laplacian operator, symmetric Hamilto-
nian matrix, and nodal integration scheme. We also propose a
multicenter molecular grid system suitable for arbitrary shapes
of polyatomic molecules. Section 3 contains numerical results
performed by the VFD method. Electronic structures of linear
H+2 and triangular H++3 are computed for accuracy tests of the
Schrödinger equation with the realistic Coulomb potential. Ac-
curacy of VFD nodal integration is also discussed. We present
numerical grid-based DFT calculations for nitrogen, water, and
benzene molecules. Eigenvalues and total energies are com-
pared with uniform grid calculations and LCAO calculations
with huge basis sets. It is followed by conclusion in Sec. 4.

2. Theory and computational details

2.1. Voronoi discretization

Let us consider an arbitrarily distributed grid-point set{xi} in
n-dimensions. A Voronoi cell surrounding a grid point ofxi is
defined by a set of points that are closer toxi than to any other
grid points [18],

Ti = {x ∈ Rn : d(x, xi) ≤ d(x, x j) for ∀ j , i}, (1)

whered(x, y) = ‖x − y‖ is an Euclidean distance between two
pointsx andy. It is well known that the Voronoi diagram is
uniquely defined for a given grid-point set [18]. Figure 1 shows
one example of a Voronoi diagram in 2D and some related sym-
bols that are defined as follows. From the Voronoi diagram,
the whole space is uniquely discretized into Voronoi cells,and
each Voronoi cell is enclosed by surfaces between two adjacent
Voronoi cells.

The Voronoi cell is denoted asTi enclosing theith grid point,
and its volume is given byvi . A Voronoi facetsi j is the sur-
face where two adjacentTi andT j meet together. Note that the
Voronoi facet is a line in 2D (also called the Voronoi edge) as
shown in Fig. 1 and a polygon plane in 3D.hi j is a distance
between theith and jth grid points,

hi j = ‖x j − xi‖. (2)

One of the Voronoi properties is thatsi j is the perpendicular bi-
sector ofhi j . A natural neighbor [48] is defined by the fact that
if two grid points share a common Voronoi facet, they are nat-
ural neighbors. A Voronoi vertex is defined as the point where
Voronoi facets converge. In other words, the Voronoi facet be-
tween two neighboring grid points is surrounded by the Voronoi
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Figure 1: Voronoi diagram.

vertices belonging to the two grid points. Therefore, an area of
si j in 3D (or a length in 2D) can be computed using the posi-
tion of the surrounding vertices. In the 3D case, the area of the
polygon is computed by the summation of the signed areas of
triangles,

si j =
1
2
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∣
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∣

M
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∣

∣

∣

∣

∣

∣

∣

, (3)

whereq = (xi + x j)/2, {pk} (k = 1, . . . ,M with p1 = pM+1)
are position vectors of the vertices, andM is the number of
surrounding vertices forsi j . The signed areaA is given by
|A(pk, pk+1, q)| = ‖(pk − q) × (pk+1 − q)‖, and the sign ofA
is positive whenpk, pk+1, andq are oriented counterclockwise
and negative when clockwise. The Voronoi cellTi is further de-
composed into polygonal pyramids that have their apex at the
ith grid point and their base as each Voronoi facet. Thusvi can
be computed by the sum of volumes of these polygonal pyra-
mids,

vi =
1
6

neighbors
∑

j

hi j si j , (4)

where j runs over natural neighboring grid points of theith grid
point.

Therefore, for a given set of arbitrarily distributed grid
points,vi , si j , andhi j are easily calculated in the Voronoi di-
agram. For numerical determination of the Voronoi diagram in
3D, we employ the Qhull package [49].

2.2. Voronoi-cell finite difference

The discrete Laplacian operator in the VFD scheme was pro-
posed by Sukumar and colleagues [25, 26], and its symmetric
form has been applied to solve the time-dependent Schrödinger
equation [50, 51]. Here we focus on the explicit expressionsof
the Hamiltonian matrix elements to solve the time-independent
Schrödinger equation in detail.

From the Gauss’ theorem [52], the Laplacian ofϕ is written
as,

∇
2ϕ = lim

∫

V
dτ→0

∫

S
∇ϕ · n dσ
∫

V
dτ

, (5)

which is exact in the limit of a vanishing volume. Heren is
the normal unit vector of the surfaceS. To find the discrete
Laplacian form at a grid pointi, imagine the Voronoi cell corre-
sponding to theith grid point. After the Voronoi discretization,
the volume integral is given by the Voronoi volumevi ,

∫

V⊂Ti

dτ→ vi , (6)

and the surface integral is decomposed into the areas of the
Voronoi facetssi j ,

∫

S⊂∂Ti

∇ϕ · n dσ→
neighbors
∑

j

(∇ϕ)i · ni j si j , (7)

where∂Ti indicates the boundary surface ofTi andni j is the
normal vector of the corresponding Voronoi facetsi j . The inner
product indicates a directional derivative ofϕ, which is given by
the projection of∇ϕ on the normal vector of the Voronoi facet.
Because a line between neighboring grid pointsi and j is per-
pendicular to the corresponding Voronoi facet, the directional
derivative at theith grid point in the direction to neighboring
grid point j can be evaluated by the simple difference scheme,

(∇ϕ)i · ni j ≈
ϕ j − ϕi

hi j
. (8)

Thus the discrete Laplacian at theith grid point of the Voronoi-
cell finite difference can be evaluated as

(

∇
2ϕ

)

i
=

1
vi

neighbors
∑

j

ϕ j − ϕi

hi j
si j . (9)

Note that this scheme relies on two computational approxima-
tions: firstly the volume of Voronoi cell is small in Eq. (5), and
secondly a finite difference scheme is used for the directional
derivative in Eq. (8).

Using the Voronoi-cell finite difference scheme, let us con-
sider the Schrödinger equation for one electron in 3D,

[

−1
2
∇

2 + U(x)

]

ψ(x) = εψ(x), (10)

whereψ(x) is a wavefunction (eigenfunction) andε is an energy
(eigenvalue). The boundary condition of the wavefunction is
zero at a large distance, i.e.,ψ(x) = 0 as|x| → ∞. Note that the
atomic units are used throughout the paper.

The matrix form of this eigenvalue problem to be solved is

HC = CE, (11)

whereC is the eigenvector matrix,E is the diagonal matrix of
eigenvalues, andH is the Hamiltonian matrix which is given by
H = −L/2 + U. From the discrete Laplacian in Eq. (9),L is
expressed as

Li j =















































−
1
vi

neighbors
∑

k

sik

hik
(i = j),

1
vi

si j

hi j
(i, j: neighbors),

0 (otherwise),

(12)
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andU is diagonal and simply given by a potential value at each
grid point without any integration,

Ui j = δi j U(xi). (13)

Using the symmetrization technique introduced in Ref. [51],
one obtains the symmetric form of Eq. (11),

H̃C̃ = C̃E, (14)

whereC̃ = V
1
2 C andH̃ = −L̃/2+ U = −V

1
2 LV −

1
2/2+ U. Here

V is a diagonal matrix of Voronoi volumes,Vi j = δi j vi . Since
it is diagonal, evaluations ofV

1
2 andV−

1
2 are trivial. Now L̃

is symmetric and its off-diagonal matrix elements are given by
L̃i j = Li j

√

vi/v j = si j /hi j
√

viv j (i, j: neighbors).
After H̃ is solved, the eigenvectors are recovered byC =

V−
1
2 C̃,

c(k)
i =

c̃(k)
i√
vi
, (15)

wherec(k)
i and c̃(k)

i are values at theith grid point of thekth
eigenvector ofH andH̃, respectively. Note that for electronic
structure calculations of polyatomic molecules,c(k)

i has cusps in
the vicinity of nuclear positions due to the Coulomb singularity.
If grid distribution is designed to letvi be small enough around
nuclear positions, the solution of ˜c(k)

i can be smoothed out near
cusps ofc(k)

i because of Eq. (15). A multicenter molecular grid
distribution is introduced in Sec. 2.5 for this purpose.

Also {vi} work as weight functions when integration is re-
quired. Since the whole space is discretized by the Voronoi
cells, the integration over the space is approximated by the
nodal quadrature method [53] without additional background
cells or grid points,

∫

V
f (x)dτ ≈

∑

i

f (xi)vi . (16)

The numerical error of this nodal quadrature is analyzed in
Sec. 3.2.

2.3. Comparison with other methods

A remarkable distinction between VFD and ordinary finite
difference (FD) method with regular uniform grids is that VFD
on unstructured grids can accommodate any types of grid dis-
tributions. Thus the VFD method is compared with the gen-
eralized finite difference (GFD) method [54, 55] that also can
accommodate irregular grids. GFD usually employs the Tay-
lor expansion and solves a linear system of equations to com-
pute the first and second derivative quantities at every grid
point. Therefore GFD does not provide explicit expressions
of the Laplacian matrix elements and in many cases the ma-
trix involved in the linear system of equations becomes ill-
conditioned, whereas VFD offers the explicit forms of the
Laplacian matrix elements that unconditionally exist.

The VFD method is comparable with the finite element (FE)
method because of high adaptivity of grid distributions. The
difference is that VFD expressions are given only at each grid,

while FE performs calculations by use of interpolations. In
fact, VFD can be equivalently derived from the second-order
non-Sibsonian interpolation based on Voronoi diagram in the
FE framework [20]. Note that advantage of VFD over FE is its
simple and explicit expressions.

Also the VFD method is compared with the finite volume
(FV) method [56, 57, 58] because both are based on the Gauss’
theorem and utilize cell volumes for the basic formulae. How-
ever, VFD differs from FV in the integration method as the
following. VFD simply replaces the volume integral with the
Voronoi volume and the surface integral with the summation
of the directional derivatives over natural neighbors, while FV
generally evaluates those integrals using the quadrature method
with additional background grid points.

2.4. Application to density-functional theory

The density-functional theory (DFT) states the total energy
can be obtained by energy functional [59],

Etotal = E[ρ] = Ts[ρ] + J[ρ] + Ene[ρ] + Exc[ρ], (17)

whereρ is the total density.Ts[ρ] is the noninteracting kinetic
energy functional,J[ρ] the classical electron–electron repulsion
energy functional, andEne[ρ] the nucleus–electron Coulomb
interaction energy functional. For simplicity, the exchange–
correlation functionalExc[ρ] used in this paper is the local
density approximation (LDA) [60], combined with the Vosko–
Wilk–Nusair (VWN) correlation functional [61] whose practi-
cal implementation is found in Ref. [62].

In the Kohn–Sham DFT formulation [63], one solves the
Schrödinger-like equation,

[

−1
2
∇

2 + ueff(x)

]

ψi(x) = εiψi(x), (18)

where the effective potentialueff(x) is expressed by

ueff(x) = une(x) + uh(x) + uxc(x). (19)

Here,une(x) is given by nucleus–electron Coulomb interaction
anduxc(x) used is the LDA potential. Both are simply given
by a value at each grid point. The Hartree potentialuh(x) is
computed by solving the Poisson equation,

∇
2uh(x) = −4πρ(x). (20)

Its discrete formuh is simply solvable by a linear system solu-
tion of the Laplacian matrix in VFD,

Luh = −4πρ, (21)

whereuh andρ are vector forms of the Hartree potential and the
total density, respectively, represented in grid points.L is the
sparse Laplacian matrix in VFD derived from Eq. (9).

The boundary condition for the Hartree potential is asymp-
totically given byQ/r whereQ is the total charge of electrons,
when a radiusr is large enough. In present calculations, the
maximumr is about 150 a.u. This boundary condition is easily
implemented as follows. The known conditions are put into the
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outermost grid points and employed to solve unknownuh val-
ues. Letwi be theith element of theuh vector. Theith row in
Eq. (21) is expressed as

∑

j Li j w j = −4πρi where j runs over
all grid points. Then the unknown potential values{w j′ } are
determined by

∑

j′
Li j ′w j′ = −4πρi −

boundary
∑

k

Likwk, (22)

where j′ runs over grid points inside the boundary,k runs over
the boundary grid points, andwk = Q/rk. For the symmetric
Laplacian matrixL̃ , one can obtain the following expression
after the transformation,

∑

j′
L̃i j ′w j′

√
v j′ = −4πρi

√
vi −

boundary
∑

k

L̃ikwk
√

vk. (23)

Note that the Poisson equation is solved with the same local
grid refinement as the Schrödinger equation or the Kohn–Sham
equation.

2.5. Multicenter molecular grids

In the real-space grid method, local refinement around nu-
clear positions is required to capture the Coulomb singularity.
It is natural and intuitive to consider spherical atomic grids lo-
cated at nuclear positions and combine them together to have
more grid points near the nuclei. Figure 2 shows 2D sketches
of three different types of multicenter molecular grids in this
manner of composite grids. Note that all calculations are done
in 3D molecular grid systems. (a) Non-overlapping compos-
ite grids: the atomic grids are combined and the grid points in
the overlapping region are removed except ones closer to the
atom that each grid point belongs to. As a result, the sphere
of the atomic grids is cut out when it overlaps with others. (b)
Overlapping composite grids: all overlapping grid points are
kept except two grid positions exactly coincide. (c) Squeezed
composite grids: to avoid the overlap, the maximum radius of
the atomic grids is varied when it meets with others. As a re-
sult, the sphere of the atomic grids is squeezed. Among these
three types, the non-overlap one has the smallest number of grid
points because some grid points in the overlap are cut out.

To achieve more local refinement in the vicinity of nuclear
positions, the radial part of the spherical atomic grids is gener-
ated by an algebraic mapping function [64],

r(x) = L
1+ x
1− x

(−1 < x < 1), (24)

whereL is a mapping parameter andx is defined as uniform
grid points in 1D,

xi =
2i

Nr + 1
− 1 (i = 1, · · · ,Nr ), (25)

whereNr is the number of radial grids. Thus, the grid location
in the radius ranges fromL/(2Nr + 1) to LNr , realizing dense
grid points near the nuclear position, but not coinciding with
the nuclear position.

10-3

 50  100  150  200  250

|δ
| (

a.
u.

)

Nr

non-overlap
overlap

squeezed

Figure 3: Comparison of numerical accuracy for different types of multicenter
molecular grids.

For the angular part, the Lebedev quadrature [65] is widely
used for multicenter numerical integration [14]. The angular
grid distribution of the Lebedev quadrature is adopted herefor
the spherical atomic grids. For a givenlmax, the number of an-
gular grids is estimated byNang≈ 4(lmax+ 1)2/3.

Therefore, there are only three parameters to construct
atomic grids:Nr andL for the radial part, andlmax for the an-
gular part of individual atomic grids. Then the atomic gridsare
placed at each nuclear position of a molecule and multicenter
molecular grids are constructed according to different types in
Fig. 2. Note that the grid distribution of the overlapping com-
posite grids in this manner is exactly matched to the one used
in Becke’s basis-set-free DFT calculation [12, 13]. Differences
from Becke’s scheme are that in VFD there is no single-center
decomposition and the Schrödinger equation is directly solv-
able on this grid distribution, which remarkably simplifiesthe
numerical algorithm and implementation.

3. Results and Discussion

3.1. Electronic structure of one-electron systems

First, three different types of multicenter molecular grids pro-
posed in Sec. 2.5 are tested. Figure 3 compares numerical ac-
curacy for choosing three different types as a function ofNr .
They-axis represents absolute errors|δ| on the ground-state en-
ergy of H+2 , defined by differences between computed values
with VFD and an exact value [66].Nr is varied, andL=1 and
lmax=20 are fixed. AsNr increases, the ground energies are
converged to the exact value. Unresolved errors at largeNr are
due to smalllmax, which can be reduced aslmax increases. The
squeezed type always shows better convergence and the over-
lap type does worse than others, while the non-overlap type be-
comes close to the squeezed type whenNr increases. The rea-
son of inferior convergence of the overlap type is not clear and
it may need further analysis. Because the non-overlap type has
the smallest total number of grid points at givenNr andlmax, we
will use the non-overlap type for further calculations.

Next, we perform accuracy tests for H+2 with respect toNr

and lmax. Figures 4(a) and 4(b) plot absolute errors|δ| on the
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Figure 2: 2D sketches of different types of multicenter molecular grids
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(a) Convergence asNr increases.
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(b) Convergence aslmax increases.

Figure 4: Accuracy on the ground-state energies of H+
2 computed by VFD.

ground-state energy of H+2 as a function ofNr andlmax, respec-
tively. The internuclear distance is fixed atR=2.0 a.u. Errors
are getting smaller asNr andlmax increase, confirming that ac-
curacy of the VFD method is systematically improved by in-
creasing the number of grid points to compute electronic struc-
tures with the realistic Coulomb potential. Note that low-lying
excited states show similar trends of convergence as the ground
state. Figure 4 indicates that the ground-state energies are con-
verged up to the third decimal place, i.e.,|δ| < 1×10−3 a.u. with
Nr ≥ 100 andlmax ≥ 20, orNr ≥ 120 andlmax ≥ 17.

Table 1 lists electronic energies of low-lying bound states
of H+2 up to first 16 states. All computed energies are lower
by less than 2.57 × 10−4 a.u. from the exact values [66] and
all error percentages are less than 0.12%.Nr=400, L=1 and
lmax=47 are used with the non-overlap type of molecular grids.
The matrix dimension with these parameters is approximately
2 millions (Ngrid=2,086,662) but it becomes very sparse be-
cause VFD considers only closest natural neighbors of each
grid point. Eigenvalues of this huge real symmetric sparse ma-
trix are determined by the implicitly restarted Lanczos method
of Arpack [67] and the large sparse matrix solver of Par-
diso [68]. The computation time to solve selected eigenval-
ues of the 2,086,662×2,086,662 matrix takes about 1.2 h on
the lab workstation equipped with two Intel Xeon X5355 (quad
core, 2.66 GHz) CPUs. For comparison, Table 1 includes re-
sults from LCAO performed by Gamess [69] with a huge basis
set of aug-cc-pV6Z [70] that converges systematically to the
complete basis set limit. For the ground and first excited states,
the LCAO results agree well with exact values but there are re-
markable discrepancies in higher excited states. This is not sur-
prising because atomic-centered basis functions in LCAO are
optimized for the ground state calculation. On the other hand,
VFD results show fair agreements for all ground and excited
states.

Next, we compute the simplest one-electron triatomic
molecule, H++3 , that has the equilateral triangular shape. It has
been known that triangular H++3 does not exist [71] but there
have been a few results for the ground state with a fixed in-
ternuclear distance computed by LCAO and the finite element
(FE) method [30] as the accuracy assessment beyond atoms
and diatomic molecules. We note that there have been recent
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Table 1: Electronic energies (in a.u.) and absolute errors|δ| of the ground and excited states of H+2 at R=2.0 a.u. The number in parentheses in orbital symmetry
indicates degeneracy and the number in brackets indicates the power of 10.

Orbital Exacta LCAOb VFDc

|δ| (a.u.) |δ| (%) |δ| (a.u.) |δ| (%)
1σg −1.102 634 1.41[−6] 0.00 1.22[−4] 0.01
1σu −0.667 534 1.69[−6] 0.00 1.55[−4] 0.02
1πu(2) −0.428 772 1.09[−4] 0.03 7.92[−5] 0.02
2σg −0.360 865 5.29[−5] 0.01 6.65[−5] 0.02
2σu −0.255 413 2.49[−4] 0.10 7.14[−5] 0.03
3σg −0.235 778 3.46[−3] 1.47 1.20[−4] 0.05
1πg(2) −0.226 700 4.23[−3] 1.87 1.81[−4] 0.08
1δg(2) −0.212 733 5.40[−2] 25.40 2.57[−4] 0.12
2πu(2) −0.200 865 6.02[−2] 29.97 7.81[−5] 0.04
4σg −0.177 681 1.39[−3] 0.78 7.70[−5] 0.04
3σu −0.137 313 6.44[−3] 4.69 8.55[−5] 0.06
5σg −0.130 792 3.77[−2] 28.82 1.05[−4] 0.08

aReference [66]
bBasis set: aug-cc-pV6Z
cGrid parameters:Nr=400,L=1, andlmax=47

Table 2: Electronic energies (in a.u.) of the ground and excited states of equilat-
eral triangular H++3 atR=1.68 a.u.∆=EVFD−ELCAO and the number in brackets
indicates the power of 10.

Orbital FEa LCAOb VFDc ∆

1a′1 −1.909 571 −1.909 569 −1.909 787 −2.18[−4]
1e′(2) −1.138 578 −1.138 979 −4.02[−4]
1a′′2 −0.869 699 −0.870 008 −3.10[−4]
2a′1 −0.704 969 −0.705 131 −1.62[−4]
2e′(2) −0.534 978 −0.535 372 −3.93[−4]
3e′(2) −0.484 387 −0.485 081 −6.94[−4]
1e′′(2) −0.481 488 −0.481 732 −2.44[−4]
3a′1 −0.479 498 −0.480 741 −1.24[−3]
2a′′2 −0.415 434 −0.422 375 −6.94[−3]
4a′1 −0.362 325 −0.362 826 −5.01[−4]
4e′(2) −0.283 203 −0.295 392 −1.22[−2]

aReference [30]
bBasis set: aug-cc-pV6Z
cGrid parameters:Nr=400,L=1, andlmax=41

discussions on existence of triangular H++3 in strong magnetic
fields [71]. Table 2 lists the ground- and excited-state electronic
energies of H++3 from VFD. For comparison, it includes the re-
sults from FE [30] and from LCAO with the aug-cc-pV6Z basis
set. The distance between nuclei is fixed atR=1.68 a.u. For
grid parameters,Nr=400,L=1, andlmax=41 are used. Note that
all VFD results in Table 2 are converged up to the third decimal
place with respect to the number of grid points. Differences
between VFD and LCAO (∆=EVFD − ELCAO) get increased for
higher excited states.

3.2. Tests of nodal integration
Since energy functionals for DFT calculations in Eq. (17) in-

volve integrals over the whole space, accuracy of VFD nodal
quadrature integration of Eq. (16) must be preliminarily as-
sessed for DFT energy calculations. Table 3 shows VFD in-
tegrals computed by Eq. (16) using converged density from

LCAO calculations and corresponding exact values of integrals.
Error percentagesδ(%) of VFD integrals from exact values are
also included. Molecular systems are He, H2, and H2O repre-
senting one-, two-, and three-center problems, respectively. For
mapping parameters,L=1 is used for He and H2, andL=0.5 for
all nuclei of H2O to refine more grid points around a heavy atom
which has a steeper Coulomb potential. The computed integrals
include normalizationn[ρ̄], nucleus–electron interaction func-
tional Ene[ρ̄], and exchange-only local density approximation
(XLDA) functional Ex[ρ̄],

n[ρ̄] =
1

Nelec

∫

ρ̄(x)dτ, (26)

Ene[ρ̄] =
∫

∑

α

Zα
|xα − x|

ρ̄(x)dτ, (27)

Ex[ρ̄] = −3
4

(

3
π

)1/3 ∫

ρ̄(x)4/3dτ, (28)

whereNelec is the number of electrons, andxα andZα are the
nuclear position and charge of theαth nucleus, respectively.
Here, ρ̄ is converged Gaussian-type orbital (GTO)-based den-
sity which consists of linear combination of GTOs obtained
from LCAO calculations with the aug-cc-pVQZ basis set [72].
Note that exact values ofn[ρ̄] and Ene[ρ̄] are computed by the
analytical integration, while an exact value ofEx[ρ̄] is com-
puted by the multicenter numerical integration [14] and fully
converged with large quadrature points. In Table 3, the error
percentages on the normalization of the density are less than
0.68%, and decrease as the number of grid points increases.
Also the error percentages on other energy functionals are al-
most the same as ones on the normalization for the same num-
ber of grid points. Note that these integration errors do not
contaminate solutions of the eigenvalue problem because the
Hamiltonian matrix in VFD is constructed without any integra-
tion.

Because eigenvectors in VFD computed by Eqs. (14) and
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Table 3: Tests of VFD integrals for one-, two-, and three-center problems

Molecule Grid (Nr/lmax) n[ρ̄] δ (%) Ene[ρ̄] δ (%) Ex[ρ̄] δ (%)
He 120/20 1.006 337 0.63 −6.610 486 0.65 −0.858 062 0.62

200/26 1.003 578 0.36 −6.591 954 0.36 −0.855 769 0.35
300/32 1.002 310 0.23 −6.583 447 0.23 −0.854 706 0.23
400/38 1.001 628 0.16 −6.578 890 0.16 −0.854 130 0.16
Exact 1.000 000 −6.568 063 −0.852 750

H2 120/20 1.006 433 0.64 −3.588 689 0.63 −0.554 628 0.62
200/26 1.003 620 0.36 −3.578 969 0.36 −0.553 154 0.35
300/32 1.002 325 0.23 −3.574 453 0.23 −0.552 465 0.23
Exact 1.000 000 −3.566 205 −0.551 199

H2O 120/20 1.006 816 0.68 −199.463 401 0.70 −8.099 123 0.65
200/26 1.003 743 0.37 −198.845 443 0.38 −8.075 928 0.37
300/32 1.002 376 0.24 −198.567 578 0.24 −8.065 431 0.24
Exact 1.000 000 −198.083 473 −8.046 506

(15) are always normalized to the unity by means of the VFD
integration in Eq. (16),

∫

∣

∣

∣ψ(k)(x)
∣

∣

∣

2
dτ =

∑

i

∣

∣

∣c(k)
i

∣

∣

∣

2
vi =

∑

i

∣

∣

∣c̃(k)
i

∣

∣

∣

2
= 1, (29)

the density computed by VFD becomes smaller than the true
density by the amount of the normalization factorn[ρ̄]. Even
though this factor surely diminishes when the number of grid
points becomes larger, it affects the exchange–correlation and
Hartree potentials computed by the density and successively
quality of DFT calculations. From this consideration, the den-
sity obtained by VFD can be scaled by the normalization fac-
tor computed from the GTO-based density in order to correctly
compute the exchange–correlation and Hartree potentials,

ρnorm = ρ × n[ρ̄]. (30)

For energy functionals, we also use energy functionals with
the normalization factor correction to reduce errors occurring
at normalization,

Enorm[ρ] =
E[ρnorm]

n[ρ̄]
. (31)

This artificial normalization factor is introduced to compensate
for inaccuracy of the simplest nodal quadrature in Eq. (16).It
is possible to avoid this factor if the high-order scheme of inte-
gration is employed.

To examine how this normalization factor on the density af-
fects DFT results, we compare XLDA energies of H2 with and
without the normalization factor correction in Table 4. Thein-
ternuclear distance of H2 is fixed atR=1.4 a.u. Table 4 includes
the highest occupied molecular orbital (HOMO) and total ener-
gies, denoted asεHOMO andEtotal, respectively. Exact XLDA
values for this diatomic molecule are obtained by the GPS
method that accurately computesεHOMO = −0.331 463 a.u. and
Etotal = −1.043 685 a.u. with only 20 and 6 grid points for the
ξ andη coordinates in the prolate spheroidal coordinates [73].

Table 4: XLDA energies (in a.u.) of H2 atR=1.4 a.u.

Method Grid (Nr /lmax) εHOMO Etotal

No NFCa 30/10 −0.360 2 −1.084 4
50/15 −0.343 2 −1.060 6
80/17 −0.339 1 −1.054 1
120/20 −0.336 7 −1.050 6
200/26 −0.334 4 −1.047 5
300/32 −0.333 4 −1.046 1

NFCb 30/10 −0.330 5 −1.049 9
50/15 −0.330 4 −1.045 7
80/17 −0.331 1 −1.044 8
120/20 −0.331 3 −1.044 4
200/26 −0.331 4 −1.044 0
300/32 −0.331 4 −1.043 9

Exactc −0.331 5 −1.043 7
aVFD without the normalization factor correction
bVFD with the normalization factor correction
cReference [73]

Note that the HOMO and total energies are getting close to ex-
act values no matter whether the normalization factor correc-
tion is included or not. However, the results with the correction
show faster convergence than ones without the correction and
reach to sufficient accuracy (|δ| < 10−3 a.u.) with a relatively
small number of grid points,Nr ≥ 120 andlmax ≥ 20.

3.3. DFT calculations of many-electron polyatomic molecules

In the previous sections, we have shown that VFD pro-
vides an accurate and efficient Schrödinger equation solver for
one-electron polyatomic molecules involving the multicenter
Coulomb singularity, and developed VFD implementation for
DFT including the Kohn–Sham and Poisson equation solvers
and the normalization factor correction for accurate energy
functional calculations. Now we explore the capability of the
VFD method to perform DFT calculations of many-electron
polyatomic molecules.
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Figure 5: 2D sketch of multicenter molecular grids for benzene.

We present VFD–LDA results for nitrogen (N2), water
(H2O), and benzene (C6H6) molecules. Figure 5 shows a 2D
sketch of grid distribution for C6H6 assuring high adaptivity
of multicenter molecular grids in VFD. Tables 5 to 7 include
LDA orbital and total energies of N2, H2, and C6H6, respec-
tively, computed by VFD and other methods. It is worthwhile
to note that all calculations are performed with the realistic
Coulomb potentials rather than the pseudopotentials, in order
to compare accuracy regarding the Coulomb singularity. FD
indicates the fourth-order finite difference method on uniform
equal-spacing grids performed by Octopus [74]. The LCAO
results is performed by Gamess [69] with aug-cc-pVQZ [72]
for N2 and H2O; and 6-311++G(3df,3pd) [75] for C6H6. Note
that these LCAO results are nearly converged to the complete
basis set limit. The GPS results for diatomic N2 [9] are also
included for comparison. Molecular geometries used are (i)
N2: R(N–N)=2.072 a.u.; (ii) H2O: R(O–H)=1.810 a.u. and
∠(H–O–H)=104.48◦; (iii) C6H6: R(C–C)=2.640 a.u. andR(C–
H)=2.048 a.u. Computational parameters for the VFD method
areNr=300,L=0.5, andlmax=32 for all nuclei of N2 and H2O;
andNr=200,L=0.5, andlmax=26 for all nuclei of C6H6. Total
numbers of multicenter molecular grids areNgrid=592,532 for
N2, Ngrid=1,115,453 for H2O, andNgrid=1,943,646 for C6H6.

In Tables 5–7, one can see that the valence-electron orbital
energies by VFD are comparable to ones by LCAO within less
than 0.003 a.u., while core-electron orbital energies showdis-
crepancies of 0.005–0.010 a.u. For the total energy, the VFD
results successfully reproduce the LCAO results by less than
0.039 a.u. (0.01–0.04%) deviations. For N2 in Table 5, the VFD
results are in excellent agreement with both LCAO and GPS re-
sults, that the latter represents the most accurate resultsin this
case. On the other hand, the conventional FD on uniform grids
is not adequate to handle the Coulomb singularity, so affecting
orbital and total energies significantly. For N2, the valence-
electron orbital energies by FD are deviated from the LCAO
values by 0.004–0.049 a.u., the core-electron orbital energies

Table 5: LDA energies (in a.u.) of N2 atR=2.072 a.u.

Orbital FDa LCAOb VFDc GPSd

3σg −0.379 −0.383 −0.383 −0.383
1πu −0.411 −0.437 −0.438 −0.438
2σu −0.543 −0.494 −0.494 −0.493
2σg −1.048 −1.039 −1.038 −1.040
1σu −14.958 −13.965 −13.971 −13.964
1σg −14.959 −13.967 −13.972 −13.966
Etotal −114.100 −108.698 −108.737
aGrid parameters:∆x=0.1 a.u. andrmax=10 a.u.
bBasis set: aug-cc-pVQZ
cGrid parameters:Nr=300,L=0.5, andlmax=32
dReference [9]

Table 6: LDA energies (in a.u.) of H2O with R(O–H)=1.810 a.u. and∠(H–O–
H)=104.48◦.

Orbital FDa LCAOb VFDc

1b1 −0.281 −0.272 −0.273
3a1 −0.341 −0.346 −0.346
1b2 −0.487 −0.488 −0.488
2a1 −0.898 −0.926 −0.927
1a1 −17.935 −18.610 −18.620
Etotal −74.286 −75.912 −75.942

aGrid parameters:∆x=0.1 a.u. andrmax=10 a.u.
bBasis set: aug-cc-pVQZ
cGrid parameters:Nr=300,L=0.5, andlmax=32

Table 7: LDA energies (in a.u.) of C6H6 with R(C–C)=2.640 a.u. andR(C–
H)=2.048 a.u.

Orbital FDa LCAOb VFDc

1e1g −0.249 −0.240 −0.240
3e2g −0.310 −0.305 −0.303
1a2u −0.347 −0.341 −0.340
3e1u −0.382 −0.379 −0.377
1b2u −0.397 −0.407 −0.404
2b1u −0.415 −0.411 −0.410
3a1g −0.481 −0.478 −0.477
2e2g −0.531 −0.545 −0.543
2e1u −0.643 −0.676 −0.673
2a1g −0.741 −0.778 −0.775
1b1u −9.152 −9.790 −9.796
1e2g −8.858 −9.790 −9.797
1e1u −9.151 −9.791 −9.797
1a1g −9.152 −9.791 −9.797
Etotal −218.656 −230.177 −230.211

aGrid parameters:∆x=0.1 a.u. andrmax=15 a.u.
bBasis set: 6-311++G(3df,3pd)
cGrid parameters:Nr=200,L=0.5, andlmax=26
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by 0.993 a.u., and the total energy by 5.402 a.u. (5.0%). The
total energy for H2O differs from the LCAO value by 1.626 a.u.
(2.1%) and for C6H6 the deviation is 11.521 a.u. (5.0%). More-
over, FD with equal-spacing grids unavoidably uses a very
large number of grid points to resolve the Coulomb singular-
ity. For the N2 case, the FD grid parameters are∆x=0.1 a.u.
and rmax=10 a.u., corresponding to the number of grid points
Ngrid=4,187,857. In the meantime, the VFD grid parameters
used for N2 produceNgrid=592,532 and the maximum radius
becomes 150 a.u. Therefore, VFD utilizes less number of grid
points covering much larger computational spaces than FD.
Note that the proposed VFD method is the first-order scheme
in the sense that it considers only nearest natural neighboring
grids, while FD used here is the fourth-order scheme. Nonethe-
less, the numerical accuracy and efficiency of VFD are superior
to ones of FD, mainly due to the benefit of the highly adaptive
multicenter molecular grids.

4. Conclusion

We introduced the Voronoi-cell finite difference (VFD)
method that realized a direct solution of the Schrödinger equa-
tion for polyatomic molecules on unstructured grids. Because
of nodal adaptivity in the VFD method based on Voronoi
cells and natural neighbors, we can utilize intuitive pictures
for a molecular grid system that combines spherical atomic
grids centered at nuclear positions, instead of regular anduni-
form grid distributions. With the VFD method, we solved the
Schrödinger equation for one-electron systems within about
10−4 a.u. accuracy (0.1%) and showed that its accuracy was sys-
tematically improved by increasing the number of grid points.
It was followed by extension to solve the Poisson and Kohn–
Sham equations as well as nodal quadrature integration for im-
plementation of DFT. We presented numerical LDA calcula-
tions for several polyatomic molecules. The VFD results were
superior in accuracy to the ordinary FD results with uniform
equal-spacing grids and comparable to the LCAO results with
huge basis sets within about 0.04% deviation.

This VFD method opens a new path to numerically solve
electronic structures of polyatomic molecules with the all-
electron realistic Coulomb potential. As an accurate and ef-
ficient Kohn–Sham equation solver for polyatomic molecules,
the VFD method has been advantageously suitable for time-
dependent DFT calculations [50, 51] because it does not
demand massive integration to construct the time-dependent
Hamiltonian. In the present work, we have discussed only near-
est natural neighbors as the first-order VFD method. It is also
possible to include further neighbors to improve accuracy for
the high-order VFD method in the future work.
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