Impact of hollow-atom formation on
coherent x-ray scattering at high intensity

Abstract Introduction
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enough, many electrons can be stripped off in a sequence
of P and A. If the pulse length is short enough, all core
electrons in a given atom may be removed before A occurs.
The resulting hollow atom retains its core vacancies and
suppresses further electronic damage. This effect is called
x-ray transparency or frustrated absorption, and might be

radiation damage effects could degrade the scattering patterns and Thus it is crucial to understand detailed ionization and
hinder the determination of the atomic positions in the target
molecule. To suppress the impact of the molecular Coulomb
explosion on atomically resolved imaging, one must effectively freeze
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no more than ten femtoseconds.

relaxation dynamics in individual atoms under ultrashort
and ultraintense x-ray pulses.
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XATOM toolkit Atomic form factor Hollow-atom formation
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Damage dynamics
To simulate electronic damage dynamics in intense x-ray pulses,
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where J(t) is the incident photon flux and dos(t)/dQ is the time-dependent 5120 impact ionization by Auger electrons is irrelevant, but impact single-shot imaging of individual macromolecules at atomic
differential scattering cross section. To measure the quality of the x-ray 1 ionization by photoelectrons is not negligible. By using short resolution.
scattering patterns, we employ a modified R-factor, i N pulses, one can suppress photoelectron impact ionization.
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