Multi-wavelength anomalous diffraction (MAD) phasing method at high intensity

Sang-Kil Son¹, Henry N. Chapman^{1,2}, and Robin Santra^{1,2}

¹ Center for Free-Electron Laser Science, DESY, Hamburg, Germany ² Department of Physics, University of Hamburg, Hamburg, Germany

New Science Opportunities at FLASH Hamburg, Germany / October 13, 2011

Center for Free-Electron Laser Science

CFEL is a scientific cooperation of the three organizations: DESY – Max Planck Society – University of Hamburg

> MAD: phase problem

FEL: single-shot imaging / radiation damage

> MAD at FEL

> MAD at FLASH

- MAD: Multi-wavelength Anomalous Diffraction
- FEL: Free-Electron Laser

Phase problem

The phase problem is a fundamental obstacle in constructing an electronic density map from x-ray diffraction.

Why are phases important?

Taylor, *Acta Cryst.* **D59**, 1881 (2003) Kevin Cowtan's Book of Fourier: <u>http://www.ysbl.york.ac.uk/~cowtan/fourier/fourier.html</u>

Phasing method

Many phasing methods have been proposed and applied.

- Direct method
- Molecular replacement (MR)
- Single / multiple isomorphous replacement (SIR / MIR)
- SIR / MIR with anomalous scattering (SIRAS / MIRAS)
- Multi-wavelength anomalous diffraction (MAD)
- Single-wavelength anomalous diffraction (SAD)
- > Why is MAD advantageous?
 - No atomic replacement; Different datasets obtained by physical changes (wavelength) rather than by chemical changes (replacement)
 - Algebraically solved; No need for iterative phase retrieval algorithm

Taylor, Acta Cryst. D59, 1881 (2003)

Anomalous scattering

Resonant elastic x-ray scattering (dispersive correction)

10

5

0

-5

-10

|**f**′′|

f

$$f(\mathbf{Q},\omega) = f^{0}(\mathbf{Q}) + f'(\omega) + if''(\omega)$$

$$f'(\omega) = -\frac{1}{2\pi^{2}\alpha} \mathcal{P} \int_{0}^{\infty} \frac{\omega'^{2}}{\omega'^{2} - \omega^{2}} \sigma_{\mathbf{P}}(\omega') d\omega'$$

$$f''(\omega) = -\frac{\omega}{4\pi\alpha} \sigma_{\mathbf{P}}(\omega)$$
Anomalous scattering of Fe near K edge

Photon energy (keV)

MAD phasing

The anomalous scattering at different wavelengths provides a simple way to solve the phase problem.

$$F_T(\mathbf{Q},\omega) = F_T^0(\mathbf{Q}) + \Delta F_A(\mathbf{Q},\omega)$$
$$= F_T^0(\mathbf{Q}) + F_A^0(\mathbf{Q}) \left(\frac{f'_A(\omega)}{f^0_A(\mathbf{Q})} + i\frac{f''_A(\omega)}{f^0_A(\mathbf{Q})}\right)$$

Karle-Hendrickson equation

> Karle-Hendrickson eq. represents a set of equations at different ω :

$$|F_T(\omega)|^2 = |F_T^0|^2 + |F_A^0|^2 a(\omega) + |F_T^0| |F_A^0| b(\omega) \cos \Delta \phi^0 + |F_T^0| |F_A^0| c(\omega) \sin \Delta \phi^0$$

> MAD coefficients (determined theoretically or experimentally): $a(\omega) = \frac{f'_A(\omega)^2 + f''_A(\omega)^2}{(f^0_A)^2}, \quad b(\omega) = \frac{2f'_A(\omega)}{f^0_A}, \quad c(\omega) = \frac{2f''_A(\omega)}{f^0_A}$

- > 3 unknowns at every single **Q**: $|F_T^0|$, $|F_A^0|$, $\Delta \phi^0 (= \phi_T^0 \phi_A^0)$
- > These 3 unknowns are algebraically solved with 3 measurements.

Karle, Int. J. Quant. Chem. Quant. Bio. Symp. 7, 357 (1980) Hendrickson, Trans. Am. Crystalgr. Assoc. 21, 11 (1985)

MAD with synchrotron radiation

MAD has been a well-established phasing method with synchrotron radiation since late 80's.

Cucumber basic blue protein Guss *et al.*, *Science* **241**, 806 (1988)

A) Streptavidin Hendrickson *et al.*, *PNAS* **86**, 2190 (1989)

B) Ribonuclease H Yang *et al.*, *Science* **249**, 1398 (1990)

Picture taken from Hendrickson, Science 254, 51 (1991)

Free-electron laser

- > Another major bottleneck in x-ray crystallography: crystallization
- Unprecedented high x-ray fluence from FEL: single molecules and nano-sized crystals
- The phase problem remains largely unsolved.

Chapman *et al.*, *Nature Phys.* **2**, 839 (2006) Picture taken from Gaffney & Chapman, *Science* **316**, 1444 (2007)

Radiation damage

Neutze et al., Nature 406, 752 (2000)

Diffraction-before-destruction: molecular Coulomb explosion suppressed by using ultrafast x-ray FEL pulses within femtosecond timescales

Electronic damage during FEL pulses

Picture taken from *Nature* **466**, 35 (2010)

Young et al., Nature 466, 56 (2010)

> *Diffraction-during-ionization*: electronic radiation damage is unavoidable.

> Good agreement between theoretical model and LCLS experiments

Electronic damage to heavy atoms

Speculation of MAD at FEL

- Heavy atoms as anomalous scatters will be more ionized than other atoms during intense x-ray pulses.
- > Anomalous scattering will be changed when heavy atoms are ionized.
- Stochastic electronic damage to heavy atoms would destroy coherent scattering signals in nanocrystals...
- > MAD would not be applicable for phasing at high x-ray intensity...?

> We will demonstrate the existence of a Karle-Hendrickson-type equation in the high-intensity regime.

> We will show that MAD not only works, but also the extensive electronic rearrangements at high x-ray intensity provide a new path to phasing.

Scattering intensity including elec. damage

$$\frac{dI(\mathbf{Q},\omega)}{d\Omega} = \mathcal{F}C(\Omega) \int_{-\infty}^{\infty} dt \, g(t) \sum_{I} P_{I}(t) \left| F_{P}^{0}(\mathbf{Q}) + \sum_{j=1}^{N_{H}} f_{I_{j}}(\mathbf{Q},\omega) e^{i\mathbf{Q}\cdot\mathbf{R}_{j}} \right|^{2}$$

$$I = (I_1, I_2, \cdots I_{N_H})$$
$$P_I(t) = \prod_{j=1}^{N_H} P_{I_j}(t)$$
$$f_{I_j}(\mathbf{Q}, \omega) = f_{I_j}^0(\mathbf{Q}) + f'_{I_j}(\omega) + i f''_{I_j}(\omega)$$

- Only heavy atoms scatter anomalously and undergo damage dynamics during an x-ray pulse.
- Heavy atoms are ionized independently.
- > Only one species of heavy atoms is considered.

Son, Chapman & Santra, *PRL* (in press)

12

Generalized Karle-Hendrickson equation

$$\frac{dI(\omega)}{d\Omega} = \mathcal{F}C(\Omega) \left[\left| F_P^0 \right|^2 + \left| F_H^0 \right|^2 \tilde{a}(\omega) + \left| F_P^0 \right| \left| F_H^0 \right| b(\omega) \cos \Delta \phi^0 + \left| F_P^0 \right| \left| F_H^0 \right| c(\omega) \sin \Delta \phi^0 + N_H \left| f_H^0 \right|^2 \{a(\omega) - \tilde{a}(\omega)\} \right]$$

3 unknowns at every single **Q**: $|F_P^0|$, $|F_H^0|$, $\Delta \phi^0 (= \phi_P^0 - \phi_H^0)$

$$a(\omega) = \frac{1}{\{f_{H}^{0}\}^{2}} \sum_{I_{H}} \bar{P}_{I_{H}} |f_{I_{H}}(\omega)|^{2} \qquad \tilde{a}(\omega) = \frac{1}{\{f_{H}^{0}\}^{2}} \int_{-\infty}^{\infty} dt \, g(t) \left| \tilde{f}_{H}(\omega, t) \right|^{2}$$
$$b(\omega) = \frac{2}{f_{H}^{0}} \sum_{I_{H}} \bar{P}_{I_{H}} \left\{ f_{I_{H}}^{0} + f_{I_{H}}'(\omega) \right\} \qquad c(\omega) = \frac{2}{f_{H}^{0}} \sum_{I_{H}} \bar{P}_{I_{H}} f_{I_{H}}''(\omega)$$

How to obtain those MAD coefficients including elec. damage dynamics?

Son, Chapman & Santra, *PRL* (in press)

XATOM: x-ray and atomic physics toolkit

X-ray—induced atomic processes for any element and any configuration

- photoionization cross section $\sigma_{P}(i,\omega) = \frac{4}{3}\alpha\pi^{2}\omega N_{i}\sum_{l_{j}=|l_{i}-1|}^{l_{i}+1}\frac{l_{>}}{2l_{i}+1}\left|\int_{0}^{\infty}P_{n_{i}l_{i}}(r)P_{\varepsilon l_{j}}(r) r dr\right|^{2}$ Auger / Coster-Kronig decay rate $\Gamma_{A}(i,jj') = \pi\frac{N_{i}^{H}N_{jj'}}{2l_{i}+1}\sum_{L=|l_{j}-l_{j'}|}^{l_{j}+l_{j'}}\sum_{S=0}^{1}\sum_{l_{i'}}(2L+1)(2S+1)|M_{LS}(j,j',i,i')|^{2}$ fluorescence rate $\Gamma_{F}(i,j) = \frac{4}{3}\alpha^{3}(l_{i}-l_{j})^{3}\frac{N_{i}^{H}N_{j}}{4l_{j}+2}\cdot\frac{l_{>}}{2l_{i}+1}\left|\int_{0}^{\infty}P_{n_{i}l_{i}}(r)P_{n_{j}l_{j}}(r) r dr\right|^{2}$
- coherent x-ray scattering form factor $f^0(\mathbf{Q}) = \int \rho(\mathbf{r}) e^{i\mathbf{Q}\cdot\mathbf{r}} d^3r$
- shake-off branching ratio $p_{SO}(i;I,I') = 1 \left| \int_0^\infty P_{n_i l_i}(r;I) P_{n_i l_i}(r;I') dr \right|^2$
- dispersion correction for coherent x-ray scattering form factor
- Rate equation model to simulate electronic damage dynamics

$$\frac{d}{dt}P_I(t) = \sum_{I' \neq I}^{\text{all config.}} \left[\Gamma_{I' \to I} P_{I'}(t) - \Gamma_{I \to I'} P_I(t)\right]$$

Son, Young & Santra, PRA 83, 033402 (2011)

XATOM: examples of FEL sciences

Doumy et al., PRL 106, 083002 (2011)

Collaboration with Ohio State Univ. and Argonne National Lab.

SCIENCE

Rudek et al. (to be submitted)

Collaboration with Max Planck Advanced Study Group at CFEL

Calculations of MAD coefficients

$$|F_P^0|^2 + |F_H^0|^2 \tilde{a}(\omega) + |F_P^0| |F_H^0| b(\omega) \cos \Delta \phi^0 + |F_P^0| |F_H^0| c(\omega) \sin \Delta \phi^0 + N_H |f_H^0|^2 \{a(\omega) - \tilde{a}(\omega)\} a(\omega) = \frac{1}{\{f_H^0\}^2} \sum_{I_H} \bar{P}_{I_H} |f_{I_H}(\omega)|^2$$

$$\tilde{a}(\omega) = \frac{1}{\{f_{H}^{0}\}^{2}} \int_{-\infty}^{\infty} dt \, g(t) \left| \tilde{f}_{H}(\omega, t) \right|^{2}$$
$$b(\omega) = \frac{2}{f_{H}^{0}} \sum_{I_{H}} \bar{P}_{I_{H}} \left\{ f_{I_{H}}^{0} + f_{I_{H}}'(\omega) \right\}$$
$$c(\omega) = \frac{2}{f_{H}^{0}} \sum_{I_{H}} \bar{P}_{I_{H}} f_{I_{H}}''(\omega)$$

Son, Chapman & Santra, PRL (in press)

MAD phasing at high x-ray intensity

- Bleaching effect: MAD coefficients u00eca and b are dramatically bleached out and their minimum is deepened and broadened.
- > The contrast in \tilde{a} and b becomes enhanced; the contrast in c is reduced but not completely eliminated. \rightarrow MAD can be done.
- > Broadening of the edge \rightarrow less precision of ω
- > Bleaching effect provides an alternative phasing method similar to SIR (single isomorphic replacement) or RIP (radiationdamage induced phasing).

Son, Chapman & Santra, PRL (in press)

MAD phasing for nanocrystals

$$\frac{dI(\omega)}{d\Omega} = \mathcal{F}C(\Omega) \left[\left| F_P^0 \right|^2 + \left| F_H^0 \right|^2 \tilde{a}(\omega) + \left| F_P^0 \right| \left| F_H^0 \right| b(\omega) \cos \Delta \phi^0 + \left| F_P^0 \right| \left| F_H^0 \right| c(\omega) \sin \Delta \phi^0 + N_H \left| f_H^0 \right|^2 \{a(\omega) - \tilde{a}(\omega)\} \right]$$

$$|F_H^0|^2 \tilde{a}(\omega) = \int_{-\infty}^{\infty} dt \, g(t) \begin{vmatrix} \tilde{f}_H(\omega, t) \sum_{j=1}^{N_H} e^{i\mathbf{Q}\cdot\mathbf{R}_j} \end{vmatrix}^2 \qquad \text{dynamical form factor:} \\ \tilde{f}_H(\omega, t) = \sum_{I_H} P_{I_H}(t) f_{I_H}(\omega)$$

- > $|F_H^0|^2 \tilde{a}(\omega)$ implies that all heavy atoms are described by the same dynamical form factor \rightarrow *Bragg peaks*
- > $N_H |f_H^0|^2 \{a(\omega) \tilde{a}(\omega)\}$ represents fluctuations from all different configurations induced by electronic damage \rightarrow *diffuse background* Son, Chapman & Santra, *PRL* (in press)

MAD with light atoms

Extension of MAD to non-periodic nano-structures >

MAD near the carbon *K*-shell edge >

076101 (2008)

MAD at FLASH

Conclusion

- MAD phasing method in extreme conditions of ionizing radiations
- Combination of detailed electronic response at the atomic level and molecular imaging during intense x-ray pulses
- Existence of a generalized Karle-Hendrickson equation for the MAD method at high intensity
- > Bleaching effect on the scattering strength to be beneficial to the phasing method
- A new opportunity for solving the phase problem in single-shot imaging of single molecules, nano-sized crystals, and nano-sized objects with FELs

Acknowledgment

> CFEL Theory Division at DESY

Robin Santra Stefan Pabst Jan Malte Slowik Arina Sytcheva Oriol Vendrell Gopal Dixit Mohamed El-Amine Madjet Zheng Li

Beata Ziaja-Motyka Zoltan Jurek Nikita Medvedev Robert Thiele

photo taken in early 2011

> CFEL Coherent Imaging Division at DESY Henry N. Chapman, Thomas White, Andrew Aquila

FEL goes MAD.

Sang-Kil Son | MAD phasing method at high intensity | October 13, 2011 | 26 / 26