Electronic response to X-ray free-electron laser pulses

The 3rd CQSE International Workshop on Atomic, Molecular, and Ultrafast Science and Technology
CQSE/NTU, Taipei, Taiwan / January 7–8, 2012

Sang-Kil Son

Center for Free-Electron Laser Science, DESY, Hamburg, Germany

Overview

- > Introduction to XFEL
- > Theory / XATOM toolkit
- > Applications to XFEL experiments
- > Conclusion

What is XFEL?

- > XFEL: X-ray Free-Electron Laser
- Ultraintense
 - synchrotron: at most one photon absorbed per pulse
 - XFEL: many photons absorbed per pulse
 - fluence: ~10¹³ photons per µm² per pulse
 - peak intensity: ~10¹⁸ W/cm²
- > Ultrafast
 - pulse duration: femtoseconds or sub-fs
- Characteristics of X rays
 - large penetration depth: small absorption probability
 - element specific: inner-shell electrons
 - A wavelength: imaging with atomic resolution

Ackermann et al., Nature Photon. 1, 336 (2007).

Where are XFELs?

- > FLASH at DESY, Germany (2004)
- > LCLS at Stanford, USA (2009)
- SACLA at RIKEN Harima, Japan (2011)
- European XFEL, Germany (2015)

What differences from optical strong-field?

- Optical strong-field regime
 - tunneling or multiphoton processes
 - valence-electron ionization

- Intense X-ray regime
 - mainly one-photon processes
 - core-electron ionization
 - multiphoton multiple ionization via a sequence of one-photon processes

Multiphoton Multiple Ionization

Figures from Wark, *Nature* **466**, 35 (2010).

Young et al., Nature 466, 56 (2010).

- First LCLS experiment: fundamental atomic physics in XFEL
- Lots of x-ray photons: repeated K-shell ionization (P) followed by Auger relaxation (A)
- Good agreement between experiment and theory (Nina Rohringer and Robin Santra)

Ultrafast X-ray scattering

> X-ray scattering

- Single-shot imaging of individual macromolecules
 - Ultrafast (femtosecond) pulse: scattering before Coulomb explosion (nuclear radiation damage)
 - A hottest topic in XFEL science: Chapman et al., Nature Phys. 2, 839 (2007). Chapman et al., Nature 470, 73 (2011).
 Seibert et al., Nature 470, 78 (2011).
 - Electronic radiation damage is unavoidable.

XFEL for single molecules or nanocrystals

Gaffney & Chapman, Science 316, 1444 (2007).

X-ray-induced atomic processes

- Based on nonrelativistic QED and perturbation theory
- Hamiltonian

$$\hat{H} = \hat{H}_{\text{mol}} + \hat{H}_{\text{EM}} + \hat{H}_{\text{int}}$$

$$\hat{H}_{\text{EM}} = \sum_{\mathbf{k},\lambda} \omega_{\mathbf{k}} \hat{a}_{\mathbf{k},\lambda}^{\dagger} \hat{a}_{\mathbf{k},\lambda}, \quad \omega_{\mathbf{k}} = |\mathbf{k}|/\alpha$$

$$\hat{H}_{\text{int}} = \alpha \int d^3x \, \hat{\psi}^{\dagger}(\mathbf{x}) \left[\hat{\mathbf{A}}(\mathbf{x}) \cdot \frac{\nabla}{i} \right] \hat{\psi}(\mathbf{x}) + \frac{\alpha^2}{2} \int d^3x \, \hat{\psi}^{\dagger}(\mathbf{x}) \hat{A}^2(\mathbf{x}) \hat{\psi}(\mathbf{x})$$

Perturbation theory

$$\hat{H} = \hat{H}_0 + \hat{H}_{int}$$

 $|I\rangle$: initial state, $|F\rangle$: final state

$$\Gamma_{FI} = 2\pi\delta(E_F - E_I) \left| \langle F|\hat{H}_{\rm int}|I\rangle + \sum_{M} \frac{\langle F|\hat{H}_{\rm int}|M\rangle\langle M|\hat{H}_{\rm int}|I\rangle}{E_I - E_M + i\epsilon} + \cdots \right|^2$$

Santra, J. Phys. B 42, 023001 (2009): PhD Tutorial

X-ray-induced atomic processes (cont.)

Photoionization

> Fluorescence

> Auger and Coster–Kronig decay

> Elastic X-ray scattering

Electronic damage dynamics by XFEL

Coupled rate equation

$$\frac{d}{dt}P_I(t) = \sum_{I' \neq I}^{\text{all config.}} \left[\Gamma_{I' \to I} P_{I'}(t) - \Gamma_{I \to I'} P_I(t) \right]$$

- > Numerical procedure
 - construct all possible *n*-hole configurations for
 +n charge state for all possible n
 - optimize orbital structures for each configuration
 - calculate cross sections and rates for each configuration
 - solve a set of rate equations with all parameters
- Each atomic process is treated in the perturbative regime, but ionization and relaxation dynamics are non-perturbative.

Fe @ 8 keV, 5×10¹² photons/µm², 10 fs FWHM

XATOM: toolkit for X-ray atomic physics

What XATOM can do:

- Hartree—Fock—Slater method with a proper long-range correction
- bound and continuum states, transition dipole matrix elements
- photoionization / photoabsorption cross sections
- Auger and Coster–Kronig rates
- fluorescence rates
- elastic x-ray scattering form factors including dispersion corrections
- shake-off branching ratios
- large-scale coupled rate equations: direct solution or Monte–Carlo solution

> Features:

- versatile and simple
- captures all relevant basic processes
- useful to atoms, molecules and clusters
- becomes an essential tool for XFEL simulations

Applications of XATOM

Multiphoton multiple ionization

Ne: nonlinear response Doumy et al., PRL 106, 083002 (2011).
Sytcheva, Pabst, Son & Santra, submitted.

Xe: ultra-efficient ionization
Rudek, et al., submitted.

Ultrafast X-ray scattering

C: scattering vs. absorption

Son, Young & Santra, PRA 83, 033402 (2011).

Fe: MAD at high X-ray intensity

Son, Chapman & Santra, *PRL* **107**, 218102 (2011).

Nonlinear response to XFEL

- Charge state distribution of Ne: good agreement between experiment and theory Young et al., Nature 466, 56 (2010).
- Even better if shake-off processes are included
- Study of Ne⁹⁺ production from Ne⁸⁺ measured at LCLS
- Photon energy above / below K-shell threshold of Ne⁸⁺ to observe nonlinear response

Doumy, Roedig, <u>Son</u> et al., Phys. Rev. Lett. **106**, 083002 (2011).

Nonlinear response to XFEL (cont.)

- > First exp. evidence of nonlinear absorption in the x-ray regime
- Two mechanisms of nonlinear response: direct and sequential two-photon ionizations
- Direct σ⁽²⁾ estimated from measurement, which is ~700 times larger than expected from previous calculation

Doumy, Roedig, <u>Son</u> et al., Phys. Rev. Lett. **106**, 083002 (2011).

Enhanced by 1s4p resonance and finite bandwidth of XFEL Sytcheva, Pabst, Son & Santra, submitted.

Ultra-efficient ionization by XFEL

- Charge state distribution of Xe measured at LCLS
- At 2000 eV: good agreement between experiment and theory
- > At 1500 eV: unprecedented high charge states (up to Xe³⁶⁺) in experiment
- Computational challenge: # of coupled rate equations = 1,120,581
 Rudek, Son et al., submitted.

Ultra-efficient ionization by XFEL (cont.)

- Sequential one-photon ionization at 1500 eV would be up to Xe²⁶⁺.
- REXMI (Resonance-Enhanced X-ray Multiple Ionization): resonant excitation from 3p after 3p ionization is closed
- Current modeling does not include resonant excitations.

Rudek, Son et al., submitted.

Scattering from hollow atoms

Elastic X-ray scattering form factor

$$f^0(\mathbf{Q}) = \int d^3r \ \rho(\mathbf{r}) \ e^{i\mathbf{Q}\cdot\mathbf{r}}$$

Scattering affected by hollow-atom formation For C @12 keV and resolution=1.7 Å

neutral

single-core-hole

double-core-hole

0.305

 $\sigma_{\rm sc}/\sigma_{\rm abs} = 0.057$

intensity-induced X-ray transparency for Ne: Young et al., Nature 466, 56 (2010). frustrated absorption for N₂: Hoener et al., Phys. Rev. Lett. 104, 253002 (2010).

Scattering from hollow atoms (cont.)

- Carbon: time-averaged charge as a function of the pulse duration
- Less time-averaged charge when the pulse duration is short enough to compete with core-hole lifetimes (Auger lifetime)
- Higher intensity of XFEL pulse induces less ionization due to hollowatom formation.

<u>Son</u>, Young & Santra, *Phys. Rev. A* **83**, 033402 (2011).

Scattering from hollow atoms (cont.)

- Hollow-atom formation saturates around 10⁷ photons/Å².
- Nonlinear effect on scattering intensity after this saturation
- Theoretical results suggest a shorter pulse (i.e., attosecond XFEL) would be ideal for single-shot imaging.

Son, Young & Santra, Phys. Rev. A 83, 033402 (2011).

Conclusion

- Recent advent of XFEL opens up many unique opportunities in physics, chemistry, biology, and material science.
- > It is crucial to understand interaction of ultraintense and ultrafast X-ray pulses with atoms and molecules.
- > XATOM is an integrated toolkit to investigate X-ray—induced atomic processes and to simulate electronic damage dynamics.
- We explore nonlinear X-ray absorption processes, ultra-efficient multiple ionization of heavy atoms, scattering from hollow atoms, and novel diffraction method with heavy atoms.
- Theoretical studies with XATOM explain recent LCLS experiments and lead to new XFEL experiments.
- > XATOM becomes an essential tool for XFEL simulations.

Acknowledgment

CFEL Theory Division

Robin Santra

Stefan Pabst

Arina Sytcheva

All group members

Argonne National Lab.

Linda Young

Gilles Doumy

Max-Planck ASG at CFEL

Artem Rudenko

Benedikt Rudek

CFEL Coherent Imaging Division

Tohoku Univ. Kiyoshi Ueda

Thank you for your attention!

