Multiwavelength anomalous diffraction at high x-ray intensity

Sang-Kil Son, 1 Henry N. Chapman, 1,2 and Robin Santra 1,2

- ¹ Center for Free-Electron Laser Science, DESY, Hamburg, Germany
- ² Department of Physics, University of Hamburg, Hamburg, Germany

Ultrafast Dynamic Imaging of Matter, Banff, Alberta, Canada July 1–3, 2012

Center for Free-Electron Laser Science

CFEL is a scientific cooperation of the three organizations: DESY – Max Planck Society – University of Hamburg

X-ray scattering

Elastic x-ray scattering form factor

$$f^{0}(\mathbf{Q}) = \int d^{3}r \ \rho(\mathbf{r}) \ e^{i\mathbf{Q}\cdot\mathbf{r}}$$
$$\frac{d\sigma(\mathbf{Q})}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{T} \left|f^{0}(\mathbf{Q})\right|^{2}$$

> Carbon at synchrotron radiation: 12 keV, 10⁶ photons on 10µm × 10µm

scattering probability ~ 10⁻¹²

Why X-ray free-electron laser

~108 molecules in a µm-sized crystal high x-ray fluence from XFEL (×10⁶ more than synchrotron radiation)

Femtosecond X-ray nanocrystallography

- Growing high-quality crystals is one of major bottlenecks in x-ray crystallography.
- Unprecedented high x-ray fluence from XFEL
- Enough signals from nanosized crystals and single molecules
- Single-shot molecular imaging: revolutionary impact on structural biology

Chapman et al., Nature 470, 73 (2011).

Phase problem

Phase problem: a fundamental obstacle in constructing an electronic density map from x-ray diffraction

$$f^{0}(\mathbf{Q}) = \int d^{3}r \ \rho(\mathbf{r}) \ e^{i\mathbf{Q}\cdot\mathbf{r}} = |f^{0}(\mathbf{Q})| \ e^{i\phi^{0}(\mathbf{Q})}$$

Phases are essential for structural determination, but they are lost in measurement. **Amplitudes** Phases

Taylor, *Acta Cryst.* **D59**, 1881 (2003). Kevin Cowtan's Book of Fourier: http://www.ysbl.york.ac.uk/~cowtan/fourier/fourier.html

Multiwavelength Anomalous Diffraction

> Dispersion correction: $f(\mathbf{Q}, \omega) = f^0(\mathbf{Q}) + f'(\omega) + if''(\omega)$

MAD phasing: The Karle-Hendrickson equation provides a simple way for phasing from the contrast at two or more wavelengths.

Karle, *Int. J. Quant. Chem.* **18**, Suppl. S7, 357 (1980). Hendrickson, *Trans. Am. Crystalgr. Assoc.* **21**, 11 (1985).

MAD with synchrotron radiation

MAD has been a well-established phasing method with synchrotron radiation since late 80's.

Cucumber basic blue protein Guss et al., Science **241**, 806 (1988).

A) Streptavidin Hendrickson *et al.*, *PNAS* **86**, 2190 (1989).

B) Ribonuclease H Yang *et al.*, *Science* **249**, 1398 (1990).

Picture taken from Hendrickson, *Science* **254**, 51 (1991).

New theory for new experiment

Can we use the MAD phasing with XFEL?

phase problem → MAD
growing high-quality crystals → XFEL

Electronic damage to heavy atoms

Population dynamics of Fe charge states during an XFEL pulse

Dispersion corrections of atomic form factors of Fe and its ions

(8 keV, 5×10^{12} photons/ μ m², 10 fs FWHM)

XATOM: x-ray and atomic physics toolkit

> X-ray-induced atomic processes for any given element and configuration

Rate equation model to simulate ionization and relaxation dynamics

Prior speculations regarding MAD at XFEL

- Unavoidable electronic damage, especially to heavy atoms
- Dramatic change of anomalous scattering for high charge states
- Stochastic electronic damage to heavy atoms would destroy coherent scattering signals in nanocrystals
- > MAD would not be an applicable route for phasing at XFEL...?

- We demonstrate the existence of a Karle-Hendrickson-type equation in the high-intensity regime.
- > We show that MAD not only works, but also the extensive electronic rearrangements at high x-ray intensity provide a new path to phasing.

Scattering intensity including elec. damage

$$\frac{dI(\mathbf{Q},\omega)}{d\Omega} = \mathcal{F}C(\Omega) \int_{-\infty}^{\infty} dt \, g(t) \sum_{I} P_{I}(t) \left| F_{P}^{0}(\mathbf{Q}) + \sum_{j=1}^{N_{H}} f_{I_{j}}(\mathbf{Q},\omega) e^{i\mathbf{Q} \cdot \mathbf{R}_{j}} \right|^{2}$$

$$I = (I_1, I_2, \dots I_{N_H}), \quad P_I(t) = \prod_{j=1}^{N_H} P_{I_j}(t)$$
$$f_{I_j}(\mathbf{Q}, \omega) = f_{I_j}^0(\mathbf{Q}) + f'_{I_j}(\omega) + i f''_{I_j}(\omega)$$

- All changes among N_H heavy atoms are included.
- > P: protein, H: heavy atoms; only heavy atoms scatter anomalously and undergo damage dynamics during an x-ray pulse.
- Heavy atoms are ionized independently.
- > Only one species of heavy atoms is considered.

Generalized Karle-Hendrickson equation

$$\frac{dI(\mathbf{Q},\omega)}{d\Omega} = \mathcal{F}C(\Omega) \Big[|F_P^0(\mathbf{Q})|^2 + |F_H^0(\mathbf{Q})|^2 \tilde{a}(\mathbf{Q},\omega) \\
+ |F_P^0(\mathbf{Q})| |F_H^0(\mathbf{Q})| b(\mathbf{Q},\omega) \cos \Delta \phi^0(\mathbf{Q}) \\
+ |F_P^0(\mathbf{Q})| |F_H^0(\mathbf{Q})| c(\mathbf{Q},\omega) \sin \Delta \phi^0(\mathbf{Q}) \\
+ N_H |f_H^0(\mathbf{Q})|^2 \{a(\mathbf{Q},\omega) - \tilde{a}(\mathbf{Q},\omega)\} \Big]$$

- > MAD coefficients: $a(\mathbf{Q}, \omega), b(\mathbf{Q}, \omega), c(\mathbf{Q}, \omega), \text{ and } \tilde{a}(\mathbf{Q}, \omega)$
 - → measured or calculated with time evolution of config. populations
- > 3 unknowns: $\left|F_P^0(\mathbf{Q})\right|, \left|F_H^0(\mathbf{Q})\right|, \Delta\phi^0(\mathbf{Q}) \left[=\phi_P^0(\mathbf{Q})-\phi_H^0(\mathbf{Q})\right]$
 - → solvable with measurements at 3 different wavelengths.

MAD coefficients

Fe in an x-ray pulse of 2×10¹² photons and 10 fs FWHM

- calculated by XATOM
- bleaching effect: minimum deepened and edge broadened
- MAD works: enhanced contrast at different wavelengths
- alternative phasing method similar to SIR (single isomorphic replacement) or RIP (radiation-damage induced phasing)

Conclusion

- > MAD phasing method in extreme conditions of ionizing radiations
- Combination of ultrafast electronic dynamics at the atomic level and imaging of macromolecules by intense x-ray pulses
- Existence of a generalized Karle-Hendrickson equation for the MAD method at high x-ray intensity
- Bleaching effect on the scattering strength to be beneficial to the phasing method
- A new opportunity for solving the phase problem in femtosecond nanocrystallography with XFELs
 - → A breakthrough in structural biology

Acknowledgment

CFEL Theory Division

Take-home message

FEL goes MAD.

