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X-ray scattering

> Elastic x-ray scattering form factor M
Q) = [ dr plr) @
do(Q) dU 0
Q- }f

> Carbon at synchrotron radiation: 12 keV, 108 photons on 10um x 10um
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scattering
probability ~ 10-12
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Why X-ray free-electron laser
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~108 molecules in a
um-sized crystal

CFEL

high x-ray fluence from XFEL
(x10% more than synchrotron radiation)
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Femtosecond X-ray nanocrystallography
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Single-shot molecular
imaging: revolutionary
impact on structural biology

Chapman et al., Nature 470, 73 (2011).
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Phase problem

> Phase problem: a fundamental obstacle in constructing an electronic
density map from x-ray diffraction

Q) = / &r p(r) €97 = |f(Q)] (D
FT FT

— —

> Phases are essential for
structural determination, ;
but they are lost in L . 4 & -

measurement.
mwmﬁzii///fﬁff/,/»fﬁgg’/ﬂfﬂ
Taylor, Acta Cryst. D59, 1881 (2003). ‘ Fr 1
Kevin Cowtan’s Book of Fourier: http:/ L _— J
www.ysbl.york.ac.uk/~cowtan/fourier/
fourier.html
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Multiwavelength Anomalous Diffraction

> Dispersion correction:  f(Q,w) = f*(Q) + f'(w) +if" (w)

R Fe near K edge
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> MAD phasing: The Karle-Hendrickson equation provides a simple way
for phasing from the contrast at two or more wavelengths.

Karle, Int. J. Quant. Chem. 18, Suppl. S7, 357 (1980).
Hendrickson, Trans. Am. Crystalgr. Assoc. 21, 11 (1985).
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MAD with synchrotron radiation

> MAD has been a well-established phasing method with synchrotron
radiation since late 80’s.
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Guss et al., Science
241, 806 (1988).
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A) Streptavidin
Hendrickson et al., PNAS
86, 2190 (1989).

B) Ribonuclease H
Yang et al., Science 249,
1398 (1990).

Picture taken from Hendrickson,
Science 254, 51 (1991).
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New theory for new experiment

Can we use the MAD phasing with XFEL?

phase problem = MAD
growing high-quality crystals = XFEL
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Electronic damage to heavy atoms

Population dynamics of Fe charge Dispersion corrections of atomic form
states during an XFEL pulse factors of Fe and its ions
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(8 keV, 5x10'2 photons/um?2, 10 fs FWHM)
Son, Chapman & Santra, PRL 107, 218102 (2011).
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XATOM: x-ray and atomic physics toolkit

> X-ray-induced atomic processes for any given element and configuration

> Rate equation model to simulate ionization and relaxation dynamics

Son, Young & Santra,
\ PRA 83 033402 (2011).




Prior speculations regarding MAD at XFEL

> Unavoidable electronic damage, especially to heavy atoms
> Dramatic change of anomalous scattering for high charge states

> Stochastic electronic damage to heavy atoms would destroy coherent
scattering signals in nanocrystals

> MAD would not be an applicable route for phasing at XFEL...?

> We demonstrate the existence of a Karle-Hendrickson-type equation in
the high-intensity regime.

> We show that MAD not only works, but also the extensive electronic
rearrangements at high x-ray intensity provide a new path to phasing.

Son, Chapman & Santra, PRL 107, 218102 (2011).
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Scattering intensity including elec. damage

00 Ny
M) _ o) [Cagn) Y Pie) [FRQ + D 11, (Qu)e @™

[=(I,Is,In,), Pr(t)=TI"" P (t)
f1,(Q,w) = f2.(Q) + f1. (w) +iff, (w)

> All changes among Ny heavy atoms are included.

> P: protein, H: heavy atoms; only heavy atoms scatter anomalously and
undergo damage dynamics during an x-ray pulse.

> Heavy atoms are ionized independently.
> Only one species of heavy atoms is considered.

Son, Chapman & Santra, PRL 107, 218102 (2011).
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Generalized Karle-Hendrickson equation

dI(Q,w)
dQ

= FC@Q)||FR(Q)? + | Ff(Q)]?a(Q,w)
+ [FR(Q)] |FE(Q)[b(Q, w) cos A0"(Q)
+ |FR(Q)] | FE(Q)|e(Q, w) sin A¢°(Q)
+NH|f (Q)| {a(Q,w) —a(Q,w)}

> MAD coefficients: a’(Qaw)a b(Qaw)a C(Qaw)a and &(Qaw)
— measured or calculated with time evolution of config. populations

> 3unknowns: |Fp(Q)], |[FR(Q)], A¢”(Q) [= ¢p(Q) — 0% (Q)]

— solvable with measurements at 3 different wavelengths.
Son, Chapman & Santra, PRL 107, 218102 (2011).
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MAD coefficients

Fe in an x-ray pulse of 2x10"photons and 10 fs FWHM . ~5|culated by XATOM
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Conclusion

> MAD phasing method in extreme conditions of ionizing radiations

> Combination of ultrafast electronic dynamics at the atomic level
and imaging of macromolecules by intense x-ray pulses

> Existence of a generalized Karle-Hendrickson equation for the
MAD method at high x-ray intensity

> Bleaching effect on the scattering strength to be beneficial to the
phasing method

> A new opportunity for solving the phase problem in femtosecond
nanocrystallography with XFELs
-=> A breakthrough in structural biology
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Take-home message

FEL goes MAD.



