Inner-shell multiphoton multiple ionization dynamics of Xe atoms by x-ray free-electron laser pulses

Sang-Kil Son¹ and Robin Santra^{1,2}

¹ Center for Free-Electron Laser Science, DESY, Hamburg, Germany ² Department of Physics, University of Hamburg, Hamburg, Germany

DPG Spring Meeting of the Section AMOP March 19, 2013

Center for Free-Electron Laser Science

CFEL is a scientific cooperation of the three organizations: DESY – Max Planck Society – University of Hamburg

Collaboration

LCLS experiment

SACLA experiment

Max-Planck ASG at CFEL

Daniel Rolles

Artem Rudenko

Benedikt Rudek

Tohoku Univ.

Kiyoshi Ueda

- Hironobu Fukuzawa
- Koji Motomura

Introduction

> Why heavy atoms?

- multiphoton multiple ionization dynamics characterized by a sequence of one-photon ionization and relaxations
- heavy atom:
 many electrons many processes many ionization pathways
 newly unveiled physics
- electronic damage dynamics of heavy atoms: direct relevance for high-resolution x-ray imaging
- > Why theory needed?
 - to reveal the ionization mechanism
 - to guide future experiments, ex) MAD at high x-ray intensity

Son, Chapman & Santra, *Phys. Rev. Lett.* **107**, 218102 (2011).

Ionization thresholds of Xe ions

Complex inner-shell decay cascade

DÈŚY

Ionization dynamics: Monte Carlo method

> How many coupled rate equations needed?

- **Ne**: 63
- Xe: 1 million for *M*-shell ionization
 >20 millions for *L*-shell ionization
- > How many physical processes to be considered?
 - Ne: 815 at 2 keV
 - Xe: 42 millions at 2 keV
 >2 billions at 5.5 keV
- **XATOM** toolkit extended by the Monte Carlo method

Son & Santra, *Phys. Rev. A* **85**, 063415 (2012).

direct solution

Monte Carlo approach

Experiment: ion time-of-flight spectra

DES

Comparison b/w experiment and theory

Ionization energetics

Ionization pathway: one trajectory

SCIENCE

Ionization pathway: many trajectories

Conclusion

- > Atoms and molecules are highly ionized when exposed to XFEL pulses.
- > XFEL experiments of heavy atoms:
 - M-shell ionization of Xe at LCLS (1.5 keV and 2 keV)
 - L-shell ionization of Xe at SACLA (5 keV and 5.5 keV)
- Heavy atoms have a rich manifold of ionization channels involving complex inner-shell decay cascade.
- **XATOM** toolkit has been extended to treat multiphoton multiple ionization dynamics of heavy atoms by the Monte Carlo method.
- The ionization mechanism of heavy atoms is visualized with ionization energetics and ionization dynamics.

Acknowledgment

CFEL Theory Division

(Thank you for your attention!

