Happy phasing with electronic radiation damage at high x-ray intensity

Sang-Kil Son

Center for Free-Electron Laser Science, DESY, Hamburg, Germany

X-ray Radiation Damage to Biological Crystalline Samples DESY, Hamburg, Germany / April 10–12, 2014

Center for Free-Electron Laser Science

Collaboration

CFEL Theory Division

Robin Santra

CFEL Coherent Imaging Division

Henry Chapman

Lorenzo Galli

Radiation damage by XFEL

Coulomb explosion (nuclear damage)

Neutze et al., Nature 406, 752 (2000).

Diffraction before destruction

Electronic damage

Young et al., Nature 466, 56 (2010).

Electronic radiation damage

- Unavoidable at high x-ray intensity (time scale: ~subfemtoseconds)
- > Can we reduce electronic radiation damage?
 - frustrated ionization: higher intensity, less ionization
 - seeded XFEL pulse: narrower bandwidth, less ionization
- Can we take benefits from electronic radiation damage?
 - understanding of ionization dynamics mechanism
 - turn x-ray ionization into an advantage for phasing

Photoabsorption by X-rays

- > Typically absorption cross section is larger than scattering cross section.
- XFEL induces multiphoton multiple ionization dynamics.

Beyond saturation in high-intensity regime

Fluence (photons/unit area) to saturate one-photon absorption

- High x-ray intensity beyond one-photon absorption saturation
 - Synchrotron (10⁴~10⁶ ph/µm²) → at most one photon absorbed
 - XFEL (10¹¹ ph/µm² or higher) → at least one photon absorbed

Sequential multiphoton multiple ionization

- described by sequences of photoionization, Auger, and fluorescence
- heavy atoms at higher photon energies → relevant for phasing

Complex inner-shell ionization dynamics

- more than one million electronic states calculated
- more than 40 million x-ray-induced processes calculated
- conventional quantum chemistry codes not applicable

XATOM: all about x-ray atomic physics

- Computer program suite to describe dynamical behaviors of atoms interacting with XFEL pulses
- > Use the Hartree-Fock-Slater model
- Calculate all cross sections and rates of x-ray-induced processes for any given element / any given charge state / any given electronic configuration
- Solve coupled rate equations to simulate ionization dynamics
- Calculate ion / electron / photon spectra

Son, Young & Santra, *Phys. Rev. A* **83**, 033402 (2011).

Xe at LCLS

Rudek et al., Nature Photon. **6**, 858 (2012).

- Charge state distribution of Xe measured at LCLS
- > At 2 keV: good agreement between experiment and theory
- > At 1.5 eV: unprecedented high charge states (up to Xe³⁶⁺) in experiment
- > Resonance-enabled ionization: can be suppressed by narrow bandwidths

Xe at SACLA

- > At 5.5 keV: deep inner-shell (*L*-shell) ionization dynamics
- Good agreement between experiment and theory
- > Theoretical challenges: >20-million config. with >2-billion processes

Phasing for XFEL experiments

- Mainly solved by molecular replacement
 e.g.) Redecke et al., Science 339, 227 (2013).
- > SAD in the intermediate intensity regime (< the saturation fluence)
 Barends et al., Nature 505, 244 (2014).
- Need for ab initio phasing method at high x-ray intensity

Picture taken from *Nature* **505**, 620 (2014).

Multiwavelength Anomalous Diffraction

Dispersion correction:

$$f(\mathbf{Q}, \omega) = f^{0}(\mathbf{Q}) + f'(\omega) + if''(\omega)$$

- MAD phasing: The Karle-Hendrickson equation provides a simple way for phasing from the contrast at two or more wavelengths.
- MAD has been a wellestablished phasing method with synchrotron radiation since 80's.

Karle-Hendrickson equation:

$$|F_T(\omega)|^2 = |F_T^0|^2 + |F_A^0|^2 a(\omega) + |F_T^0| |F_A^0| b(\omega) \cos \Delta \phi^0 + |F_T^0| |F_A^0| c(\omega) \sin \Delta \phi^0$$

Review: Hendrickson, Science 254, 51 (1991).

Dynamical behavior of heavy atoms

- > Saturation fluence for Fe at the edge ~ 2.4×10¹¹ ph/µm²
- > Extensive electronic rearrangements
- Dramatic change of anomalous scattering for high charge states

Prior speculations regarding MAD at XFEL

- Unavoidable electronic damage, especially to heavy atoms
- Dramatic change of anomalous scattering for high charge states
- Stochastic electronic damage to heavy atoms would destroy coherent scattering signals in nanocrystals
- > MAD would not be an applicable route for phasing at XFEL...?

- We demonstrate the existence of a Karle-Hendrickson-type equation in the high-intensity regime.
- We show that MAD not only works, but also the extensive electronic rearrangements at high x-ray intensity provide a new path to phasing.

Scattering intensity including ionization

$$\frac{dI(\mathbf{Q}, \mathcal{F}, \omega)}{d\Omega} = \mathcal{F}C(\Omega) \int_{-\infty}^{\infty} dt \, g(t) \sum_{I} P_{I}(\mathcal{F}, t) \left| F_{P}^{0}(\mathbf{Q}) + \sum_{j=1}^{N_{H}} f_{I_{j}}(\mathbf{Q}, \omega) e^{i\mathbf{Q} \cdot \mathbf{R}_{j}} \right|^{2}$$

$$I = (I_1, I_2, \cdots I_{N_H}), \quad P_I(\mathcal{F}, t) = \prod_{j=1}^{N_H} P_{I_j}(\mathcal{F}, t)$$
$$f_{I_j}(\mathbf{Q}, \omega) = f_{I_j}^0(\mathbf{Q}) + f'_{I_j}(\omega) + i f''_{I_j}(\omega)$$

- > All changes among N_H heavy atoms in a crystal are included.
- P: protein, H: heavy atoms; only heavy atoms scatter anomalously and undergo ionization dynamics during an x-ray pulse.
- Heavy atoms are ionized independently.
- > Only one species of heavy atoms is considered.

Generalized Karle-Hendrickson equation

$$\frac{dI(\mathbf{Q}, \mathcal{F}, \omega)}{d\Omega} = \mathcal{F}C(\Omega) \Big[|F_P^0(\mathbf{Q})|^2 + |F_H^0(\mathbf{Q})|^2 \tilde{a}(\mathbf{Q}, \mathcal{F}, \omega) \\
+ |F_P^0(\mathbf{Q})| |F_H^0(\mathbf{Q})| b(\mathbf{Q}, \mathcal{F}, \omega) \cos \Delta \phi^0(\mathbf{Q}) \\
+ |F_P^0(\mathbf{Q})| |F_H^0(\mathbf{Q})| c(\mathbf{Q}, \mathcal{F}, \omega) \sin \Delta \phi^0(\mathbf{Q}) \\
+ N_H |f_H^0(\mathbf{Q})|^2 \{ a(\mathbf{Q}, \mathcal{F}, \omega) - \tilde{a}(\mathbf{Q}, \mathcal{F}, \omega) \} \Big]$$

- > MAD coefficients: $a(\mathbf{Q}, \mathcal{F}, \omega), b(\mathbf{Q}, \mathcal{F}, \omega), c(\mathbf{Q}, \mathcal{F}, \omega), \text{ and } \tilde{a}(\mathbf{Q}, \mathcal{F}, \omega)$
 - → measured or calculated including electronic damage dynamics
- > 3 unknowns: $\left|F_P^0(\mathbf{Q})\right|, \left|F_H^0(\mathbf{Q})\right|, \Delta\phi^0(\mathbf{Q}) \left[=\phi_P^0(\mathbf{Q})-\phi_H^0(\mathbf{Q})\right]$
 - → solvable with measurements at 3 different wavelengths.

MAD coefficients

- Needs time-dependent populations and form factors for all possible electronic configurations
- calculated by XATOM

$$a(\omega) = \frac{1}{\{f_H^0\}^2} \sum_{I_H} \bar{P}_{I_H} |f_{I_H}(\omega)|^2$$

$$0.02 \quad \tilde{a}(\omega) = \frac{1}{\{f_H^0\}^2} \int_{-\infty}^{\infty} dt \, g(t) |\tilde{f}_H(\omega, t)|^2$$

$$0.01 \quad b(\omega) = \frac{2}{f_H^0} \sum_{I_H} \bar{P}_{I_H} \{f_{I_H}^0 + f_{I_H}'(\omega)\}$$

$$0 \quad c(\omega) = \frac{2}{f_H^0} \sum_{I_{I_H}} \bar{P}_{I_H} f_{I_H}''(\omega)$$

High-intensity MAD

- MAD works: enhanced contrast at different wavelengths
- bleaching effect:
 minimum deepened
 and edge broadened
 → easy to choose
 wavelengths
- potential new phasing methods

Brand-new phasing method

- **MAD** (multi-wavelength anomalous diffraction): $\Delta F_{\Delta\lambda}$
- > **SAD** (single-wavelength anomalous diffraction): ΔF_{\pm}
- SIR (single isomorphic replacement): atomic replacement in sample preparation; native vs. derivative
- > RIP (radiation-damage induced phasing): chemical rearrangement during the x-ray pulses; S–S bond vs. bond breaking

Fluences rather than wavelengths: neither **MAD** nor **SAD**New phasing method: neither **SIR** nor **RIP**

HIP: high-intensity phasing

- HIP: exclusively achievable with intense x-ray pulses
- Non-linear response / far from the edge
- Approach 1: selective ionization for heavy atoms; RIP scheme applied
- > Approach 2: GKH equation applied; a multi-fluence version of MAD

Lorenzo Galli's

poster

Outlook: new developments

> XMDYN

- atomic processes by XATOM
- molecular dynamics by XMDYN
- C₆₀ at LCLS
- Ar cluster at SACLA

> XMOLECULE

- detailed description on molecular environment
- molecular Auger effect and charge redistribution

Conclusion

- Electronic radiation damage: multiphoton multiple ionization dynamics via sequences of one-photon processes
- XATOM provides dynamical behavior of individual atoms; tested by LCLS and SACLA experiments
- > High-intensity MAD in extreme conditions of ionizing radiations
- > HIP: brand-new phasing only achievable at high x-ray intensity
 - Multi-fluence AD / RIP mimicking SIR
- Novel phasing at high x-ray intensity: new opportunities for solving the phase problem in macromolecular crystallography with XFELs

