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What is XFEL?

> XFEL: X-ray Free-Electron Laser

> Ultraintense
= fluence: ~10'3 photons/pm?2
= peak intensity: ~10'® W/cm?

> Ultrafast

= pulse duration: femtoseconds or
sub-fs

> Where?
= FLASH at DESY, Germany (2004)
= LCLS at SLAC, USA (2009)
= SACLA at RIKEN, Japan (2011)
= PAL XFEL at Pohang, Korea
= European XFEL, Germany
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Ackermann et al., Nature Photon. 1, 336 (2007).
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Radiation damage by XFEL
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Neutze et al., Nature 406, 752 (2000).
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Young et al., Nature 466, 56 (2010).
Diffraction before destruction

Diffraction during ionization
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Serial femtosecond crystallography (SFX)

A

> Growing high-quality Paicio sroam
crystals is one of major
bottlenecks in x-ray
crystallography.

Pulse monitor

> Ultraintense and ultrafast
pulses from XFEL

> Enough signals from nano-
Sized crystals or single
molecules

Diffraction pattern
recorded on a
pixellated detector

Gaffney & Chapman, Science 316, 1444 (2007).

Sang-Kil Son | HIP with XFELs | January 9,2015| 5§ /26

(@)
|_|'|
I—

n
@)
=
Z
@)
m



Phasing for XFEL experiments

> Femtosec. x-ray nanocrystallography:
beyond proof-of-principle

> Mainly solved by molecular

replacement
e.g.) Redecke et al., Science 339, 227 (2013).

> SAD in the intermediate intensity

regime (< the saturation fluence)
Barends et al., Nature 505, 244 (2014).

> Need for ab initio phasing method at
high x-ray intensity
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Cathepsin B: The first new protein
structure determined by using XFEL

Picture taken from Nature 505, 620 (2014).
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What happens at high x-ray intensity?

> Fluence (photons/unit area) to saturate one-photon absorption

10 —m—m™—mmmmm——
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Fluence (photons/um?) Phys. Rev. A 83, 033402 (2011).

> High x-ray intensity beyond one-photon absorption saturation

= Synchrotron: at most one photon absorbed = linear phenomena
= XFEL.: at least one photon absorbed = nonlinear phenomena
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Sequential multiphoton multiple ionization
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Charge states

= a sequence of photoionization, Auger decays, and fluorescences
= complicated multiphoton multiple ionization at high x-ray intensity
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Complex inner-shell ionization dynamics
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Charge state

Photoionization

Son & Santra,

AUT = | PRA 85,
| | . Fluorescence 063415 (2012).
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Time (fs)
= more than one million electronic states calculated
= more than 40 million x-ray-induced processes calculated
= conventional quantum chemistry codes not applicable
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How to describe ionization dynamics?

> XATOM: describes dynamical

behaviors of atoms interacting
with XFEL pulses @
P

> Uses the Hartree-Fock-Slater

model @
> Calculates all cross sections and

rates of x-ray-induced processes

(J\,\N
for any given element / "
any given charge state / @
any given electronic configuration

> Solves coupled rate equations to
: C e . . Son, Young & Santra,
simulate x-ray ionization dynamics Phys. Rev. A 83, 033402 (2011).
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Xe at LCLS

1 | @ 1.5keV (experiment) —e— 1.5keV (theory)
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Rudek et al., Nature Photon. 6, 858 (2012).
> Charge state distribution of Xe measured at LCLS
> At 2 keV: good agreement between experiment and theory
> At 1.5 keV: unprecedented high charge states (up to Xe3%*) in experiment
> Resonance-enabled ionization: may be suppressed by a narrow bandwidth
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Xe at SACLA
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Charge state
> At 5.5 keV: deep inner-shell (L-shell) ionization dynamics
> Good agreement between experiment and theory
> Theoretical challenges: >20-million config. with >2-billion processes
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Electronic radiation damage

> Unavoidable at high x-ray intensity (time scale: ~femtoseconds)

> Can we reduce electronic radiation damage?
= frustrated ionization: higher intensity, less ionization
= seeded XFEL pulse: narrower bandwidth, /ess ionization

> Can we take benefits from electronic radiation damage?

= understand ionization dynamics mechanism
= heavy atoms at higher photon energies = relevant for phasing
= turn x-ray ionization into an advantage for phasing
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Impact on anomalous scattering

> Extensive electronic rearrangements during one pulse

> Dramatic change of anomalous scattering for high charge states

f1,(Q,w) = f1.(Q) + fr,(w) +if7 (w)
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Son, Chapman & Santra, Phys. Rev. Lett. 107, 218102 (2011).
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Can we do MAD with XFELs?

> Ab initio phasing: MAD (multiwavelength anomalous diffraction)
> Unavoidable electronic damage, especially to heavy atoms
> Dramatic change of anomalous scattering for high charge states

> Stochastic electronic damage to heavy atoms would destroy coherent
scattering signals in nanocrystals

> MAD would not be an applicable route for phasing at XFEL...?

Existence of a generalized Karle-Hendrickson equation
in the high-intensity regime

Son, Chapman & Santra, Phys. Rev. Lett. 107, 218102 (2011).
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Scattering intensity including ionization

00 Ny
dl(%}f w) FC(Q) / dtg(t) Z PI(F7 W, t) FI(:)’(Q) + Z ffj (Q7 w)eiQ.Rj
- I j=1

I:(Il,IQ,”'INH), P[(F,w,t) H PI (FWt)
fr,(Quw) = £2.(Q) + f1, (@) +iff ()

> All changes among Ny heavy atoms in a crystal are included.

> P: protein, H: heavy atoms; only heavy atoms scatter anomalously and
undergo ionization dynamics during an x-ray pulse.

> Heavy atoms are ionized independently.
> Only one species of heavy atoms is considered.

Son, Chapman & Santra, Phys. Rev. Lett. 107, 218102 (2011).
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Generalized Karle-Hendrickson equation

QL) _ Fo)[|F@)? + [FH(Q)[%(Q. F.u)
+ [FR(Q)| | Ff(Q)[b(Q, F,w) cos A¢*(Q)
+ |FB(Q)| [Ff(Q)]e(Q, F,w) sin A¢’(Q)
+ Nt | 1%(Q)" {a(Q, F,w) — a(Q, F,w)} |

> MAD coefficients: a(Qafvw)v b(Q7F7W)7 C(Q,F,W), and &(Qafa(*})
— measured or calculated including electronic damage dynamics

> 3unknowns: |F2(Q)|, |[F(Q)], A¢”(Q) [= ¢p(Q) — 6% (Q)]

— solvable with measurements at 3 different wavelengths.

Y

Son, Chapman & Santra, Phys. Rev. Lett. 107, 218102 (2011).
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MAD coefficients in generalized KH eq.

original KH equation generalized KH equation
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Fluctuation at high x-ray intensity
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Son, Chapman & Santra, J. Phys. B 46, 164015 (2013).
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Plotting of MAD coefficients
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> calculated by XATOM

> different ionization
mechanism before and
after the edge

> contrast at different
wavelengths

> anomalous scattering
(MAD c coefficient) not
completely eliminated

> bleaching effect as
intensity increases

Son, Chapman & Santra,
Phys. Rev. Lett.
107, 218102 (2011).
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High-intensity phasing methods

> HI-MAD (high-intensity multi-wavelength anomalous diffraction)
= generalized Karle-Hendrickson equation + MAD coefficients

> HI-SAD (high-intensity single-wavelength anomalous diffraction)
= one dataset required — simple in measurement

> HI-RIP (high-intensity radiation-damage induced phasing)
= two different fluences: undamaged and damaged
= exploiting the bleaching effect of heavy atoms (HA)

> brand-new HIP: based on generalized Karle-Hendrickson equation
= multi-fluence measurement at single wavelength
= RIP-like: undamaged vs. damaged
= SIR-like: HA-derivative vs. HA-free
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High-intensity MAD
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| Son, Chapman & Santra,

Phys. Rev. Lett. 107,
218102 (2011).

> minimum deepened and edge broadened = easy to choose wavelengths

> experimentally difficult to vary wavelengths, while keeping the same fluence

CFEL
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High-intensity RIP
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> exploiting selective ionization for S atoms at high x-ray intensity
> simulated datasets of Cathepsin B including ionization for all atoms
> phased by the RIP workflow (Max Nanao)
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(High-intensity) SAD
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> phased by conventional SAD techniques

> tested at several fluences (LF: Riee=0.264, HF: Rfree=0.457)
> Towards HI-SAD: need for generalized KH equation
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Conclusion

> SFX with XFELSs: revolutionary impact on structural biology
> Electronic radiation damage: unavoidable at high x-ray intensity

> XATOM describes multiphoton multiple ionization dynamics of
individual atoms; tested by LCLS and SACLA experiments

> Generalized Karle—Hendrickson equation in extreme conditions
of ionizing radiations: not only in phasing but also in refinement

> HIP: brand-new phasing only achievable at high x-ray intensity

= high-intensity version of MAD, SAD, and RIP

> Novel phasing at high x-ray intensity: new opportunities for
solving the phase problem in crystallography with XFELSs
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