Ultrafast dynamics of atoms and molecules with XFELs

Sang-Kil Son

Center for Free-Electron Laser Science, DESY, Hamburg, Germany

International Workshop *Attosecond Physics at the Nanoscale* PCS IBS, Daejeon, Korea October 29–November 2, 2018

Acknowledgment

XMOLECULE development

Yajiang Hao Now at USTB (Beijing)

Ludger Inhester

Kota Hanasaki Now at Kyoto Univ.

XATOM development

Oriol Vendrell Now at Heidelberg Univ.

Robin Santra

XFEL: X-ray free-electron laser

- > XFEL: *ultraintense* and *ultrashort*
- X-ray beam parameters
 - photon energy: ~keV
 - focal size: ~submicron
 - pulse duration: ~few femtoseconds
 - → peak intensity: ~10²⁰ W/cm²
- > Where are XFELs?
 - LCLS at SLAC, USA (2009)
 - SACLA at RIKEN Harima, Japan (2011)
 - PAL XFEL at Pohang, Korea (2017)
 - European XFEL, Germany (2017)

Ullrich *et al.*, *Annu. Rev. Phys. Chem.* **63**, 635 (2012).

Why ultraintense and ultrafast?

- > Structural determination of biomolecules with x-rays
 → X-ray crystallography
- > Growing high-quality crystals is one of major bottlenecks
- Enough signals obtained from even single molecules by using ultraintense pulses
- Signals obtained before radiation damage by using *ultrafast* pulses

Gaffney & Chapman, Science 316, 1444 (2007).

How does matter interact with *ultraintense* and *ultrafast* pulses?

Strong light-matter interaction

Optical strong-field regime
 tunneling or multiphoton processes
 valence-electron ionization

science

- Intense X-ray regime
 - mainly one-photon processes
 - core-electron ionization and relaxation
 - multiphoton multiple ionization via a sequence of one-photon processes

X-ray multiphoton absorption

Direct multiphoton absorption cross section is too small

Doumy et al., Phys. Rev. Lett. 106, 083002 (2011).

Sequential multiphoton absorption is dominant

XATOM

- X-ray-induced atomic processes calculated for any given element and configuration
- Ionization dynamics solved by a rate-equation approach
- Sequential ionization model has been tested by a series of atomic XFEL experiments

Son, Young & Santra, *Phys. Rev. A* **83**, 033402 (2011). Jurek, Son, Ziaja & Santra, *J. Appl. Cryst.* **49**, 1048 (2016). Download executables: <u>http://www.desy.de/~xraypac</u>

Hollow atom or double-core-hole state

No more K-shell absorption

Shorter pulse induces less ionization

When the pulse is short enough to compete with core-hole lifetimes

- intensity-induced x-ray transparency Young et al., Nature 466, 56 (2010).
- frustrated absorption

> Higher intensity (shorter pulse duration) of XFEL pulses induces less ionization due to hollow-atom formation

science

Hoener et al., Phys. Rev. Lett. 104, 253002 (2010).

Complex inner-shell ionization dynamics

Multiphoton absorption after/during decay cascade

- About 20 million multiple-hole configurations
- About 2 billion x-ray-induced processes

Ultra-efficient ionization by XFEL

LCLS experiment

Artem Rudenko at KSU

- Xe M-shell ionization
- 2 keV: excellent agreement between theory and experiment
- 1.5 keV: further ionization via resonance

Rudek et al., Nature Photon. 6, 858 (2012).

Ionization enhanced by resonances

REXMI: <u>R</u>esonance-<u>E</u>nabled <u>X</u>-ray <u>M</u>ultiple <u>I</u>onization

- Multiple resonant excitations occur in a range of charge states
- > A broad bandwidth required (typical XFEL bandwidth: ~1%)

Interplay between resonance and relativity

SCIENCE

- Harder x-rays drive L-shell ionization of Xe
- > Spin-orbit splitting: $2p \rightarrow 2p_{1/2}$ and $2p_{3/2}$
- XATOM extended to treat both resonant and relativistic effects
- N of coupled rate equations to be solved:
 ~20M (non-relativistic)
 - → ~5B (relativistic)
 - → ~10⁶⁸ (including both resonant and relativistic effects)

REXMI with relativistic effects

Excellent agreement between theory and experiment

> Distinctive bumps in the charge states \rightarrow L-shell spin-orbit splitting

Rudek, Toyota, et al., Nature Commun. 9, 4200 (2018).

Challenges for molecular dynamics at XFEL

> No *ab initio* theoretical tools available for high x-ray intensity

- Coupled ionization and nuclear dynamics in the same time scales
- Extremely complicated dynamics:
 e.g. CH₃I ~ 200 trillion rate equations at single geometry
- Highly excited molecular electronic structure

XMOLECULE

- Quantum electrons, classical nuclei
- Efficient electronic structure calculation: core-hole
 - adapted basis functions calculated by XATOM
- Monte Carlo on the fly

Hao, Inhester, Hanasaki, Son & Santra, *Struc. Dyn.* **2**, 041707 (2015). Inhester, Hanasaki, Hao, Son & Santra, *Phys. Rev. A* **94**, 023422 (2016).

Iodomethane in an ultraintense x-ray pulse

- New experimental setup: LCLS CXI using nano-focus
 → new realm of intensity approaching ~10²⁰ W/cm²
- Selective ionization on heavy atom

LCLS experiment

Daniel Rolles at KSU

Artem Rudenko at KSU

CH₃I @ 8.3 keV

σ(I)~50 kbarn σ(C)~80 barn σ(H)~8 mbarn

- X-ray multiphoton ionization occurs at high intensity
- > Charge imbalance induces charge rearrangement
- > Coulomb explosion after/during ionization & charge rearrangement

Comparison between theory & experiment

- > CSD (charge-state distribution) and KER (Kinetic energy releases): sensitive to detailed ionization and fragmentation dynamics
- Capturing the essence of ionization and fragmentation dynamics of molecules at high x-ray intensity

Rudenko et al., Nature 546, 129 (2017).

Ionization enhanced by charge rearrangement

Bigger molecule, larger enhancement

> Xe, iodomethane, iodobenzene: similar cross section at 8.3 keV

> The stronger ionization for the larger molecule

Hao, Inhester, Son & Santra, (in preparation).

Conclusion

- > XFEL provides *ultraintense* and *ultrashort* x-ray pulses
- XATOM & XMOLECULE: Enabling tools to investigate x-ray multiphoton physics of atoms and molecules exposed to high-intensity x-ray pulses
- Intriguing phenomena of atoms and molecules with intense XFEL pulses
 - Shorter pulse duration reduces ionization \rightarrow frustrated absorption
 - Multiple resonance enhances ionization → REXMI
 - Charge rearrangement enhances ionization → CREXIM
- Theory provides crucial insights of the XFEL—matter interaction

(Thank you for your attention! Sang-Kil Son | Ultrafast dynamics of atoms and molecules with XFELs | October 29, 2018 | 20 / 20