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Overview

> Introduction to XFEL and XFEL–matter interaction 

> XATOM and x-ray multiphoton multiple ionization dynamics of Xe 

> XMOLECULE and x-ray-induced ultrafast explosion dynamics of CH3I 

> Toward complex systems 

> Summary



XFEL: X-ray free-electron laser

> Ultraintense: ~1013 photons 

> Ultrafast: ~femtoseconds
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Fig. 4. Schematic presentation of timescales involved in the dynamics of matter. Storage ring facilities currently provide syn-
chrotron radiation in pulses between 50 and 100 ps duration and are well suited for studying slow dynamics in condensed matter
samples. NSLS-II in Brookhaven aims for pulse lengths of about 15 ps. Today, free electron lasers provide extremely intense pulses
with duration ranging from a few to about 300 fs and thus open up new opportunities for studying the dynamics of matter on
the atomic scale in space and time.

range from 10 fs to 10 ps, at repetition rates between
1MHz and 1.3GHz. In general, ERLs are expected
to have great flexibility in modes of operation.

A breakthrough to a new area in photon science
has been accomplished by single-pass free electron
lasers. In the spectral range from the VUV to hard
X-rays, they provide in pulses of 10–100 fs duration
as many photons as we get today at the best storage
ring facilities per second. As schematically shown in
Fig. 5, one obtains pulses which are three or four
orders of magnitude shorter in duration and contain

Fig. 5. Schematic comparison between a typical synchrotron
radiation pulse from a storage ring with a pulse obtained at an
X-ray free electron laser. At a storage ring one obtains pulses of
about 100 ps duration which contain ∼ 109 photons. At a free
electron laser one gets pulses which are three or four orders of
magnitude shorter and contain four orders of magnitude more
photons. This opens up completely new opportunities for the
study of fast dynamics in matter.

four orders of magnitude more photons. As a conse-
quence it will become possible for the first time to
study matter in extreme conditions and in nonequi-
librium states with atomic resolution in space and
time. The main components of a single-pass FEL are
a low emittance electron gun, a combination of lin-
ear accelerator and bunch compressors, and a long
undulator. They provide peak brightness, which is
brightness scaled to the length of a single pulse,
about 10 orders of magnitude higher than for the
best storage rings. Worldwide there are currently
three X-ray FELs in operation for users. At DESY
in Hamburg the FLASH facility provides radiation
in the range of 4.5–60nm in the fundamental [11];
it has been operated as a user facility since sum-
mer 2005. At Spring-8 in Harima, Japan, a proto-
type facility for the Spring-8 Compact SASE Source
(SCSS), the prototype for the Spring-8 XFEL, pro-
vides radiation in the range of 30–61nm [12]; opera-
tion for users started in 2008. At SLAC in Stanford
the Linac Coherent Light Source (LCLS) provides
radiation in the range of 0.1–50nm; it is the first
FEL to reach the spectral range of hard X-rays [13].
The LCLS has been operated for users since Octo-
ber 2009. Figure 6 shows the spectral peak bright-
ness calculated for different FELs together with the
experimental data obtained at FLASH; the experi-
mental data for the LCLS are stated in the caption.

Four more X-ray single-pass FELs are currently
under construction. The Spring-8 XFEL in Harima,
Japan, uses a C-band linac with electron energies

FEL

synchrotron

Schneider, Rev. Accl. Sci. Tech. 3, 13 (2010).
Ullrich et al., Annu. Rev. Phys. Chem. 63, 635 (2012).
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Figure 1

Peak brilliance of various free-electron laser (FEL) facilities as compared with a selection of state-of-the-art
synchrotrons, optical lasers, and high-harmonic sources (HHG). Abbreviations: BESSY II, Berliner
Synchrotron; PETRA III, Positron Elektron Ring Anlage; SPring 8, Super Photon Ring 8 GeV;
APS, Advanced Photon Source; ESRF, European Synchrotron Radiation Facility.

XFEL: European
XFEL

European XFEL, with its 27-kHz repetition rate, will become operational in 2015 at the Deutsches
Elektronen Synchrotron in Hamburg; and FEL projects are planned at the Paul Scherrer Institute
in Switzerland and in China and Korea as well. Four basic yet unprecedented properties, discussed
below, make FEL radiation unique and are essential to a variety of new applications.

1.1.1. Total photon flux. With typically 1012 to 1013 photons per pulse and repetition rates
of up to 120 Hz for FELs based on normal conducting cavities, the total photon flux is actually
comparable to that achieved at the most modern synchrotrons. Still, the pulse structure, with its
short and intense pulses, is favorable for background suppression and allows us to explore the
interaction of light with very dilute samples of, e.g., cold molecular ions or highly charged ions in
beams or traps. Moreover, superconductive-cavity FELs such as the FLASH and European XFEL
facilities, are designed to operate at up to 27 kHz, thus exceeding present synchrotron photon
fluxes by factors up to approximately 100.

1.1.2. Peak brilliance. The peak brilliance of up to 1034 photons (s · mrad2
· mm2

·

0.1%BW)−1 is up to nine orders of magnitude beyond those of the most advanced synchrotrons.
Depending on the optics and wavelength, power densities from 1016 W cm−2 to extreme values
of 1021 W cm−2 can be reached by focusing, e.g., 1013 photons of 10 keV energy in 100-fs pulses
to a spot size of 100-nm diameter. Hence, nonlinear and multiphoton effects arise in the X-ray
regime for the first time and can be studied and exploited for molecular investigations.

1.1.3. Pulse duration. Ultrashort pulse durations of ∼100 fs are standard, and at least a hundred
times shorter than at synchrotrons. As shown below, pulses as short as ∼40 fs have been measured
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Why ultraintense and ultrafast?

> Structural determination of 
biomolecules with x-rays  
➔ X-ray crystallography 

> Growing high-quality crystals 
is one of major bottlenecks 

> Enough signals obtained from 
even single molecules by 
using ultraintense pulses 

> Signals obtained before 
radiation damage by using 
ultrafast pulses
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Gaffney & Chapman, Science 316, 1444 (2007).

bismuth crystal confirmed the ability of the EOS
measurement to accurately determine the shot-to-
shot time delay (30).

In this study, fs laser pulse excitation of
bismuth changes the equilibrium structure of the
unit cell and leads to coherent vibrational motion
(31–33) (Fig. 1, C and D). This coherent motion
generates large-amplitude oscillations, in partic-
ular Bragg peaks such as the (111) reflection (34).
This experimental observation of strong ~300-fs
period oscillations in the (111) Bragg diffraction
intensity rigorously demonstrated the utility of EOS
as a timing diagnostic (29, 30). These measure-
ments also provided a detailed characterization of
the excited state potential, further demonstrating
the utility of ultrafast x-ray scattering for the

study of structural dynamics. Coherent vibration-
al motion in a ferroelectric crystal has also been
observed with ultrafast x-ray diffraction by using
laser-sliced x-ray pulses from a synchrotron (35).
X-ray slicing sources represent an important
development in ultrafast x-ray science with per-
formance attributes distinct fromXFEL sources. A
complementary discussion of nonthermal melting
and displacive excitations, as well as a discussion
of data analysis, can be found in the Supporting
Online Material (SOM) text.

Coherent X-ray Imaging with
Atomic Resolution
Electromagnetic radiation can be used to im-
age objects with a spatial resolution ultimately

limited by the wavelength, l, of the radiation. Im-
age formation can be simply described as inter-
ferometry; the light scattered by an object must
be recombined so that it interferes at the image
plane. Performing this reinterference directly
with an aberration-free lens makes diffraction-
limited imaging possible with visible radiation.
In the simple case of illumination with a coherent
plane wave, the achievable resolution equals d =
l /sin q, where q represents the highest scattering
angle collected by a lens or detector. At x-ray wave-
lengths, however, manufacturing lenses that ac-
cept and redirect light scattered at high angles
becomes increasingly difficult. Focal sizes of tens
of nanometers can be achieved (36), but atomic-
resolution lenses do not appear feasible.

Imaging at near-atomic res-
olution can be achieved without
lenses by conducting the rein-
terference of the scattered light
computationally. The numeri-
cal determination of the image
from the measured x-ray scat-
tering pattern requires that the
phase of the diffracted light be
determined in order to apply
the correct phase shift to each
reinterfering spatial frequency.
Because the detection of the
scattering pattern only mea-
sures the intensity of the scat-
tering radiation rather than the
amplitude, no phase informa-
tion can be directly measured.
Avariety of methods have been
developed for alleviating the
information deficit in crystal-
lography, such as examining
the wavelength dependence of
the diffraction pattern near an
atomic absorption edge or by
knowing part of the structure
or a similar structure. With co-
herent diffractive imaging, an
alternative route to reconstruct-
ing the scattered x-rays into an
image can be used.

Sayre has noted that the
continuous diffraction pattern
of a coherently illuminated unit
cell contains twice the informa-
tion obtained from the diffrac-
tion pattern of a crystalline
arrangement of identical copies
of that unit cell (2, 37). If ade-
quately sampled, this pattern
provides the exact amount of
information needed to solve the
phase problem and determinis-
tically invert the x-ray scatter
pattern into an image of the scat-
tering object. The past several
decades have seen substantial
advances in the experimental
and numerical techniques re-

Fig. 2. Schematic depiction of single-particle coherent diffractive imaging with an XFEL pulse. (A) The intensity pattern
formed from the intense x-ray pulse (incident from left) scattering off the object is recorded on a pixellated detector. The pulse
also photo-ionizes the sample. This leads to plasma formation and Coulomb explosion of the highly ionized particle, so only
one diffraction pattern [a single two-dimensional (2D) view] can be recorded from the particle. Many individual diffraction
patterns are recorded from single particles in a jet (traveling from top to bottom). The particles travel fast enough to clear the
beam by the time the next pulse (and particle) arrives. The data must be read out from the detector just as quickly. (B) The full
3D diffraction data set is assembled from noisy diffraction patterns of identical particles in random and unknown orientations.
Patterns are classified to group patterns of like orientation, averaged within the groups to increase signal to noise, oriented
with respect to one another, and combined into a 3D reciprocal space. The image is then obtained by phase retrieval.
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How does matter interact with 
ultraintense and ultrafast pulses?



> LCLS at SLAC, USA (2009) 

> SACLA at RIKEN Harima, Japan (2011) 

> PAL XFEL at Pohang, Korea (2016) 

> European XFEL, Germany (2017) 

> SwissFEL, Switzerland (2017)

Where are XFELs?
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SACLA

FLASH and European XFEL

LCLS PAL XFEL SwissFEL



XFEL science

> Imaging of biomolecules for biology and life science 

> Ultrafast dynamics for chemistry and material science 

> Matter in extreme states for astrophysics and energy science
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SLACSLAC LBL

➔ XFEL applications waiting for increased theoretical support



What high x-ray intensity means?

> Fluence (photons/unit area) to saturate one-photon absorption 
 
 
 
 
 
 
 
 
 
 

> High x-ray intensity beyond one-photon absorption saturation 

§ synchrotron: at most one photon absorbed ➔ linear phenomena 
§ XFEL:  at least one photon absorbed ➔ nonlinear phenomena
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Son, Young & Santra,  
Phys. Rev. A 83, 033402 (2011).



Fundamental x-ray–matter interaction
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single X-ray

Photoionization: C → C✽+ + e– Auger decay: C✽+ → C++ + e–

synchrotron: one-photon absorption ➔ PA ➔ C2+ 
XFEL: many-photon absorption ➔ PAPAPP ➔ C6+



Sequential multiphoton multiple ionization

> First LCLS experiment: fundamental atomic physics in XFEL 
> Direct multiphoton absorption cross section is too small
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followed by simultaneous multiphoton absorption, as energetically
required to reach the next higher charge state17, is one proposed mech-
anism, although the excitationof spectral features such as a giant atomic
resonance may modify this simple picture18. Studies of high-intensity
photoabsorptionmechanisms in this wavelength regime have also been
conducted onmore complex targets3,19. For argon clusters, it was found
that ionization is best described by sequential single-photon absorp-
tion19 and thatplasmaeffects suchas inverse bremsstrahlung, important
at longer wavelengths (.100nm; refs 20, 21), no longer contribute. For
solid aluminium targets, researchers recently observed the phenom-
enon of saturated absorption (that is, a fluence-dependent absorption
cross-section) using 15-fs, 13.5-nm pulses and intensities up to
1016Wcm22 (ref. 3).

In the short-wavelength regime accessible with the LCLS, single
photons ionize deep inner-shell electrons and the atomic response to
ultra-intense, short-wavelength radiation (,1018W cm22, ,1 nm)
can be examined experimentally. In contrast to the studies at longer
wavelengths, all ionization steps are energetically allowed via single-
photon absorption, a fact that makes theoretical modelling con-
siderably simpler. We exploit the remarkable flexibility of the LCLS
(photon energy, pulse duration, pulse energy) combined with high
resolution electron and ion time-of-flight spectrometers, to monitor
and quantify photoabsorption pathways in the prototypical neon
atom.

X-ray ionization of neon using LCLS

We chose to study neon because notable changes in the electronic
response occur over the initial operating photon energy range of
LCLS, 800–2,000 eV (l5 1.5–0.6 nm), as shown schematically in
Fig. 1. There and in the following, V, P and A refer to the ejection
of valence, inner-shell and Auger electrons, respectively. In all cases,
sequential single-photon ionization dominates, although the differ-
ing electron ejection mechanisms lead to vastly different electronic
configurations within each ionization stage. The binding energy of a
1s electron in neutral neon is 870 eV. For photon energies below this,
the valence shell is stripped, as shown at the top of Fig. 1 in a VV…
sequence. Above 870 eV, inner-shell electrons are preferentially
ejected, creating 1s vacancies that are refilled by rapid Auger decay,
a PA sequence. For energies above 993 eV, it is possible to create
‘hollow’ neon, that is, a completely empty 1s shell, in a PP sequence
if the photoionization rate exceeds that of Auger decay. For energies
above 1.36 keV, it is possible to fully strip neon, as shown at the
bottom of Fig. 1.

Figure 2a shows experimental ion charge-state yields at three dif-
ferent photon energies, 800 eV, 1,050 eV and 2,000 eV. These photon
energies represent the different ionization mechanisms—valence
ionization, inner-shell ionization and ionization in the regime far
above all edges of all charge stages of neon. Despite the relatively
large focal spot for these studies, ,1 mm, the dosage at 2,000 eV for
neon (dosage5 cross-section3 fluence) is comparable to that pro-
posed for the biomolecule imaging experiment where a 0.1-mm focal
spot was assumed2. At the maximum fluence of,105 X-ray photons
per Å2, we observe all processes that are energetically allowed via
single-photon absorption. Thus, at 2,000 eV, we observe Ne101 and
at 800 eV we find charge states as high as Ne81 (a fractional yield of
0.3%), indicating a fully-stripped valence shell. We note that valence
stripping up to Ne71 was previously observed in neon for 90.5-eV,
1.83 1015W cm22 irradiation18,22. At this intermediate photon
energy, 90.5 eV, the highest charge state can not be reached by a
sequential single-photon absorption process.

Figure 2b compares the experimental ion charge-state yields with
theoretical calculations based on a rate equation model that includes
only sequential single-photon absorption and Auger decay pro-
cesses12. For simulations, two parameters are required, the X-ray
fluence and pulse duration. The fluence (pulse energy/area) on target
may be calculated from measured parameters for pulse energy and
focal spot size. The X-ray pulse energies quoted throughout this

paper were measured in a gas detector23 located upstream of the
target; the actual pulse energy on target is reduced by five reflections
on B4C mirrors (for details, see Methods). The focal spot size was
estimated from measurements done during the commissioning
period (J. Krzywinski, personal communication) using the method
of X-ray-induced damage craters imprinted in solid targets24.

The fluence calculated from these pulse-energy and spot-size mea-
surements is corroborated by in situ ion-charge-state measurements,
both at 800 eV, where ionization is dependent only on fluence and
not on intensity, and at 2,000 eV, where the observed ratio of Ne101/
Ne91 resulting from photoionization of hydrogen-like neon (a pro-
cess with a well-known cross-section) serves as a reliable calibration
tool. The fluence that matches the Ne101/Ne91 ratio agrees to within
30% with that derived from the measured pulse energy (2.4mJ) and
estimated focal spot size (,13 2mm2 full-width at half-maximum,
FWHM) at 2,000 eV. This fluence predicts not only the ratio Ne101/
Ne91, but also the absolute values of the fractional charge-state yield,
as shown in the bottom panel of Fig. 2b. At 2,000 eV, the calculations
predict the overall trend of the charge-state yields well, but there are
obvious differences—particularly at the lower charge states. The
odd–even charge-state alternation is much more pronounced in
the calculation than in the experiment. This is due to the fact that
the calculation ignores shake-off25 and double-Auger processes26, and
predicts that 1s one-photon ionization produces charge states up to
Ne21 only. Experimentally, one observes a yield of,75% Ne21 and
25% Ne31 from simple 1s ionization27. At 1,050 eV, the general
trends are reproduced although differences due to the simplicity of
the model are evident.

At 800 eV, the simulations, which include only valence-shell strip-
ping, are in excellent agreement with the observed charge-state dis-
tribution. The fluence, determined in situ by the 800-eV data and
simulation, is within 10% of that predicted by a ,2.13 increase in
focal area when going from 2,000 eV to 800 eV (ref. 28). Here, the
simulation is more straightforward as no inner-shell processes are
operative. We note that nonlinear two-photon processes29, which
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Figure 1 | Diagram of the multiphoton absorption mechanisms in neon
induced by ultra-intense X-ray pulses. X-rays with energies below 870 eV
ionize 2s,p-shell valence electrons (V, red arrow). Higher energy X-rays give
rise to photoemission from the 1s shell (P, purple arrow), and in the
consequent Auger decay the 1s-shell vacancy is filled by a 2s,p-shell electron
and another 2s,p electron is emitted (A, black arrow). These V, P and A
processes are shown inmore detail in the inset; they all increase the charge of
the residual ion by one. Main panel, three representative schemes of
multiphoton absorption stripping the neon atom. The horizontal direction
indicates the time for which atoms are exposed to the high-intensity X-ray
radiation field, and vertical steps indicate an increase in ionic charge due to
an ionization step, V, P or A. Horizontal steps are approximately to scale
with a flux density of 150X-ray photons per Å2 per fs, and indicate the mean
time between photoionization events or Auger decay.
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eject an inner-shell electron, are not observed, even at the intensities
attained here. Two-photon processes are simply swamped by valence
ionization. This observation is consistent with the generalized 1s
two-photon cross-section of 10255 cm4 s for neutral neon at 800 eV
calculated in ref. 29. For all of these simulations, the X-ray pulse
duration was assumed to be equal to the measured LCLS electron
bunch duration (230–340 fs)30.

X-ray transparency

To further investigate photoabsorption mechanisms, we changed the
X-ray pulse duration nominally by a factor of ,3, at a fixed pulse
energy, for the three photon energies shown in Figs 1 and 2. The spot
size of the X-ray beam, imaged upstream of the mirrors, was observed
to remain constant to within 10% when changing the pulse duration
at a given photon energy—implying a constant focal spot size. At
800 eV and 1,050 eV, we observed essentially no change in the charge-
state distribution when changing the pulse duration. However, at
2,000 eV, photoabsorption is markedly decreased with shorter, more
intense, X-ray pulses. That is, the sample becomes transparent at high
intensity. The phenomenon of intensity-induced X-ray transparency
(closely related to saturated absorption3,31), can be readily under-
stood qualitatively. Photoabsorption at 2,000 eV is due primarily to
the presence of 1s electrons. If 1s electrons are photoejected by intense
X-ray radiation, the absorption cross-section will be decreased—
until the 1s electrons are replaced by valence electrons. The replace-
ment time is the inner-shell vacancy lifetime. These data are shown in
Fig. 3a, where the ratios of the charge-state yields for 230-fs to 80-fs
pulses are plotted for 2,000-eV irradiation.

It is more difficult to understand the phenomenon quantitatively.
Why would changing the X-ray pulse duration from 230 fs to 80 fs
make any difference if Auger decay takes place on a 2.4-fs timescale32?
The answer is that the Auger refilling time increases dramatically with
increasing charge state33, with a large jump at Ne71, where the life-
time of a 1s-hole state in Ne71 is greater than 23 fs (Fig. 3b). However,
even after taking the increased vacancy lifetime into account, our
calculations can not reproduce observations if the X-ray pulse dura-
tions are taken to be equal to the measured electron bunch durations,
that is, 230 fs and 80 fs. The 230-fs simulation agrees well with the
measured Ne81 to Ne101 yields at 2,000 eV in Fig. 2b. In order to

reproduce the observed transparency, our simulations must there-
fore use an X-ray pulse duration that is substantially shorter, ,20 fs,
for the 80-fs electron bunch. We note that if one incorporates the
processes missing from the model12 (shake and double-Auger),
higher charge states will be produced even more rapidly, implying
that in the simulation an even shorter pulse duration would be
required to reproduce the experimental data. The highly collective
process of lasing in a free-electron laser leads to X-ray pulse shapes
that need not match the electron current shape, and to the possibility
that the X-ray pulse duration could be significantly shorter than the
electron bunch duration34,35.

Hollow-atom signature

Corroborating evidence can be found from electron spectra. Speci-
fically, the production of hollow atoms is sensitive to the pulse dura-
tion, as hollow atoms are produced only when the photoionization
rate is comparable to the Auger rate. Auger electrons emitted from a
double-core-hole state are a distinctive signature of hollow atom
formation, with energies shifted well above the single-core-hole
Auger electrons. Electron spectra also confirm the validity of the
proposed dominant photoabsorption mechanisms—that is, sequen-
tial single-photon absorption. Figure 4a and b shows electron spectra
at h 5 0u relative to the X-ray polarization axis for 1,050-eV X-rays.
The relatively slow 1s photoelectrons are shown in Fig. 4a, whereas
the fast valence photoelectrons and Auger electrons are shown in
Fig. 4b (where the electron energies have been retarded by 790 eV).
The region containing the hollow-atom signature, that is, the double-
core-hole Auger, falls between the valence photoelectrons and the
single-core-hole Auger. The hollow-atom signature is more cleanly
observed at h 5 90u because the emission of photoelectrons is
strongly suppressed perpendicular to the X-ray polarization axis.

The yield of double- versus single-core holes can be derived from an
analysis of the electron spectra36. The main peaks in the double- and
single-core-hole regions were identified as the Auger transitions
[1s2]R[1s 2p 2] 2D, 2S and [1s]R[2p 2] 1D, where [nl] represents an
nl hole. These main Auger peaks originate from the PPA or PA
sequence starting with neutral neon, that is, from the initial stage in
the ionization process. Ratios of double-to-single core-hole forma-
tion probabilities were derived from the Auger line intensities using
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Figure 2 | Neon charge-state yields for X-ray energies below, above and far
above the 1s-shell binding energy, 870 eV. Pulse energies are measured in
the gas detector upstream of the target. a, Experimental charge-state
distribution for 2.4-mJ pulses at 800 eV (top), 1,050 eV (middle) and
2,000 eV (bottom). b, Comparison of experimental charge-state yields,

corrected for detection efficiency, with simulations, assuming a Gaussian-
shaped pulse, as described in ref. 12. The X-ray pulse durations for the
simulation are assumed to equal the electron bunch duration, shown in the
figure. Fluence-dependent processes, such as valence stripping at 800 eV, are
insensitive to the pulse duration.

ARTICLES NATURE | Vol 466 | 1 July 2010

58
Macmillan Publishers Limited. All rights reserved©2010

Young et al., Nature 466, 56 (2010).

Doumy et al., Phys. Rev. Lett. 106, 083002 (2011).



Challenges for x-ray multiphoton ionization

> Theoretical challenges 

§ tremendously many hole states 
by x-ray multiphoton absorption 

§ highly excited system far from 
the ground state 

§ electronic continuum states for 
ionization 

§ complex inner-shell ionization 
dynamics, especially for heavy 
atoms 

> No standard quantum chemistry 
code available
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Xe
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3p
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4p
4d
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L
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O

Multiphoton absorption after/during decay 
cascade creates: 
§ More than 20M multiple-hole config. 
§ More than 2B x-ray-induced processes



XATOM

> Electronic structure (HFS) 
for any given element and 
configuration 

> X-ray-induced atomic 
processes for any given 
element and configuration 

> Solve coupled rate 
equations to simulate 
ionization dynamics 

> Sequential ionization model 
tested by a series of atomic 
XFEL experiments
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Son, Young & Santra, Phys. Rev. A 83, 033402 (2011). 
Jurek, Son, Ziaja & Santra, J. Appl. Cryst. 49, 1048 (2016). 

Download executables: http://www.desy.de/~xraypac
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http://www.desy.de/~xraypac


X-ray multiphoton ionization dynamics
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Son & Santra, Phys. Rev. A 85, 063415 (2012).



Daniel Rolles 
at KSU

Artem Rudenko 
at KSU

Benedikt Rudek 
at PTB

LCLS experiment

Comparison with LCLS experiment
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Rudek et al., Nature Photon. 6, 858 (2012).

§ Xe M-shell ionization 
§ 2 keV: excellent agreement between 

theory and experiment 
§ 1.5 keV: further ionization via resonance 
§ REXMI: Resonance-Enabled X-ray 

Multiple Ionization

occurring at this photon energy. Within the expectation from a
simple model of purely sequential single-photon absorption,
charge states up to Xe32þ can potentially be reached with 2.0 keV
photons via sequential removal of 3d electrons, as can be seen
from the binding energies in Fig. 2.

In striking contrast to such a simple consideration, we find
charge states as high as Xe36þ for the lower photon energy of
1.5 keV. To the best of our knowledge, this is the highest ionization
stage ever created in an atom with a single electromagnetic pulse
(that is, both by photon impact26,33 and by ion impact34). At
1.5 keV photon energy, sequential removal of electrons from the
respective ionic ground state ends at Xe26þ, where direct ionization
closes as the ground-state ionization energy rises above the photon
energy (Fig. 2). This is in qualitative agreement with our simulation
in Fig. 1b, which predicts a maximum charge state of Xe27þ (with a
strong decrease beyond Xe26þ) for the X-ray fluence achieved in the
experiment. In the simulations, the charge states above Xe26þ stem
from Auger decay of multiple-core-hole states, which are created
with significant abundance towards the end of the ionization
sequence when the Auger lifetime of 3d holes starts to be

comparable to or even exceed (at Xe25þ) the average inverse
photo-ionization rate of !9 fs (Supplementary Fig. S1). It should
be noted that, within our model, significantly higher charge states
cannot be produced, even when assuming considerably higher X-
ray fluences. Thus, simulations using a straightforward rate equation
approach, which have successfully described earlier experiments on
Ne and N2 in a broad wavelength range (including hollow atom cre-
ation)2,3 and yield good agreement with the xenon data at photon
energies of 850 eV (ref. 13) and 2.0 keV, fail dramatically for our
experimental results at 1.5 keV. At this photon energy, another effi-
cient ionization process must play a role, boosting multiple ioniz-
ation far beyond the limit intuitively expected for sequential one-
photon absorption.

We therefore propose and provide evidence that the highly
charged ionic states produced at 1.5 keV are reached via resonant
pathways, as described in the following and schematically illustrated
in Fig. 2. These resonances, which occur in highly charged xenon
ions produced during the course of a single femtosecond X-ray
pulse, are not included in our simulations, which only take into
account bound-free transitions. Inclusion of the additional
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Figure 1 | Comparison of experimental and simulated xenon charge state yields. a, Xenon ion TOF spectra at photon energies of 1.5 keV (black) and
2.0 keV (red) for (nominally) 80 fs pulses with 2.4–2.6 mJ pulse energy as measured by the LCLS gas detectors upstream of the target. Assuming a
3 × 3 mm2 X-ray focus and 35% beamline transmission at 2.0 keV, this corresponds to a peak fluence of !82–89 mJ mm22 at the target. At 1.5 keV, this
peak fluence is reduced by a factor of two (see Methods). b, Experimental xenon charge state distribution (bars) after deconvolution of overlapping charge
states and comparison to theory (circles with lines) calculated for an 80 fs X-ray pulse with a pulse energy of 2.5 mJ and integrated over the interaction
volume. The theoretical charge state distributions are scaled such that the total ion yield integrated over all charge states agrees with the total ion yield in
the experiment. Error bars for experimental data reflect the statistical error only. a.u., arbitrary units.
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Xe@1.5 keV and 2 keV
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Comparison with SACLA experiment
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Kiyoshi Ueda 
at Tohoku Univ.

Hironobu Fukuzawa 
Koji Motomura

Fukuzawa et al., 
Phys. Rev. Lett. 

110, 173005 (2013).

§ Xe L-shell ionization: good agreement 
§ underestimation in theory: lack of relativity, shake-off, and resonance

Xe@5.5 keV
SACLA experiment



Both resonance and relativity matter

!15Sang-Kil Son  |  What happens to atoms and molecules during XFEL pulses? |  July 16, 2019 |       / 28

> REXMI: multiple resonant excitation and Auger-like decay 
> N of rate eqs: ~20M (non-rel) ➔ ~5B (rel) ➔ ~2.6×1068 (resonance+rel)
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Xe atom at higher x-ray intensity

> New experimental setup:  
LCLS CXI using nano-focus ➔ new realm of 
intensity approaching ~1020 W/cm2 

> Various photon energies: 5.5 keV ~ 8.3 keV 

§ Trend of REXMI examined 
§ L-shell initiated ionization ➔ large relativistic 

effects 
> XATOM extended to include both relativistic 

energy corrections and resonant excitations
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XATOM extension 

Koudai Toyota

Daniel Rolles 
at KSU

Artem Rudenko 
at KSU

LCLS experiment

& Benedikt Rudek

Toyota, Son & Santra, Phys. Rev. A 95, 043412 (2017).



CSD without resonance & relativity

!17Sang-Kil Son  |  What happens to atoms and molecules during XFEL pulses? |  July 16, 2019 |       / 28

 5  10  15  20  25  30  35  40  45
Charge state

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Fl
ue

nc
e 

(1
012

 p
ho

to
ns

/ µ
m

2 )

0.0

0.1

0.2

0.3

Fr
ac

tio
na

l y
ie

ld

Rudek, Toyota, et al., Nature Commun. 9, 4200 (2018).
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Comparison with new LCLS data

> ~50 times higher fluence than the SACLA experiment 
> Highlighting the interplay between resonance and relativistic effects
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Challenges for molecular dynamics at XFEL
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> No ab initio theoretical tools available for high x-ray intensity 

§ Coupled ionization and nuclear dynamics in the same time scales 
§ Extremely complicated dynamics:  

e.g. CH3I ~ 200 trillion rate equations at single geometry 
§ Highly excited molecular electronic structure

XMOLECULE 
§ Quantum electrons, classical nuclei 
§ Efficient electronic structure calculation: core-hole 

adapted basis functions calculated by XATOM 
§ Monte Carlo on the fly



XMOLECULE: Elec. structure & dynamics
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> Hartree-Fock-Slater method 

> Bound states: LCAO-MO with 
core-hole-adapted numerical 
atomic orbitals calculated by 
XATOM 

> Continuum states: approximated by 
atomic continuum calculated by XATOM 

> Cross sections, rates, and gradients 
calculated on the fly for given electronic 
and nuclear configuration

N2
3+

N+: 1s12s22p3 N2+: 1s02s22p3
Hao et al., Struct. Dyn. 2, 041707 (2015). 

Inhester et al., Phys. Rev. A 94, 023422 (2016).

Yajiang Hao 
Now at USTB 

(Beijing)

Ludger InhesterKota Hanasaki 
Now at Kyoto Univ.

XMOLECULE development 



Iodomethane in an ultraintense x-ray pulse
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> New experimental setup:  
LCLS CXI using nano-focus  
➔ new realm of intensity 
    approaching ~1020 W/cm2 

> Selective ionization on heavy atom 

> X-ray multiphoton ionization occurs at high intensity 

> Charge imbalance induces charge rearrangement 

> Coulomb explosion after/during ionization & charge rearrangement

CH3I @ 8.3 keV
σ(I)~50 kbarn 
σ(C)~80 barn 
σ(H)~8 mbarn

Daniel Rolles 
at KSU

Artem Rudenko 
at KSU

LCLS 
experiment



Ionization and fragmentation dynamics
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> CSD & KER: Capturing detailed ionization and fragmentation dynamics 

> First quantitative comparison for the behaviors of polyatomic molecules 
under XFEL irradiation

Comparison of CSD and KER
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CSD of I and CH3I KER of I fragment

Rudenko et al., Nature 546, 129 (2017).
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LETTER RESEARCH

Direct photoabsorption by the carbon or hydrogen atoms is negligible,  
owing to very small cross-sections. The created charge imbalance drives 
a rearrangement of electrons from the methyl group towards the iodine 
atom, refilling the created holes and thus lowering the charge of the 
latter. For each ionization step, this charge rearrangement occurs on a 
subfemtosecond timescale and so is much faster than the overall ioni-
zation dynamics, such that the electrons can be considered to rearrange 
instantaneously. For single-photon absorption, the total molecular 
charge remains essentially the same after this rearrangement, with 
only a slight enhancement due to the new relaxation channels that are 
possible in a molecular environment29. In the high-fluence regime, 
however, other X-ray photons are likely to be absorbed by the heavy 
atom, cycling through this charge redistribution process multiple times. 
At the peak intensities reached in our experiment, the iodine fragment 
sequentially absorbs more than 20 X-ray photons, and the total charge 
of the molecule is mainly limited by the number of electrons that  
are available from the molecular environment to fill the vacancies that 
are created at the iodine site.

We predict that this charge-rearrangement-enhanced X-ray ioniza-
tion of molecules (CREXIM), which we report here for CH3I, plays an 
important part in the quantitative understanding of radiation damage 
of polyatomic systems irradiated by very intense X-ray pulses, and 
will be even more pronounced for larger systems. A first indication is 
given by our experimental results for iodobenzene molecules shown 
in Fig. 1a, for which we observe the charging of a heavy fragment to a 
degree comparable to the case of isolated atoms despite the presence 
of a benzene ring, which can provide numerous additional electrons as 
compared to the case of CH3I. This is very different from the  outcome 
of previous experiments with iodouracil molecules under less intense 
hard X-rays25, in which the highest iodine charge state detected from 
the molecule was I4+, compared to Xe18+ that was produced under  
similar experimental conditions from isolated xenon atoms18. Even 
though we cannot unambiguously determine the total molecular 
charge for C6H5I, the measured distribution of light ionic fragments, 
which is dominated by CH+, C+, C2+, C3+ and H+ ions, indicates that, 
on average, they carry more than 10 charges in total. Therefore, we 
 conclude that for the highest intensities, for which the iodine charge 
state reaches I45+, the total charge of C6H5I exceeds the value of 54+  
reached for CH3I.

For a small molecular system such as CH3I, the theoretical model 
described here enables detailed analysis of the evolving electronic 
structure that is interweaved with nuclear dynamics. To further test 

the predictive power of the model, we compare the measured and cal-
culated kinetic energies for iodine ions in Fig. 3. The kinetic energies of 
the fragments are sensitive to the detailed fragmentation dynamics and, 
in particular, set boundary conditions for the times and internuclear 
separations at which the ionic charges are formed. The kinetic energies 
that are expected for an instantaneous ionization to a given final charge 
state are also plotted, which substantially overestimate the measured 
values because the charging does not happen  instantaneously. Our 
 analysis shows that the kinetic-energy distribution (KED) is sensitive 
to the temporal pulse shape used for the calculations, so the experimen-
tally determined temporal profile of the X-ray pulse30 (see Methods 
and Extended Data Fig. 1) needs to be taken into account. As can be 
seen from Fig. 3, calculations for Gaussian pulses do not match the 
experimental values, especially for the highest charge states. In contrast, 
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Figure 3 | Kinetic energies of the iodine ions. Measured (black) and 
calculated (red, green) mean values of the kinetic-energy distribution 
(KED) of iodine ions from CH3I are shown as a function of their charge 
state. The pulse parameters are the same as for Fig. 1a. The experimental 
data are accumulated over 287,400 shots. For the calculation, green 
triangles represent the results obtained using a Gaussian pulse shape 
with a FWHM of 30 fs, whereas red circles depict the values obtained 
using the measured pulse profile. The error bars show the standard error 
of the mean. The blue line depicts the energies that are expected for 
instantaneous ionization.
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Figure 4 | Simulated evolution of molecular geometry and charge 
distribution. a, Snapshots of molecular charges and nuclear positions at 
different times t before and after the peak of the X-ray pulse (t =  0) for an 
exemplary trajectory. The atoms are coloured as in Fig. 2c. Contour lines 
of the electron density are shown as shaded grey areas. The internuclear 

separations in the right-most panel are not to scale. b, Time-dependent 
average partial charge of different fragments and total charge. c, Time-
dependent average carbon–iodine distance. The shaded grey areas in b and 
c depict the temporal envelope of a Gaussian pulse with a 30-fs FWHM.  
A fluence of 5 ×  1012 photons per µ m2 is used.
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To shed light on the mechanism of this enhanced   molecular 
ionization, we present in Fig. 2a a comparison of the results of a 
 theoretical analysis of the multiple X-ray ionization of CH3I using the 
XMOLECULE toolkit26. Figure 2a displays the calculated charge-state 

distribution of iodine ions and the total charge of the molecule. The 
results of the calculation are averaged over the spatial distribution of 
the pulse intensity so that they can be compared to the experimental 
data for iodine ions. The theoretical predictions agree reasonably well 
with the outcome of the experiment, indicating that our theoretical 
model adequately describes the essential mechanisms of CH3I ioni-
zation in ultra-intense hard X-ray pulses. The calculations also show 
that the total charge of the molecule for high charge states is shifted 
by 7 with respect to the charge-state distribution for iodine, in good 
agreement with the experimental finding that C4+ and 3H+ ions are 
produced when the molecule is highly ionized. To understand the 
 fluence dependence of the molecular ionization process, we present in 
Fig. 2b the average total charge state of the CH3I molecule calculated 
as a function of the fluence (without focal volume averaging) and the 
prediction of an independent-atom model. The results show that for 
low fluences (at which earlier experiments14–19,25 have been conducted) 
the total charge state is equivalent to the case of a system of isolated 
atoms (which, in turn, is nearly identical to that of the heavy atom), 
whereas molecular effects considerably enhance the level of ionization 
at higher fluences.

This enhancement can be qualitatively understood by recurrent 
charge redistribution upon multiphoton X-ray absorption, as sketched 
in Fig. 2c. At 8.3 keV, photoabsorption occurs predominantly in the 
2s and 2p shells of iodine, and the subsequent Auger decay of these 
L-shell vacancies is followed by a cascade of further Auger processes 
that creates a high charge that is initially localized at the iodine site. 
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Figure 2 | Enhanced ionization of the molecule. a, Calculated (blue) 
and measured (black) charge-state distribution of iodine ions from 
CH3I molecules. The pulse parameters are the same as for Fig. 1a. The 
experimental data are accumulated over 287,400 shots. The calculated total 
charge of the molecule is shown in red. The error bars reflect the statistical 
uncertainty of the data (1 s.d.). The CH3I molecule is sketched above the 
plot, with atoms coloured as in Fig. 1a. b, Average total molecular charge 
as a function of fluence calculated for CH3I molecules (red) and within 
the independent-atom model (black). The fluence values corresponding 
to Fig. 1a and b are marked with red and blue bars, respectively. The error 
bars show the standard error of the mean. c, Illustration of the CREXIM 
mechanism. In the molecule (upper row), the repeated ionization (blue 
and orange arrows) of the iodine atom drives electrons from the methyl 
group to the iodine (orange shading), such that there are more electrons 
available for ionization compared to independent atoms (lower row). The 
darkness of the shading of the atoms indicates the number of electrons that 
remain in the atoms.
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Figure 1 | Experimental charge-state distributions. a, Charge-state 
distributions of iodine ions emitted from CH3I (black squares) and 
C6H5I (blue triangles) molecules upon irradiation by 8.3-keV pulses 
with an average pulse energy of 1.1 mJ. Red circles show the charge-state 
distribution obtained from atomic xenon under the same conditions. The 
data are accumulated over 287,400 shots for CH3I, 212,880 shots for C6H5I 
and 372,600 shots for xenon. The curves are normalized to have an integral 

charge of 1. The error bars reflect the uncertainty of the data (1 s.d.) due to 
the finite counting statistics. The CH3I and C6H5I molecules are sketched 
above the plot, with the iodine atom highlighted in purple, carbon atoms 
in grey and hydrogen atoms in white. b, Yield of carbon and iodine ion 
pairs detected in coincidence after CH3I ionization by pulses with the 
same parameters as in a but with the pulse energy reduced to 0.4 mJ.  
The data are accumulated over 1,242,850 shots.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.



> At low fluence, molecular total charge = sum of individual atomic charges 

> At high fluence, molecular total charge > sum of individual atomic charges

Molecular ionization enhancement
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Ionization enhanced by charge rearrangement
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> Electrons from light atoms become available for further ionization on 
heavy atoms after charge rearrangement. 

> CREXIM: Charge-Rearrangement-Enhanced X-ray Ionization of Molecules 

> Impact on molecular imaging: not reducing partial charges of heavy atoms 
due to charge rearrangement, but inducing more ionization overall

high x-ray fluence 
(multiphoton dominant)

low x-ray fluence 
(single-photon dominant)

Rudenko et al., Nature 546, 129 (2017).



Bigger molecule, larger enhancement

> Xe, iodomethane, iodobenzene: similar cross section at 8.3 keV 
> The stronger ionization for the larger molecule
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Hao, Inhester, Son & Santra, PRA 100, 013402 (2019).
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Toward complex systems
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> XMDYN: X-ray molecular dynamics 

§ Classical dynamics for ions and free 
electrons 

§ Quantum treatment for bound electrons  
➔ combined with XATOM 

§ Ab initio treatment of molecular effects 
➔ to be combined with XMOLECULE 

> First validation with LCLS (C60) and 
SACLA (Ar/Xe clusters) experiments 

§ Murphy et al., Nat. Commun. 5, 4281 (2014). 
§ Tachibana et al., Sci. Rep. 5, 10977 (2015). 

> Start-to-end simulation for single-
particle imaging at European XFEL 

§ Yoon et al., Sci. Rep. 6, 24791 (2016). 
§ Fortmann-Grote et al., IUCrJ 4, 560 (2017).solvated Thaumatin 

~ 12,000 atoms

Zoltan Jurek Malik M. Abdullah

XMDYN development



Conclusion

> Enabling tools to investigate x-ray multiphoton physics of atoms, 
molecules, and clusters exposed to high-intensity x-ray pulses 

> XFEL–matter interaction: sequential multiphoton multiple ionization 

> Intriguing phenomena of atoms and molecules with intense XFEL pulses  
§ Xe: ionization enhanced via REXMI and modulated by relativity 
§ CH3I: molecular ionization enhancement via CREXIM 

> Theory provides crucial insights of the XFEL–matter interaction 
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Collaboration of CH3I LCLS experiment

Experiment team 
Kansas State University    S. J. Robatjazi, X. Li, D. Rolles, A. Rudenko  
DESY, Hamburg    B. Erk, R. Boll, C. Bomme, E. Savelyev  
PTB, Braunschweig    B. Rudek  
MPI for Medical Research, Heidelberg    L. Foucar  
Argonne National Lab.    Ch. Bostedt, S. Southworth, C. S. Lehmann, B. Kraessig, L. Young 
UPMC, Paris    T. Marchenko, M. Simon 
Tohoku University, Sendai    K. Ueda 
LCLS, SLAC National Accelerator Laboratory    K. R. Ferguson, M. Bucher, T. Gorkhover, 

S. Carron, R. Alonso-Mori, G. Williams, S. Boutet  

Theory team 
CFEL, DESY    L. Inhester, K. Hanasaki, K. Toyota, Y. Hao, O. Vendrell, S.-K. Son, R. Santra 
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Robin SantraYajiang Hao 
Now at USTB 

(Beijing)

Ludger Inhester Kota Hanasaki 
Now at Kyoto Univ.

Oriol Vendrell 
Now at Heidelberg  

Univ.

Koudai Toyota



CFEL-DESY Theory Division
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Dr. Vladimir Lipp 
Dr. Victor Tkachenko 
Caroline Arnold 
Niels Breckwoldt 
John Bekx 
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Daria Kolbasova 
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Julia Schäfer 
Yashoj Shakya 
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Molecular black hole
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X-ray pulses create “molecular black hole” 
— DESY News

Credit: DESY/Science Communication Lab

“Femtosecond response of polyatomic 
molecules to ultra-intense hard X-rays,” 
Rudenko et al., Nature 546, 129 (2017).

과학동아 2017년 7월호

‘Black hole’ created by strongest ever 
x-ray laser — Newsweek

X-rays induce electron-gobbling 
‘black holes’ — C&EN

X-ray lasers make atoms act like 
“black holes” in molecules 

— Scientific American


