Resonances in x-ray multiphoton ionization

Sang-Kil Son

Center for Free-Electron Laser Science, DESY, Hamburg, Germany

Molecular quantum dynamics beyond bound states Rostock, Germany March 10–12, 2021

Center for Free-Electron Laser Science

CFEL is a scientific cooperation of the three organizations: DESY – Max Planck Society – University of Hamburg

Collaboration

> REXMI at LCLS: B. Rudek (PTB), D. Rolles, A. Rudenko (KSU), L. Foucar (MPI-MF), B. Erk, C. Bomme, J. Correa (DESY), R. Boll (EuXFEL), S. Carron, S. Boutet, G. J. Williams, K. R. Ferguson, R. Alonso-Mori, J. E. Koglin, T. Gorkhover, M. Bucher (LCLS), C. S. Lehmann, B. Krässig, S. Southworth, L. Young, Ch. Bostedt (ANL), K. Ueda (Tohoku), T. Marchenko, M. Simon (UPMC)

> REXMI at European XFEL: <u>Rebecca Boll</u>, T. Baumann, A. De Fanis, V. Music, D. Rivas, A. Rörig, Ph. Schmidt, S. Usenko, M. Meyer (EuXFEL SQS), J. Laksman (EuXFEL XPD), S. Serkez (EuXFEL SPF), B. Erk (DESY), S. Pathak, D. Rolles (KSU)

> REMPI at European XFEL: <u>Aaron LaForge</u>, D. Mishra, S. Duncanson, N. Berrah (UConn), E. Eronen, E. Kukk (U. Turku), P. Walter (LCLS), M. Ilchen, R. Boll, A. De Fanis, M. Meyer, Y. Ovcharenko, D. Rivas, Ph. Schmidt (EuXFEL)

> CFEL-DESY Theory Division: <u>Robin Santra</u>, K. Toyota, S. Wirok-Stoletow, D. Kolbasova, Z. Jurek

Rebecca Boll

Aaron LaForge

Robin Santra

XFEL: X-ray free-electron laser

How does matter interact with ultraintense and ultrafast pulses?

Strong light-matter interaction

Strong-field optical regime
 tunneling or multiphoton processes
 valence-electron ionization

scienci

- Intense X-ray regime
 - mainly one-photon processes
 - core-electron ionization and relaxation
 - multiphoton multiple ionization via a sequence of one-photon processes

X-ray multiphoton ionization

- A sequence of one-photon absorption and accompanying relaxations
 → sequential multiphoton multiple ionization dynamics
- Direct multiphoton absorption: negligible if one-photon abs. is available
 Doumy et al., Phys. Rev. Lett. 106, 083002 (2011).

Challenges for x-ray multiphoton ionization

- > Theoretical challenges
 - tremendously many hole states
 by x-ray multiphoton absorption
 - highly excited system far from the ground state
 - electronic continuum states for ionization
 - complex inner-shell ionization dynamics, especially for heavy atoms
- No standard quantum chemistry code available

XATOM: all about x-ray atomic physics

- X-ray-induced atomic processes calculated for any given element and configuration
- Ionization dynamics solved by a rate-equation approach
- Sequential ionization model has been tested by a series of atomic XFEL experiments

Son, Young & Santra, *Phys. Rev. A* **83**, 033402 (2011). Jurek, Son, Ziaja & Santra, *J. Appl. Cryst.* **49**, 1048 (2016). Download executables: <u>http://www.desy.de/~xraypac</u>

XATOM: Theoretical details

Efficient electronic structure calculation required

Hartree-Fock-Slater (HFS) method

$$\begin{bmatrix} -\frac{1}{2}\nabla^2 - \frac{Z}{r} + \int d^3r' \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} - \frac{3}{2} \left\{ \frac{3}{\pi} \rho(\mathbf{r}) \right\}^{1/3} \end{bmatrix} \psi(\mathbf{r}) = \varepsilon \psi(\mathbf{r})$$
spherically symmetric: $\psi_{nlm}(\mathbf{r}) = \frac{u_{nl}(r)}{r} Y_{lm}(\theta, \varphi)$

- ➤ Bound states → GPS method on nonuniform grid
- ➤ Continuum states: calculated with the same potential as used in bound states → 4th-order Runge-Kutta method on *uniform* grid
- > Calculate all cross sections and rates of x-ray-induced processes based on the perturbation theory

$$\Gamma_{FI} = 2\pi\delta \left(E_F - E_I \right) \left| \langle F | \hat{H}_{\text{int}} | I \rangle \right|^2$$

Son, Young & Santra, Phys. Rev. A 83, 033402 (2011).

XATOM: Coupled rate equations

Cross sections & rates: (in principle) calculated for every single config.

Solve coupled rate equations to simulate ionization dynamics

$$\frac{d}{dt}P_I(t) = \sum_{I'\neq I}^{\text{all config.}} \left[\Gamma_{I'\to I}P_{I'}(t) - \Gamma_{I\to I'}P_I(t)\right]$$

- > Tremendously large coupled rate equations → solved by Monte Carlo Son & Santra, Phys. Rev. A 85, 063415 (2012).
- ➤ Cross sections are rates calculated only for configurations visited during selected pathways → Monte Carlo on-the-fly
 Fukuzawa

Fukuzawa *et al.*, *Phys. Rev. Lett.* **110**, 173005 (2013).

XATOM: Resonant photoexcitation

XATOM extended to treat resonant excitation: Toyota *et al.*, *Phys. Rev. A* **95**, 043412 (2017).

- Resonant photoexcitation to Rydberg states:
 - How many n and l to be considered?
 - Can we accurately describe these states?
- Number of coupled rate equations explodes
 - For example, Xe *L*-shell
 - non-relativistic, no resonance: N=23,532,201
 - relativistic, no resonance:
 N=5,023,265,625
 - relativistic, resonance
 (n ≤ 30, l ≤ 7): ~2.6×10⁶⁸

REXMI

REXMI mechanism

- > REXMI: resonance-enabled or -enhanced x-ray multiple ionization
- > Multiple resonant excitations for a range of charge states
- Further ionization via electron-correlation-driven relaxation processes
- > Broad energy bandwidth facilitates REXMI
- One of the distinctive phenomena in the field of XFEL-matter interaction

Rudek *et al.*, *Nat. Photon.* **6**, 858 (2012); *Phys. Rev. A* **87**, 023413 (2013); *Nat. Commun.* **9**, 4200 (2018). Ho *et al.*, *Phys. Rev. Lett.* **113**, 253001 (2014); *Phys. Rev. A* **92**, 063430 (2015).

First observation of REXMI

LCLS experiment

Daniel Rolles

at KSU

Artem Rudenko at KSU

ko Benedikt Rudek at PTB

- Xe M-shell-initiated ionization
- 2 keV: excellent agreement between theory and experiment
- 1.5 keV: further ionization via resonance

Rudek et al., Nat. Photon. 6, 858 (2012).

Relativistic and resonant effects

Xe L-shell-initiated ionization: 2p_{1/2}-2p_{3/2} splitting ~300 eV

SCIENCE

- XATOM extended to treat both relativistic and resonant effects
- Structured CSD: interplay of resonance and relativistic effects

Photon-energy scan in soft x-rays

Experiment (preliminary raw data)

- > Overall, good agreement between theory and experiment
- For each slice of photon energy, quantitative comparison could reveal details of ionization dynamics: effects of peak fluence, bandwidth, temporal structure, etc.

European XFEL SQS experiment

Rebecca Boll at EuXFEL

Aljoscha Rörig at EuXFEL

X-ray REMPI

Ar¹⁷⁺ measurement

- Ar¹⁷⁺ detected: IP=4130 eV, photon energy ~ 1550 eV
- > (2+1)-REMPI conceivable
- REXMI cannot create Ar¹⁷⁺
- > Any other ionization pathways?

REMPI (resonance-enhanced multiphoton ionization) in the x-ray regime

Experimental resonance profile

Resonance structure: yield ratios of Ar¹⁷⁺ to Ar¹⁶⁺ as a func. of photon E

X-ray REMPI: broad, red-shifted, asymmetric resonance profile
 stark contrast to conventional REMPI at longer wavelengths

REMPI mechanism

- More ionization channels besides (2+1)-REMPI
- > 2nd harmonic (0.2% contrib.): (1'+1)-REMPI
- At low charges: (2+n)-REMPI or (1'+n)-REMPI

LaForge et al., (submitted).

Direct two-photon resonant excitation

Stanislaw Wirok-Stoletow at CFEL-DESY Theory

LaForge *et al.*, (submitted).

Daria Kolbasova at CFEL-DESY Theory

- > XCID: grid-based TDCIS (time-dependent config. interaction singles)
- > Calculate direct two-photon $\sigma^{(2)}$ for $1s^2 \rightarrow 1s2s$ of Ar^{16+}
- > For other charges, the same σ profile is shifted by Δ in the transition E

REMPI contribution analysis

- Resonant excitation by 2nd harmonic (0.2%) is dominant
- (1'+n)-REMPI: resonant excitation by 2nd harmonic at lower charges with lower transition energy -> red-shifted and asymmetric broadening

Pulse-duration effects

- Calculation with 10-fs matches well with experimental data
- ➤ The shorter the pulse length, the more the 1s vacancy created at lower charges survives until Ar¹⁷⁺ → explains more shifted for shorter pulses

REXMI vs. X-ray REMPI

REXMI

- multi-electron excitation
- electron-correlation-driven relaxation
- broad bandwidth

Rudek *et al.*, *Nat. Photon.* **6**, 858 (2012). Rudek *et al.*, *Nat. Commun.* **9**, 4200 (2018).

X-ray REMPI

- single-electron excitation
- ionization by another photon
- narrow bandwidth
- not necessarily single ionization

LaForge *et al.*, (submitted)

Recent progresses

CFEL-DESY Theory Division

Robin Santra

Julia Schäfer

XMDYN

Coulomb explosion of iodopyridine molecules Boll *et al.,* (submitted).

Zoltan Jurek

Rui Jin

XATOM

XPOT+XMDYN

Transient IPD in nonthermal dense plasmas *Phys. Rev. E* **103**, 023203 (2021).

XMOLECULE

Femtosecond structural dynamics of water molecules Jahnke *et al.,* (submitted).

Ludger Inhester

Conclusions

- X-ray multiphoton ionization is described by a sequence of one-photon ionization and accompanying relaxation processes
- Resonant excitation plays an important role in x-ray multiphoton ionization via REXMI and REMPI
- > REXMI: ultra-efficient ionization mechanism by intense XFEL pulses
- REMPI: first observation in the x-ray regime and its resonance profile with a clear distinction from conventional REMPI
- > XATOM: central development for describing XFEL—matter interaction

(Thank you for your attention! Sang-Kil Son | Resonances in x-ray multiphoton ionization | March 11, 2021 | 25 / 25