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Resonance-enhanced multiphoton ionization in the x-ray regime. 

Synopsis

Here, we report on resonance-enhanced multiphoton 
ionization (REMPI) of argon atoms in the short 
wavelength regime using ultraintense x rays from the 
European XFEL. We demonstrate and discuss the 
differences between X-ray and conventional REMPI.


Introduction

Multiphoton ionization is one of the fundamental 
nonlinear processes when matter interacts with intense 
laser fields. In particular, REMPI has been a widely-used 
spectroscopic technique due to high sensitivity and 
selectivity. X-ray free-electron lasers have offered new 
avenues for studying x-ray multiphoton ionization. 
Extending REMPI to the x-ray regime, however, requires 
entirely different physical processes and interpretation. 
Conventional REMPI at long wavelengths relies on the 
resonant excitation of a valence electron where the only 
relaxation pathway is radiative decay. On the other hand, 
a core-excited state after x-ray resonant excitation is 
subject to Auger decay, which is orders of magnitude 
faster than radiative decay. Thus, the complex interplay 
between Auger processes and REMPI renders this 
process challenging to fully resolve in the x-ray regime.


We present a first observation of REMPI in the x-ray 
regime. We observe nonlinear ionization to create Ar17+, 
where photon energies are insufficient to directly ionize a 
1s electron. With the aid of state-of-the-art theoretical 
modeling, we attribute the ionization to a two-color 
REMPI-like process where the second harmonic creates 
a 1s→2p transition and the fundamental pulse 
subsequently ionizes the system. The measured 
resonance profile of x-ray REMPI shows a broad, 
asymmetric, red-shifted distribution, which is a clear 
distinction from the conventional REMPI case. Moreover, 
theoretical results demonstrate a strong pulse-length 
dependence of the resonance profile. Our analysis 
shows that the REMPI process occurs not only for Ar16+ 
but also for lower charge states, where multiple ionization 
competes with Auger lifetimes. We find the observed 
broadband nature and pulse-length dependence of the 
resonance profile to be due to overlapping resonances 
with lower Ar charge states.
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Theory: XATOM

• IP of Ar16+ = 4130 eV

• Photon energy ~ 1550 eV

• Detection of Ar17+ ➔ (2+1)-REMPI?

• Any other ionization pathways?

• Various ionization channels besides (2+1)-REMPI

• 2nd harmonic (0.2% contrib.) ➔ (1′+1)-REMPI

• At low charges ➔ (2+n)-REMPI or (1′+n)-REMPI

• Small Quantum System (SQS) scientific 
instrument at the European XFEL


• Pulse duration: 25 fs FWHM (nominal)

• Focal size: approx. 1.5×1.5 µm2 (FWHM)


• Photon energy: 1450 eV to 1583 eV

• Energy bandwidth: approx. 1% (FWHM)

• Pulse energy: 2 mJ to 6 mJ

• Second harmonic contrib.: est. 0.2~0.6%

• X-ray-induced atomic processes 
calculated for any given element 
and configuration


• Electronic structure based on 
the Hartree–Fock–Slater model


• Ionization dynamics solved by a 
rate-equation approach


• Sequential ionization model has 
been tested by a series of 
atomic XFEL experiments
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• Calculation with 10-fs matches well with experimental data.

• In experiment, the resonance profile looks all different from conventional REMPI.

• In theory, the predicted pulse-length dependence cannot be explained by ordinary REMPI, 

because of the same bandwidth applied and negligible AC Stark shift in the x-ray regime.

• It can be explained by the various ionization pathways and associated decay lifetimes, 

rather than the bandwidth ➔ potentially applicable to characterize FEL beam parameters.

New 
observation: 

broad,  
red-shifted,  
asymmetric 
resonance 

profile

New prediction: the profile is broadened and shifted 
to lower energies as the pulse length gets shorter

Son et al., Phys. Rev. A 83, 033402 (2011).

Jurek et al., J. Appl. Cryst. 49, 1048 (2016).


Download executables: http://www.desy.de/~xraypac

• Add and subtract 
processes in calculation


• (1′+3)-REMPI at Ar14+


• (1′+2)-REMPI at Ar15+


• (1′+1)-REMPI at Ar16+


• (2+n)-REMPI at all Q


• Dominant process: 
resonant excitation by 
2nd harmonic at Ar14+ 
(more precisely, 
K2L2Mm for 0≤m≤8)

• REXMI (resonance-enabled 
or enhanced x-ray multiple 
ionization): multi-electron 
excitation involved; electron-
correlation-driven relaxation; 
broad bandwidth favorable


• X-ray REMPI: single-electron 
excitation; narrow bandwidth 
favorable; not necessarily 
single ionization; influenced 
by ultrafast decay processes

• SASE FEL bandwidth given by 
the shortest pulse length of 
spiky pulses, typically ~1%


• Narrower bandwidth through 
the use of a monochromator or 
self-seeding techniques 


• With narrower bandwidth, 
individual resonance structures 
of electron config. could be 
resolved ➔ potentially precision 
spectroscopy of highly charged 
ions of astrophysical relevance 
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REXMI: Rudek et al., Nat. Photon. 6, 858 (2012); 
Rudek et al., Nat. Commun. 9, 4200 (2018).
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