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Time-resolved electron and photon spectra of Ne 
• Frustrated absorption or intensity-induced x-ray transparency [6] 

> the degree of ionization is reduced for shorter pulse duration (higher intensity) 
> 1s photoionization defeats Auger-Meitner (AM) decay as the intensity increases 

• Time-resolved photoelectron spectra show more lines of highly charged ions for longer pulses 
• In time-resolved AM spectra, AM lines become weaker and take place later for shorter pulses 
• In time-resolved fluorescence spectra, SCH and DCH are well separated

X-ray multiphoton ionization 

Interaction of matter with intense XFEL pulses is 
characterized by sequential multiphoton multiple 
ionization dynamics. 

• Sequence of K-shell ionization (P), Auger-Meitner 
decay (A), and fluorescence (F) 

• Extremely complicated ionization dynamics 
• Highly excited electronic structure involved 
• No standard quantum chemistry code available 

We implement an integrated toolkit, XATOM [5], to treat 
x-ray multiphoton ionization dynamics, based on rate-
equation approach, within a consistent theoretical 
framework of nonrelativistic quantum electrodynamics, 
perturbation theory, and the Hartree–Fock–Slater model. 

XRAYPAC:  
a software package for modeling x-ray-
induced dynamics of matter,  
https://www.desy.de/~xraypac/

Abstract 

Intense x-ray free-electron laser (XFEL) pulses can induce multiple sequences of inner-
shell ionization events and accompanying decay processes in atoms, producing highly-
charged atomic ions. In general, x-ray multiphoton ionization dynamics have been 
described in terms of time-dependent populations of the electronic configurations visited 
during the ionization dynamics, neglecting individual state-to-state transition rates and 
energies. Combining a state-resolved electronic-structure method based on first-order 
many-body perturbation theory [1] with a Monte Carlo rate-equation method [2] enables us 
to study state-resolved dynamics based on time-dependent quantum-state populations. 
Here we present a theoretical study of state-resolved x-ray multiphoton ionization 
dynamics of neon atoms. Our results demonstrate that configuration-based and state-
resolved calculations provide similar charge-state distributions, but differences are visible 
when resonant excitations are involved. Calculated time-resolved spectra of electrons and 
photons allow us to investigate ultrafast dynamics of x-ray multiphoton ionization in detail. 
In addition, we will present a comparison with a recent experiment on Ne [3] and discuss 
how to handle the extremely large number of atomic parameters involved in state-resolved 
dynamics calculations via machine-learning techniques [4].

Center for Free-Electron Laser Science 
CFEL is a scientific cooperation of the three organizations:  

DESY – Max Planck Society – University of Hamburg

✉ sangkil.son@cfel.de

Machine-learning XATOM 
Feedforward neural networks and random forest 
regressors are employed to predict atomic data [4]
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Complexity for light and heavy atoms

How many coupled rate equations? 
Ne: 63 
Xe: > 70 millions 
Xe + relativity: > 15 billions 
Xe + relativity + excitation: infinity

State-resolved XATOM 

• First-order many-body perturbation 
theory to improve HFS calculations [1] 

• Electronic configuration (1sn12sn22pn3…) 
+ quantum number (L, S, ML, κ) 

• X-ray ionization dynamics following 
quantum-state populations, rather than 
electronic configuration populations  
➔ N of rate equations explodes  
➔ Monte Carlo on-the-fly approach 

• Almost no difference in charge-state 
distributions (CSDs), but dramatic 
improvement on photon and  
electron spectra

Conclusions 

• XATOM: enabling tool for studying x-ray 
multiphoton ionization dynamics 

• XATOM has been extended to study 
quantum-state-resolved ionization 
dynamics 

• First-order many-body perturbation 
theory improves accuracies of transition 
energies, which are critical for electron and 
photon spectra 

• Calculated time-resolved spectra 
demonstrate how frustrated absorption 
manifests itself during intense x-ray pulse  

• ML-based state-resolved MC 
implementation helps to reduce 
computational cost 
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FIG. 8. Time-resolved photoelectron spectra (P) of Ne at a photon energy of 2000 eV for pulse durations (FWHM) of (a and b) 1 fs, (c
and d) 10 fs, and (e and f) 100 fs. In (a), (c), and (e), the peaks belong to 1s ionization, while those in (b), (d), and (f) belong to 2s and 2p
ionization. The peaks are labeled by the involved initial ion, i.e., Neq+: electronic configuration 1s22l8−q for even charges or 1s12l9−q for odd
charges. A fluence of 1012 photons/µm2 is used.

cially near the peak of the pulse. For a long pulse duration
(100 fs), however, the distribution becomes broader with a
less pronounced peak at +8, as shown in Fig. 6(c). These
observations are all indicative of frustrated absorption [21]
or intensity-induced x-ray transparency [8]. The degree of
ionization is reduced for shorter pulse duration (i.e., higher
intensity) because 1s photoionization defeats Auger-Meitner
decay as the intensity increases. This has two consequences.
First, a double-core-hole state is formed and, thus, the 1s
photoionization cross section is reduced (it is zero for 1s0).
In Fig. 7(a), the mean number of photoionization events is
depicted as a function of time for the three pulse durations.
It may be seen that the photoionization number decreases as
the pulse duration becomes shorter. At the same time, the
suppression of ionization is also caused by the reduction of
the number of Auger-Meitner decays, depicted in Fig. 7(b).
These two mechanisms are responsible for the decreased
mean charge [Fig. 7(c)] as the pulse is decreased.

Another interesting observation here is that most changes
in the time-dependent CSD take place within a time interval
of ±1 × FWHM. However, the shorter the pulse, the more
extended the time interval needed to reach the final charge,
because the Auger-Meitner lifetime is often tens of femtosec-
onds (see more details in Sec. IV B). In Figs. 7(b) and 7(c),
the 1-fs curve is not converged to the temporally asymptotic
mean value even at 4 × FWHM, in contrast to the longer pulse
durations. Therefore, in Fig. 6(a), a longer time interval is
considered for the 1-fs result.

B. Time-resolved electron and photon spectra

In order to complete our understanding of the x-ray mul-
tiphoton ionization dynamics, we calculate time-resolved
photoelectron (Fig. 8), Auger-Meitner electron (Fig. 9), and
fluorescence spectra (Fig. 10) for all three pulse durations. For
all figures, the vertical axis is the time, using 0.08 × FWHM
bins, while the horizontal axis is the electron kinetic energy
(Figs. 8 and 9) or the photon energy (Fig. 10), using 2-eV
bins. Note that all the spectra showcase the number of emitted
electrons or photons in a time interval relative to the pulse
duration since the time binning is adapted for each pulse
duration.

Let us start with the time-resolved photoelectron spectra in
Fig. 8. The 1s photoelectron spectra can be grouped according
to the peaks belonging to the ionization of Neq+ in a pos-
sible configuration 1s22l8−q dominantly for even charges or
1s12l9−q dominantly for odd charges (with l = s, p). Note that
the former leads to the formation of single-core-hole states,
while double-core-hole states are produced via the latter. It
is apparent from the spectra that lines corresponding to low
odd charges (Ne1+ and Ne3+) emerge more with shorter pulse
duration in Fig. 8(a). The increased number of outer-shell ion-
izations of lowly charged ions can be observed in Fig. 8(b). On
the other hand, the lines corresponding to the photoionization
of highly charged ions appear more for longer pulse durations
as shown in Figs. 8(c) and 8(e), which is consistent with the
observation in Fig. 6.
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FIG. 9. Time-resolved Auger-Meitner electron spectra (AM) of
Ne at a photon energy of 2000 eV for pulse durations (FWHM)
of (a) 1 fs, (b) 10 fs, and (c) 100 fs. Some peaks are labeled by
the transitions listed in Table II in the Appendix. A fluence of
1012 photons/µm2 is used.

Figure 9 shows the time-resolved Auger-Meitner spectra.
For long pulse durations, Auger-Meitner decay immediately
follows inner-shell ionization and many lines appear in the
spectrum, as shown in Fig. 9(c). Here, immediately is meant
relative to the pulse duration, i.e., when the Auger-Meitner
lifetime is sufficiently short in comparison to both the pulse
duration and the inverse of the resulting inner-shell photoion-
ization rate, so that Auger-Meitner decay can beat further
photoionization. When several Auger-Meitner decays are pos-
sible for an initial ion state, lines for more probable processes
appear a bit earlier in time. When the pulse duration is
decreased, however, Auger-Meitner decay that takes place
on longer time scales than the short pulse duration barely
occurs during the pulse. Consequently, the number of pro-
cesses per time bin is reduced, resulting in weaker lines,
covering a longer time range, in Figs. 9(a) and 9(b). This
reduction of Auger-Meitner decays suppresses refilling of
the 1s shell and, thus, further inner-shell photoabsorption,
which is one of the mechanisms underlying frustrated ab-
sorption as discussed in the previous section. Note that in
our state-resolved calculation the time scales for Auger-
Meitner decay for Ne ions are in the range from 818 as
(Ne2+ 1s02s22p6) to 46 fs (Ne7+ 1s12s12p1). Thus, most
Auger-Meitner decays still take place within 10 fs, as shown
in Fig. 9(b). Yet another interesting point is that the de-
cay of the double-core-hole state of Ne2+, i.e., peak (iii),

FIG. 10. Time-resolved 2p → 1s fluorescence spectra (F) of Ne
at a photon energy of 2000 eV for pulse durations (FWHM) of
(a) 1 fs, (b) 10 fs, and (c) 100 fs. Some peaks are labeled by the
involved initial configurations. A fluence of 1012 photons/µm2 is
used.

is clearly visible for 1 fs and 10 fs, but is almost absent
for 100 fs. This hypersatellite line is located at the highest
energy and is well separated from other lines, which provided
direct evidence of double-core-hole formation [8,65,66]. De-
cays of other double-core-hole states, with lower energies
than peak (iii), can also be observed mainly for short pulse
durations.

Finally, we turn to the fluorescence spectra for inner-shell
relaxation via 2p → 1s transition as shown in Fig. 10. We do
not show the 2p → 2s fluorescence spectra that are mainly
generated long after the pulse on time scales up to ∼10 ns.
For the 2p → 1s fluorescence, we can make very similar
observations as for the Auger-Meitner spectra, even though
Auger-Meitner decay is much more dominant. However, due
to lower fluorescence rates in comparison with Auger-Meitner
rates, relaxation of highly charged ions via fluorescence takes
place on relatively longer time scales even beyond that shown
in Fig. 10. Interestingly, single-core-hole and double-core-
hole spectra for Ne ions are well separated and ordered by
charge, i.e., the higher the charge state, the higher the photon
energy for a fixed number of core electrons. (An analogous
effect was observed in XFEL experiments on warm dense
aluminum [67].) The 1s–2p fluorescence energy is given by
ωfluo = EI − EF , where the initial state I has one or two 1s
holes and the final state F has one 1s hole less than I . When
I has a double 1s vacancy, EI contains a strong Coulomb
repulsion penalty because the two 1s holes are spatially close

013102-10

BUDEWIG, SON, AND SANTRA PHYSICAL REVIEW A 107, 013102 (2023)

1 3 5 7 9
Charge state

0.0

0.1

0.2
(c) Ne@2000 eV

0.0

0.2

0.4

P
ro

ba
bi

lit
y

(b) Ne@1050 eV
0.0

0.1

0.2

0.3 (a) Ne@800 eV

config-based MC
 state-resolved MC

FIG. 2. Comparison of Ne CSDs obtained with the
configuration-based (red) and the state-resolved (blue) Monte
Carlo calculations: (a) 800 eV, (b) 1050 eV, and (c) 2000 eV. In all
cases, the Gaussian-shaped pulse has a duration of 10 fs FWHM and
a fixed fluence of F = 1012 photons/µm2 is used. For (b), resonant
excitations up to nmax = 7 and lmax = 2 are considered and an energy
bandwidth of 1% is assumed. The error bar indicates the statistical
error.

is given by the sum of all PI ’s (configurational population or
state population) belonging to q. The error bars represent the
statistical error estimate [64] for each charge state q, given
by ϵq =

√
Pq(1 − Pq )/(Ntraj − 1), where Ntraj is the number of

Monte Carlo trajectories. Comparison in Fig. 2 shows that
the state-resolved calculation is in overall good agreement
with the configuration-based calculation, in particular, when
the photon energy is off resonance [Figs. 2(a) and 2(c)]. At
2000 eV, population probabilities differ beyond the error bars
only for high charge states. This can be explained by slightly
higher transition probabilities in the state-resolved approach
caused by the use of first-order-corrected energies and the ap-
pearance of a generally nonuniform distribution of individual
states for the intermediate configurations.

On the other hand, the differences between the two ap-
proaches are noticeable when resonant excitations play a role
[Fig. 2(b)]. Resonant photoexcitation cross sections are sensi-
tive to the differences between calculated transition energies
and the given photon energy. As a consequence, different
resonant excitations can be encountered in the state-resolved
and configuration-based ionization dynamics calculations (see
Table IV in the Appendix). For example, the production of
Ne8+ is enhanced in the configuration-based calculation at the
expense of suppression of Ne6+. More detailed analyses re-

FIG. 3. (a) Photoelectron (P) and (b) fluorescence (F) spectra of
Ne at a photon energy of 800 eV. Other x-ray parameters are the same
as used in Fig. 2. The peak labels in (a) are explained in Table I in
the Appendix.

garding relevant resonances are provided later when electron
and photon spectra are discussed in Sec. III B.

B. Comparison of electron and photon spectra

Figure 3 shows (a) photoelectron and (b) fluorescence
spectra at an incoming photon energy of 800 eV and compares
the state-resolved (blue dashed line) and configuration-based
(red solid line) calculations. At this photon energy, 1s ioniza-
tion is not available, so there is no Auger-Meitner spectrum. In
the photoelectron spectrum in Fig. 3(a), some of the dominant
peaks are labeled with roman numbers; the corresponding
physical processes are specified in Table I in the Appendix.
The configuration-based approach employs transition energies
computed from zeroth-order energies, i.e., the sum of orbital
energies according to the involved configurations. On the
other hand, in the state-resolved approach, transition energies
are computed based on the first-order-corrected energies for
the initial and final states. The energy levels that are degener-
ate in zeroth-order energies split up in first-order many-body
perturbation theory. Consequently, peaks in the state-resolved
spectra are not only shifted, but spectra are also broadened
with more peaks. The energy shifts are clearly visible in
Fig. 3(a), except for (viii) 2p ionization where two peaks
coincide. Splittings also clearly manifest in the photoelectron
lines [e.g., peaks (x) in Fig. 3(a)] and in the fluorescence
spectra of Fig. 3(b), where in the configuration-based spectra
many peaks coincide around 22 eV. Note that this behavior of
energy shifts and splittings in the state-resolved spectra is a
general feature, so it can be found at other photon energies as
will be shown below.

Figure 4 shows (a) photoelectron, (b) Auger-Meitner elec-
tron, and (c) fluorescence spectra at 2000 eV with the same
x-ray beam parameters as used for Fig. 2(c). The energy
shifts and splittings with the state-resolved approach are
clearly exhibited in the Auger-Meitner spectrum. Since the

013102-6

LAURA BUDEWIG et al. PHYSICAL REVIEW RESEARCH 6, 013265 (2024)

FIG. 4. Performance of the neural networks (NN) in terms of (a)–(d) scatter plots and of (e)–(h) error histograms: (a), (e) the transition
energy E in eV; (b), (f) the photoionization cross section (P) in logarithmic scaling; (c), (g) the Auger-Meitner decay rate (AM) in logarithmic
scaling; and (d), (h) the fluorescence rate (F) in logarithmic scaling. The color bars in panels (a)–(d) show the relative number of pairs
(ycalc, ypred), scaled by (a) 10−2 or (b)–(d) 10−3. The dotted white line indicates the identity mapping. We consider the test dataset of case (ii).

FIG. 5. Performance of the random forest regressors (RF) in terms of (a)–(d) scatter plots and of (e)–(h) error histograms: the panels show
the same quantities as in Fig. 4.
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FIG. 7. Comparison of machine-learning-based CSDs with the
fully calculated CSD. Results are obtained with the state-resolved
Monte Carlo implementation without machine learning [44] (fully
calculated) and with the machine-learning-based (ML-based) state-
resolved Monte Carlo implementation [Sec. II E] for different
numbers of training and test Monte Carlo trajectories NTT

traj (Table III).
The error bars indicate the statistical error of the Monte Carlo
calculation.

phase. Random forest regressors perform comparably to neu-
ral networks, as shown in Sec. III B. However, they are a bit
harder to embed in the state-resolved Monte Carlo implemen-
tation due to the large number of individual trees, which all
need to be redirected to the FIFO file and reconstructed in
Fortran (see Sec. II E). We compare machine-learning-based
state-resolved Monte Carlo calculations for argon with state-
resolved Monte Carlo calculations using the implementation
introduced in Ref. [44] (in which no machine learning is
employed).

Figure 7 compares argon CSDs for all three previously
considered dataset cases, which correspond to different num-
bers of training and test Monte Carlo trajectories (Table III).
All machine-learning-based CSDs match the overall behav-
ior of the fully calculated CSD (i.e., in which no machine
learning is employed). Especially for low charge states (i.e.,
q ! 7), the agreement is good for all three machine-learning
cases. For larger charge states, however, deviations beyond
the Monte Carlo errors can be observed, which are enhanced
the smaller the number of training and test Monte Carlo
trajectories [cases (i) and (ii)]. This is because of the machine-
learning predictions of atomic transition parameters for the
transitions newly visited in the production phase. As seen in
Sec. III B, the predictions for cross sections and rates made by
the neural networks are not very accurate. Since the transitions
newly visited in the production phase are not directly sampled
from the same distribution as the training and test data used
in Sec. III B, they are generally expected to be predicted
even less accurately (not shown for brevity) [49,80]. The
fact that the machine-learning-based CSDs are, nonetheless,
quite good relies on the use of atomic transition parameters

FIG. 8. Similar to Fig. 7, but all atomic transition parameters are
predicted by the previously trained neural networks for the different
datasets (Table III).

already calculated. For ≈14% [case (i)], ≈24% [case (ii)],
or ≈40% [case (iii)] of individual initial states all possible
atomic transition parameters are calculated in the training and
test phase, and are used in the production phase (see Sec. II E).
It also explains the improvement with more training and test
Monte Carlo trajectories attributed to more calculated atomic
transition parameters.

To illustrate this point, in Fig. 8, we show compar-
isons of CSDs where the machine-learning-based CSDs are
obtained by using only machine-learning predictions for
atomic transition parameters. In particular, we do not use
the machine-learning-based implementation as described in
Sec. II E, combining both calculated and predicted atomic
transition parameters. Instead, for Fig. 8, only the produc-
tion phase is run with all atomic transition parameters being
predicted by the previously trained neural networks. As can
be seen, when only predicted atomic transition parameters
are used the overall behavior of the machine-learning-based
CSDs still roughly matches that of the fully calculated CSD.
But the agreement is no longer close to being quantitative.

In this context, let us briefly come back to the random
forest regressors (Sec. III B), which perfectly interpolate the
training data. Thus, employing random forest regressors, it
would barely make a difference whether atomic transition
parameters already calculated are used or whether all atomic
transition parameters are predicted by the random forest re-
gressors. In particular, Figs. 7 and 8 would look very similar
to each other and this would make the above investigation
impossible. Moreover, having at hand the atomic transition
parameters already calculated in the training and test phase
(see Sec. II E), we do not consider this as an advantage of the
random forest regressors.

Figures 9(a) and 9(b) show the photoelectron spectra,
Figs. 9(c) and 9(d) show the Auger-Meitner electron spectra,
and Figs. 9(e) and 9(f) show the fluorescence spectra with
an energy resolution of 1 eV. At this energy resolution, the
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Let’s use machine-learning models for predicting
atomic transition parameters

I for state-to-state transition from individual quantum state I i ! I f

I one model for each parameter, i.e., energy (E), photoionization
cross section (P), Auger-Meitner decay rate (AM), and fluorescence rate (F)
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State-resolved approach
I individual quantum state: electronic configuration 1sN1s2sN2s2pN2p · · · and

quantum numbers (L, S ,ML,)

I Monte Carlo method because number of rate equations is dramatically larger

226; (000)

126;

(0
1

2
0)

216;

(0
1

2
0)

225;

(1
1

2
0)

225;

(1
1

2
± 1)

224

(110)

224

(11± 1)

224

(200)

224

(20± 1)

224

(20± 2)

224

(000)

. . . . . .

N1sN2sN2p ; (LSML): electronic configuration + quantum numbers

!: Photoionization; !: Auger-Meitner decay; !: Fluorescence

99K, 99K, and 99K: possible Monte Carlo trajectories

Budewig, L., Son, S.-K. and Santra, R. Phys. Rev. A 107, 013102 (2023) and 105, 033111 (2022)

State-resolved Monte Carlo calculations 5/ 23

BUDEWIG, SON, AND SANTRA PHYSICAL REVIEW A 107, 013102 (2023)

10 20 30 40 50
Z

100

105

1010

1015

N

Nconfig Nstate Nstate(Z=10), resonances

FIG. 1. Number of configurations Nconfig (red dots) and number
of states Nstate (blue crosses) as a function of the nuclear charge Z ,
assuming that all electrons are actively involved in the ionization
dynamics. Only the nonresonant case is shown and the ground-state
configurations are given by the Aufbau principle. For the resonant
case, solely the point of Nstate for neon (Z = 10) with nmax = 7 and
lmax = 2 is marked (light blue).

where
(a

b

)
is a binomial coefficient. Then, the number of all

possible states is given by multiplying the N j
state for all j (no

resonant excitation is considered),

Nstate =
∏

j

Nj∑

k=0

(
Nmax

j

k

)
. (9)

If we consider the ground-state configuration, all subshells
are fully occupied (Nj = Nmax

j ), except for the outermost shell
(index j′ in what follows), which may be partially occupied.
For a closed subshell (Nj = Nmax

j ), N j
state = 2Nj . Thus, the

number of all possible states is written as

Nstate =

⎡

⎣
∏

j ̸= j′
2Nj

⎤

⎦×

⎡

⎣
Nj′∑

k=0

(
Nmax

j′

k

)⎤

⎦. (10)

If the system has no partially occupied subshells initially and
all the subshells are accessible for one-photon ionization, then
it is further simplified to Nstate = 2Nelec . For example, Ne has 10
electrons and Nstate = 210 = 1024.

If resonant excitations are taken into account, a similar ex-
pression to Eq. (8) can be directly used. Let Nso be the number
of available spin orbitals given by computational parameters
nmax and lmax, and Nelec be the number of accessible electrons
for one-photon ionization or resonant excitation. Then, the
number of states is given by

N res
state =

Nelec∑

k=0

(
Nso

k

)
. (11)

Figure 1 shows the number of configurations and states as a
function of the nuclear charge Z for the nonresonant cases.
The ground-state electronic configurations are constructed by
the Aufbau principle. For all Z the photon energy is assumed
to be large enough to ionize all subshells, including the 1s

subshell. Both Nconfig and Nstate grow exponentially, but Nstate
is much larger than Nconfig for a given Z . For the resonant case,
this number explodes even for a low-Z system like Ne with
limited computational parameters (nmax = 7 and lmax = 2;
Nso = 100). With them, Nstate ≃ 1.9 × 1013, which is marked
in Fig. 1. Therefore, even for low Z it is inevitable to employ
a Monte Carlo on-the-fly scheme for state-resolved ionization
dynamics when including resonant excitations.

D. State-resolved Monte Carlo implementation

In the state-resolved approach, the number of coupled rate
equations [Eq. (6)] that have to be solved is equal to the
number of states [Eq. (10)], as depicted in Fig. 1. We im-
plement a state-resolved Monte Carlo on-the-fly algorithm
within XATOM [42]. This allows us to apply our state-resolved
ionization dynamics framework to heavier atoms, like argon
(Z = 18) or xenon (Z = 54), and to the resonant case.

In general, in a Monte Carlo approach for ionization
dynamics, we stochastically consider many trajectories for
possible ionization pathways, i.e., sequences of repeated
one-photon ionization and inner-shell relaxation events. The
populations of entities, such as charge state, electronic con-
figuration, or electronic state, are then obtained by averaging
over an ensemble of trajectories. A detailed description of
the configuration-based Monte Carlo method can be found
in Ref. [27]. Extending it to a state-resolved Monte Carlo
algorithm basically requires to replace a configuration index
with a combination of configuration and state indexes through
the whole algorithm, i.e., I = Iconfig → I = (Iconfig, ILS ). Here,
Iconfig indicates an electronic configuration and ILS indicates
the additional quantum numbers needed for specifying a
zeroth-order LS eigenstate. Note that we do not include in ILS
the spin projection MS and, hence, do not distinguish between
states with different spin projection. Because of a lack of
spin coupling for all involved interaction Hamiltonians, states
with different spin projections always have the same transi-
tion probabilities and, consequently, behave exactly the same
during the ionization dynamics. Thus, MS can be neglected
in the description of the individual states. Moreover, cross
sections and rates based on configurations need to be replaced
by individual state-to-state cross sections and rates [43].

For the sake of completeness, we sketch our state-resolved
Monte Carlo on-the-fly implementation:

(a) Start with the initial electronic configuration Iconfig,
i.e., that for the neutral atom, and calculate all zeroth-
order LS eigenstates for the initial configuration via the
improved electronic-structure implementation (see Sec. II A
and Ref. [43]). If there is more than one LS eigenstate, the
state with the minimal first-order-corrected energy ELSκ is
selected. If L ̸= 0, the ML projection quantum number is
randomly chosen as an initial condition for each trajectory.
If S ̸= 0, then the maximal spin projection is chosen for con-
venience (it does not influence the ionization dynamics). In
this way we set up the initial state I = (Iconfig, ILS ). In order to
reduce the computational effort, store the information about
the electronic structure, so that it can be directly reused for
further trajectories.

(b) Set up an initial value for the time t and the time step
"t .
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FIG. 4. (a) Photoelectron (P), (b) Auger-Meitner electron (AM),
and (c) fluorescence (F) spectra of Ne at a photon energy of 2000 eV.
Other x-ray parameters are the same as used in Fig. 2. The peak labels
are explained in Tables I–III in the Appendix.

Auger-Meitner peaks in Fig. 4(b) are not well separated and
they merge within a narrow energy window, resulting in a
complex spectrum, it is critical to apply improved transi-
tion energy calculations to interpret individual peaks. For
the single-core-hole Auger-Meitner line (i), the state-resolved
result shows considerable improvement towards experimental
data as demonstrated in Ref. [43]. The energy shift from
the configuration-based result to the state-resolved result is
−59 eV. For the double-core-hole Auger-Meitner line (iii),
which is also called KK–KLL hypersatellite [65], the en-
ergy shift is somewhat smaller (−6 eV). Even in this case,
the state-resolved value (868.84 eV) is closer to the ex-
perimental values (870.50 eV [65] and 870 eV [66]) than
the configuration-based value (875.27 eV). Note that the
prominent peak of the state-resolved approach at 764 eV
in Fig. 4(b) is the sum of Auger-Meitner lines (ii) and (v)
and other minor contributions that are not assigned here.
Regarding the fluorescence spectra, peak (ii) in Fig. 4(c) is
considerably reduced in the state-resolved approach. This is
because the initial configuration of (ii) has two states, 1P
and 3P (see Table III in the Appendix), and the latter can-
not relax via 2p → 1s fluorescence (final state: 1S) since a
triplet to singlet transition is forbidden in a nonrelativistic
calculation. Once the triplet initial state (Ne8+ 1s12p1 3P) is
formed during the state-resolved dynamics, it has to relax via
2p → 2s fluorescence, giving rise to peak (iii) in Fig. 4(c).
Thus, the changes of the peak heights provide more details
about underlying physical processes between state-resolved

FIG. 5. (a) Photoelectron (P), (b) Auger-Meitner electron (AM),
and (c) fluorescence (F) spectra of Ne at a photon energy of 1050 eV.
Other parameters are the same as used in Fig. 2. The peak labels are
explained in Tables I–III in the Appendix.

and configurations-based ionization dynamics. The fluores-
cence peak positions of (iv) in Fig. 4(c) coincide for both
approaches.

In Fig. 5, we investigate the effects of resonant excitations
on the electron and photon spectra at 1050 eV. The x-ray
beam and computational parameters are the same as used
in Fig. 2(b). In the state-resolved and configuration-based
approaches, different resonant excitations are predominantly
involved in the ionization dynamics at 1050 eV owing to
different transition energy calculations (see Table IV in the
Appendix). The different resonant excitations are all reflected
in the spectra in Fig. 5. For example, photoelectron peak
(vi) in Fig. 5(a), which is prominent in the configuration-
based approach, is absent in the state-resolved approach. This
is because (vi) refers to the 1s ionization of Ne3+ 1s12l6

(l = s, p) and its threshold is higher than the photon energy
in the state-resolved approach. Instead, resonant excitation of
single-core-excited Ne3+ predominantly via a 1s → 4p reso-
nant transition is the alternative process (see Table IV in the
Appendix). The same transition can also occur at Ne6+ 1s22l2

within the state-resolved approach. These 1s → 4p transitions
at Ne3+ and Ne6+ are responsible for the Auger-Meitner
decay involving 4p, which explains the emergence of (xii)
in Fig. 5(b), only in the state-resolved approach. On the
other hand, in the configuration-based approach, the 1s →
3p transition is dominant at Ne5+ 1s12l4 and the resulting
double-core-hole-excited state of Ne5+ 1s02l43p1 relaxes via
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FIG. 9. Comparison of machine-learning-based (ML-based) and fully calculated spectra for (a), (b) photoelectron (P); (c), (d) Auger-
Meitner electron (AM); and (e), (f) fluorescence (F). Calculations obtained with the state-resolved Monte Carlo implementation without
machine learning [44] (blue) are compared with those obtained with the machine-learning-based state-resolved Monte Carlo implementation
(Sec. II E) for case (i) in Table III (magenta). Additionally, results with all atomic transition parameters being predicted by the previously
trained neural networks (pink) are given. The peak labels are explained in Tables VII–IX.

Auger-Meitner electron and the x-ray fluorescence spectra
form a quasicontinuum over most parts of the energy ranges
shown. Like the CSD, fully calculated results obtained with
the implementation of Ref. [44] are compared with machine-
learning-based results obtained with the implementation of
Sec. II E, as well as those that are based only on machine-
learning predictions. [For brevity, only case (i) of Table III is
shown.] Some of the dominant peaks that can be assigned to
at most two dominant processes are labeled with roman num-
bers; the corresponding transitions are specified in Table VII

[for Figs. 9(a) and 9(b)], Table VIII [for Figs. 9(c) and 9(d)],
and Table IX [for Figs. 9(e) and 9(f)].

Most importantly, we observe in Fig. 9 that the machine-
learning-based spectra obtained with the implementation of
Sec. II E (magenta lines) are in overall very good agreement
with the fully calculated ones, apart from small details. This
is due to the fact that spectral features are dominated by
peaks belonging to very low charge states (see Tables VII–IX).
But for low charge states, the corresponding atomic transition
parameters are mostly all already calculated in the training and

TABLE VII. Peak assignment in the photoelectron spectra [Figs. 9(a) and 9(b)]. Calculated transition energies, E calc
Ii→I f , and transition

energies predicted by the neural network [case (i)], E pred
Ii→I f , are listed for the underlying process.

Label Process E calc
Ii→I f (eV) E pred

Ii→I f (eV)

(i) Ar, 1s22s22p63s23p6 (1S) → 1s12s22p63s23p6 (2S) 1792 1784
(ii) Ar1+, 1s22s22p53s23p6 (2P) → 1s12s22p53s23p6 (3P) 1737 1734

Ar3+, 1s22s22p63s13p4 (2D) → 1s12s22p63s13p4 (1D) 1731
(iii) Ar1+, 1s12s22p63s23p6 (2S) → 1s02s22p63s23p6 (1S) 1555 1593
(iv) Ar2+, 1s22s22p43s23p6 (1D) → 1s12s22p43s23p6 (2D) 1672 1671

Ar2+, 1s22s22p43s23p6 (1S) → 1s12s22p43s23p6 (2S) 1679
(v) Ar, 1s22s22p63s23p6 (1S) → 1s22s12p63s23p6 (2S) 4675 4666
(vi) Ar, 1s22s22p63s23p6 (1S) → 1s22s22p53s23p6 (2P) 4751 4746
(vii) Ar, 1s22s22p63s23p6 (1S) → 1s22s22p63s13p6 (2S) 4968 4961
(viii) Ar, 1s22s22p63s23p6 (1S) → 1s22s22p63s23p5 (2P) 4987 4967
(ix) Ar1+, 1s12s22p63s23p6 (2S) → 1s12s12p63s23p6 (1S) 4629 4638
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of it. Moreover, replacing the cross sections in Eq. (20) by
the corresponding transition rates [Eqs. (13) and (14)] delivers
ratios of individual transition rates.

III. VALIDATION

Having discussed the basic formalism underlying our
implementation in XATOM, we next proceed to explore tran-
sition energies and photoionization cross sections for explicit
electronic configurations and to compare the results with
experimental measurements. In particular, we employ two
different theoretical strategies for describing physical pro-
cesses. In the zeroth-order strategy, transition energies are
computed based on zeroth-order energies for the initial and
final states. The zeroth-order energies are the sum of orbital
energies according to the initial or final electronic configura-
tion [Eq. (10)]. On the other side, in the first-order strategy,
transition energies are computed based on the first-order-
corrected energies ELS for the initial and final states (see
Sec. II B). For both strategies, energies and radial integrals are
calculated with orbitals and orbital energies optimized for the
initial configuration only. The usage of the same set of orbitals
for both the initial and final configurations avoids issues with
orbital nonorthogonality [73–75]. Moreover, it should be men-
tioned that we still perform zeroth-order calculations using
the original version of XATOM, whereas for the first-order
calculations, we employ the present implementation.

Orbitals and orbital energies are numerically solved on a
radial grid employed by XATOM (see Refs. [35,47] for details),
based on the HFS potential [Eq. (3)] including the latter tail
correction [76]. In what follows, the bound states are com-
puted using the generalized pseudospectral method [77,78] on
a nonuniform grid with 200 grid points and a maximum radius
of 50 a.u. The continuum states are computed using the fourth-
order Runge-Kutta method on a uniform grid [79,80] with a
grid size of 0.005 a.u., employing the same potential as used in
the bound-state calculation. It has been demonstrated that the
cross sections and rates calculated using XATOM (zeroth-order
strategy) show good agreement with the available experimen-
tal data and other calculations [35,53,54].

A. Transition energies for neon

First, the Kα fluorescence energy and all KLL Auger-
electron energies are examined for an initial Ne+ ion with a
K-shell vacancy (1s−1 2S). The results are presented in Fig. 1.
It is apparent from the data that the first-order strategy is in
reasonable agreement with the experimental Kα fluorescence
energy [81,82] and the KLL Auger-Meitner electron energies
[83], to within less than 2%. In contrast, the energies obtained
via the zeroth-order strategy differ significantly from the ex-
perimental values. These findings indicate that the first-order
strategy, contained in our implementation, is the better strat-
egy for describing the transition energy. The small difference
between experiment and theory still remaining for the first-
order calculation might be attributed to the use of the same set
of initial and final orbitals, the neglect of higher-order terms,
and relativistic effects. We remark that no value is shown for
the final state of 2p−2 3P in Fig. 1 because this transition is
forbidden on account of parity [30,84].
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FIG. 1. Comparison of experimental Kα fluorescence energy
[81,82] and KLL Auger-electron energies [83] for neon with two
theoretical strategies (see legend). The different lines are labeled by
the final open subshell(s) (first line) and by the final term symbol
(second line). In all cases, the Ne+ ion is initially in the 1s−1 2S
state.

B. Photoionization cross sections for argon

As a next example, we examine photoionization of a
neutral argon atom (1s22s22p63s23p6) in the region of the
thresholds. Figure 2 shows the total photoionization cross
section as a function of the photon energy in the (a) K-shell,
(b) L-shell, and (c) M-shell threshold regions. The total cross
sections, which are an incoherent sum over all individual
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FIG. 2. Calculated total photoionization cross section, in Mb, of
neutral argon as a function of the photon energy, in eV. Results for
both the first-order strategy (solid blue line) and the zeroth-order
strategy (dashed red line) are compared to experimental data (black
crosses) reported in Ref. [85] for the K- and L-shell thresholds and
Ref. [86] for the M-shell threshold.
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