Multiple-core-hole resonance spectroscopy with ultraintense x-ray pulses

Sang-Kil Son^{1, M}, Aljoscha Rörig^{2,3}, Tommaso Mazza², Philipp Schmidt², Thomas Baumann², Benjamin Erk⁴, Markus Ilchen^{2,4,5} Joakim Laksman², Valerija Music^{2,4,5}, Shashank Pathak⁶, Daniel Rivas², Daniel Rolles⁶, Svitozar Serkez², Sergey Usenko², Robin Santra^{1,3}, Michael Meyer², Rebecca Boll² — ¹CFEL, DESY, ²European XFEL, ³Uni. Hamburg, ⁴DESY, ⁵Uni. Kassel, ⁶Kansas State Univ.

Abstract

Understanding the interaction of **ultraintense and ultrafast x-ray pulses** with heavy atoms is crucial for gaining insights into the structure and dynamics of matter. One key aspect of nonlinear light-matter interaction is its dependence on the photon energy, but there has been no systematic study of **x-ray free-electron lasers** (XFELs) so far. We present a joint theoretical and experimental study of highly charged xenon ions after interaction with XFEL pulses scanning the photon energy over a wide range, which enables us to map out the transient resonances occurring during the complex charge-up pathways. **Massively hollow** atoms featuring up to six simultaneous core holes determine the spectra at specific photon energies and charge states. The extraction of **resonance spectra** is facilitated by the fact that the ion yields become independent of the peak fluence beyond a saturation point. Our study lays the groundwork for novel spectroscopy of transient atomic species in exotic, multiple-core-hole states that have not been explored.

Photon-energy dependence of charge-state distributions of Xe

X-ray multiphoton ionization

Interaction of matter with intense XFEL pulses is characterized by sequential multiphoton multiple ionization dynamics.

- Sequence of K-shell ionization (P), Auger-Meitner decay (A), and fluorescence (F)
- Extremely complicated ionization dynamics
- Highly excited electronic structure involved
- No standard quantum chemistry code available

We implement an integrated toolkit, **XATOM**, to treat xray multiphoton ionization dynamics, based on rateequation approach, within a consistent theoretical framework of nonrelativistic quantum electrodynamics, perturbation theory, and the Hartree–Fock–Slater model.

XRAYPAC:

a software package for modeling x-rayinduced dynamics of matter, https://www.desy.de/~xraypac/

Resonance effects: XREMPI & REXMI

XREMPI: x-ray resonance-enhanced multiphoton ionization

single resonant excitation and another photoionization

• A. LaForge *et al.*, *Phys. Rev. Lett.* **127**, 213202 (2021).

REXMI: resonance-enabled x-ray multiple ionization

- multiple resonant excitations and Auger-Meitner-type decay: further ionization beyond the sequential onephoton ionization limit
- B. Rudek et al., Nat. Photon. 6, 858 (2012). B. Rudek et al., Nat. Commun. 9, 4200 (2018).

.....

Saturation effects at high fluences

- interaction volume
- experiment

- Before volume integration, a specific charge state is generated with a narrow fluence range
- of the peak fluence beyond a saturation

Resonance ion spectra of Xe

Multiple-core-hole analysis

"Each charge state selects its own local fluence."

Conclusions

- We present a new type of resonance ion spectroscopy using ultraintense femtosecond x-ray radiation
 - > Wide tunability of photon energy at European XFEL
 - > Exploit saturation of ion yields at very high fluences
- Transient multiple-core-hole states (up to six simultaneous core holes) are found to be crucial for explaining the peaks in the resonance spectra
- Extremely short-lived, as well as unusually long-lived, highly charged ions in exotic electronic configurations can be created and probed with intense x-ray pulses

Publication

A. Rörig, S.-K. Son, R. Boll, et al., Nat. Commun. 14, 5738 (2023).

Sangkil.son@cfel.de

HELMHOLTZ

Center for Free-Electron Laser Science CFEL is a scientific cooperation of the three organizations: DESY – Max Planck Society – University of Hamburg

