next up previous
Next: Bibliography Up: QCDINS homepage Previous: Package description

SUBROUTINE ACTION(XI4,S,DS,DDS) - $I\overline{I}$-valley action




Calculation of the $I\overline{I}$-action, ${\rm S}=S^{(I\overline{I})}(\xi )$, as function of the conformal $I\overline{I}$-distance, ${\rm XI4}=\xi$, as well as the 1st, ${\rm DS}=dS^{(I\overline{I})}/d\xi$, and 2nd, ${\rm DDS}=d^2S^{(I\overline{I})}/d\xi^2$, derivatives.

For default settings of the contrôl flags in QIINIT (VALFLAG=.TRUE.), the action is calculated according to the exact valley form [1,2],

$\displaystyle S^{(I\overline{I})}(\xi )$ $\textstyle =$ $\displaystyle 1-\frac{12}{f(\xi )}
- \frac{96}{f(\xi )^2} +\frac{48}{f(\xi )^3}...
... 3f(\xi )+8\right]
\ln\left[ \frac{1}{2\xi }\bigl( f(\xi ) +4\bigr)\right] \, ,$ (1)
$\displaystyle f(\xi )$ $\textstyle =$ $\displaystyle \xi^2+\sqrt{\xi^2-4}\xi-4 \, .$ (2)

For VALFLAG=.FALSE., a simple but good approximation to the exact valley form (1),

$\displaystyle S^{(I\overline{I})}(\xi ) \approx
1-\frac{6}{(\xi +1/2)^2}
,$     (3)

is used.





A. Ringwald and F. Schrempp

1999-08-21