next up previous
Next: Bibliography Up: QCDINS homepage Previous: Package description

DOUBLE PRECISION FUNCTION OMEGA(XI4) - Fermionic overlap




Calculation of the fermionic overlap, ${\rm OMEGA}=\omega$, as function of the conformal $I\overline{I}$-distance, ${\rm XI4}=\xi$.

The fermionic overlap has been computed in Ref. [1],

\begin{displaymath}
\omega(\xi)=
\frac{6 B(\frac{3}{2},\frac{5}{2})}{z^{3/2}}\...
...e{6ex}
z \equiv \frac{1}{2}\left(\xi +\sqrt{\xi^2-4}\right).
\end{displaymath} (1)

In the present routine the following simple, but accurate approximation for $\omega$ is used:
\begin{displaymath}
\omega (\xi )\approx \frac{4}{(\xi +1/2)^{3/2}}.
\end{displaymath} (2)





A. Ringwald and F. Schrempp

1999-08-21