up previous
Up: QCDINS homepage Previous: Package description

SUBROUTINE QIKGAM - Generate 4-momentum of virtual photon $q$


In this subroutine the 4-momentum of the virtual photon, $q$, with $q^2=-Sx_{\rm Bj}y_{\rm Bj}\equiv -Q^2$, is generated. It assumes $e^2=0$ and that $e=(e_t,0,0,e_z)$ with $e_z >0$ (i.e. incoming $e$ goes in $+z$ direction).

According to a Sudakov decomposition, the 4-momentum of the virtual photon is expressed as

$\displaystyle q_t$ $\textstyle =$ $\displaystyle y_{\rm Bj}\,e_t-\frac{Sx_{\rm Bj}y_{\rm Bj}}{4\,e_t},$ (1)
$\displaystyle q_x$ $\textstyle =$ $\displaystyle -\sqrt{Sx_{\rm Bj}y_{\rm Bj}(1-y_{\rm Bj})}\,\cos\phi_q ,$ (2)
$\displaystyle q_y$ $\textstyle =$ $\displaystyle -\sqrt{Sx_{\rm Bj}y_{\rm Bj}(1-y_{\rm Bj})}\,\sin\phi_q ,$ (3)
$\displaystyle q_z$ $\textstyle =$ $\displaystyle y_{\rm Bj}\,e_t+\frac{S x_{\rm Bj}y_{\rm Bj}}{4\,e_t}.$ (4)

The azimuthal angle $\phi_q $, $-\pi\leq \phi_q \leq +\pi$, is randomly generated for default setting of the control flags. Otherwise, $\phi_q $ is fixed at zero, i.e. $e^\prime$ (the 4-momentum of the scattered $e^\pm$) and $q$ are lying in the $x-z$ plane.


Table 1: Variables set in QIKGAM.
Name Description
QIPGAM(1) $q_x$
QIPGAM(2) $q_y$
QIPGAM(3) $q_z$
QIPGAM(4) $q_t$



up previous
Up: QCDINS homepage Previous: Package description

A. Ringwald and F. Schrempp

1999-08-21