up previous
Up: QCDINS homepage Previous: Package description

SUBROUTINE QIKGSP - Generate 4-momenta of virtual quark $q^\prime$ and current quark $q^{\prime\prime}$




In this subroutine the 4-momenta of the virtual quark, $q^\prime$, with $q^{\prime 2}=-Q^{\prime 2}$, where $Q^{\prime 2}$ is the virtuality generated in QIHINS, and of the outgoing, on-shell current quark $q^{\prime\prime}$, with $\sqrt{q^{\prime\prime\, 2}}=m_{q^{\prime\prime}}$, are generated. The incoming $P$ is assumed to go into the $-z$ direction, the incoming $e$ in the $+z$ direction.

Using a Sudakov decomposition, the 4-momentum of the virtual quark $q^\prime$ is generated in this subroutine as

$\displaystyle q^\prime_t$ $\textstyle =$ $\displaystyle -2\, D\, \left( \cos\phi_{q^\prime}\cos\phi_q +\sin\phi_{q^\prime...
...(1-y_{\rm Bj})}
\frac{P_t}{S y_{\rm Bj}}+ e_t \frac{Q^{\prime 2}}{S x^\prime z}$ (1)
    $\displaystyle + P_t \left( \frac{Q^{\prime 2}}{Sx^\prime z\, y_{\rm Bj}}\left(x...
...m Bj})\right)
-x_{\rm Bj}
-\frac{m^2_{q^{\prime\prime}}}{Sy_{\rm Bj}} \right)
,$  
$\displaystyle q^\prime_x$ $\textstyle =$ $\displaystyle D\,\cos\phi_{q^\prime}-\frac{Q^{\prime 2}}{Sx^\prime z\, y_{\rm Bj}}\,\sqrt{Sx_{\rm Bj}y_{\rm Bj}(1-y_{\rm Bj})}\,\cos\phi_q
,$ (2)
$\displaystyle q^\prime_y$ $\textstyle =$ $\displaystyle D\,\sin\phi_{q^\prime}-\frac{Q^{\prime 2}}{Sx^\prime z\, y_{\rm Bj}}\,\sqrt{Sx_{\rm Bj}y_{\rm Bj}(1-y_{\rm Bj})}\,\sin\phi_q
,$ (3)
$\displaystyle q^\prime_z$ $\textstyle =$ $\displaystyle 2\, D\, \left( \cos\phi_{q^\prime}\cos\phi_q +\sin\phi_{q^\prime}...
...(1-y_{\rm Bj})}
\frac{P_t}{S y_{\rm Bj}}+ e_t \frac{Q^{\prime 2}}{S x^\prime z}$ (4)
    $\displaystyle - P_t \left( \frac{Q^{\prime 2}}{Sx^\prime z\, y_{\rm Bj}}\left(x...
...m Bj})\right)
-x_{\rm Bj}
-\frac{m^2_{q^{\prime\prime}}}{Sy_{\rm Bj}} \right)
,$  

with
\begin{displaymath}
D=\sqrt{S x_{\rm Bj}y_{\rm Bj} \frac{Q^{\prime 2}}{Sx^\prime...
...prime 2}}{Sx^\prime z\, y_{\rm Bj}}m^2_{q^{\prime\prime}}}\,.
\end{displaymath} (5)

The azimuthal angle $\phi_{q^\prime}$, $-\pi\leq\phi_{q^\prime}\leq +\pi$, is generated randomly. The 4-momentum of the current quark is then calculated via
\begin{displaymath}
q^{\prime\prime} = q - q^\prime .
\end{displaymath} (6)


Table 1: Variables set in QIKGSP.
Name Description
QIQGAM(1,2) $q^\prime_x$
QIQGAM(2,2) $q^\prime_y$
QIQGAM(3,2) $q^\prime_z$
QIQGAM(4,2) $q^\prime_t$
QIQGAM(1,1) $q^{\prime\prime}_x$
QIQGAM(2,1) $q^{\prime\prime}_y$
QIQGAM(3,1) $q^{\prime\prime}_z$
QIQGAM(4,1) $q^{\prime\prime}_t$



up previous
Up: QCDINS homepage Previous: Package description

A. Ringwald and F. Schrempp

1999-08-21