
Connection to SIDIS results 

5 A. Airapetian et al, Phys. Rev. Lett. 103 (2009) 152002

Some good reasons suggest Sivers’ mechanism as 
responsible for the large values of AN, like for 
example the correspondance, at moderate-low pT, 
of the azimuthal angle Φ with the angle modulating 
the Sivers term in SIDIS [5].
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Predictions from TMDs models estimate sizeable 
left-r ight asymmetr ies in inclusive hadron 
production off ep scattering based on the Sivers 
effect, and negligible for the Collins effect, based on 
previous HERMES data.

From M. Anselmino et al., Phys. Rev. D81, 034007 (2010)
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FIG. 2: Estimates ofAN vs. xF for the p↑ ! → πX process at HERMES (
√
s # 7 GeV). Left panel: Sivers effect at PT = 1.5 GeV;

central panel: Sivers effect at PT = 2.5 GeV; right panel: Collins effect at PT = 2.5 GeV. The computation has been performed
according to Eqs. (16), (17) and (18) of the text, adopting the Sivers functions of Ref. [14] and the transversity and Collins
functions of Ref. [22], as extracted from SIDIS and e+e− data, the unpolarized PDFs of Ref. [83] and the FFs of Ref. [84]. In
the left panel we also show, for charged pions, the statistical uncertainty bands coming from the extracted Sivers functions [14].

Our results are given for the kinematical configurations of HERMES, COMPASS, JLab at 12 GeV, and a hypo-
thetical ENC future machine operating at an energy

√
s = 50 GeV. For hadron production, the Sivers and Collins

contributions are shown separately. We plot AN as a function of xF at fixed PT values; these should be chosen as the
hard scale of the process, ensuring a large momentum transfer in the hard scattering, say Q2 > 1 GeV2. In collinear
cases, at LO, it might suffice to have PT > 1 GeV; however, with TMD factorization, one has to be more careful, as
PT might be partially generated by intrinsic k⊥. We have checked that a value of PT = 2.5 GeV corresponds to a
safe Q2 > 1 GeV2 region in the whole range of xF , while PT = 1.5 GeV implies a safe Q2 region only for backward
production, xF

<∼ 0. We give predictions for these two values of PT .
Notice also that for positive xF the minimum of x is given, roughly, by xF . This implies that for xF > 0.2 –

0.3 we should employ the parameterizations of the Sivers and transversity functions in a region where they are not
constrained by SIDIS data. For this reason we will give our theoretical estimates of AN only up to xF # 0.2. On the
other hand, for negative xF the minimum of x is controlled by the ratio xT = 2PT /

√
s, implying that at moderate

c.m. energies (i.e.
√
s # 10 – 20 GeV) and PT # 1 – 2 GeV, we are sensitive to the valence region of the polarized

proton, i.e. the region where the Sivers (and the transversity) functions reach their maxima.
Let us comment in details our results.

• We first stress some aspects peculiar to the p↑! → hX process. As in SIDIS processes at leading order accuracy,
only one partonic subprocess, q ! → q !, is active, with a simple 1/t̂2 dependence (a much simpler dynamics
than in the p p → hX case). However, since the lepton plane is not identified (we do not require the detection
of the outgoing lepton), one cannot access, separately, the Sivers and the Collins effects. Nevertheless, in the
backward region (w.r.t. the proton direction) the variable |û| becomes smaller and so does the partonic spin
transfer cross section ∝ M̂0

1 M̂
0
2 [see Eqs. (8) and (9)], entering the Collins contribution to AN [second term

on the r.h.s. of Eq. (17)]. This implies a strong dynamical suppression of the Collins effect (reinforced by the
integration over the azimuthal phases) at largely and moderately negative values of xF , leaving active mainly
the Sivers contribution. Notice that, contrary to what happens in the p p → hX process, no û-channel in the
partonic process is present; moreover the variable t̂ strongly depends on φ, the azimuthal phase of the Sivers
effect [first term on the r.h.s. of Eq. (17)].

• In Fig. 2 we present our estimates, separately, for the Sivers and Collins contributions to AN at HERMES
kinematics. More precisely, we show the Sivers effect at PT = 1.5 GeV (left panel) and at PT = 2.5 GeV
(central panel) and the Collins effect at PT = 2.5 GeV (right panel). The Collins effect at PT = 1.5 GeV (not
shown) is almost negligible in the kinematical region considered. For charged pion production at PT =1.5 GeV
(left panel) the statistical uncertainty bands as resulting from our fit [14] are also shown.

The largest AN values obtained correspond to the x region (of the polarized proton distributions) where the
Sivers functions, for u and d quarks, reach their maxima. It is interesting to note that the sizable value of AN

for π− production (larger than the corresponding Sivers contribution to AUT in SIDIS) is due to the dominance
of the d quark with a small contamination from the u quark. This is related to the fact that the light-cone
momentum fraction z is always bigger than the maximum between |xF | and xT , implying, at moderate and
large |xF |, a dominance of the leading fragmentation functions.
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FIG. 2: Estimates ofAN vs. xF for the p↑ ! → πX process at HERMES (
√
s # 7 GeV). Left panel: Sivers effect at PT = 1.5 GeV;

central panel: Sivers effect at PT = 2.5 GeV; right panel: Collins effect at PT = 2.5 GeV. The computation has been performed
according to Eqs. (16), (17) and (18) of the text, adopting the Sivers functions of Ref. [14] and the transversity and Collins
functions of Ref. [22], as extracted from SIDIS and e+e− data, the unpolarized PDFs of Ref. [83] and the FFs of Ref. [84]. In
the left panel we also show, for charged pions, the statistical uncertainty bands coming from the extracted Sivers functions [14].

Our results are given for the kinematical configurations of HERMES, COMPASS, JLab at 12 GeV, and a hypo-
thetical ENC future machine operating at an energy

√
s = 50 GeV. For hadron production, the Sivers and Collins

contributions are shown separately. We plot AN as a function of xF at fixed PT values; these should be chosen as the
hard scale of the process, ensuring a large momentum transfer in the hard scattering, say Q2 > 1 GeV2. In collinear
cases, at LO, it might suffice to have PT > 1 GeV; however, with TMD factorization, one has to be more careful, as
PT might be partially generated by intrinsic k⊥. We have checked that a value of PT = 2.5 GeV corresponds to a
safe Q2 > 1 GeV2 region in the whole range of xF , while PT = 1.5 GeV implies a safe Q2 region only for backward
production, xF

<∼ 0. We give predictions for these two values of PT .
Notice also that for positive xF the minimum of x is given, roughly, by xF . This implies that for xF > 0.2 –

0.3 we should employ the parameterizations of the Sivers and transversity functions in a region where they are not
constrained by SIDIS data. For this reason we will give our theoretical estimates of AN only up to xF # 0.2. On the
other hand, for negative xF the minimum of x is controlled by the ratio xT = 2PT /

√
s, implying that at moderate

c.m. energies (i.e.
√
s # 10 – 20 GeV) and PT # 1 – 2 GeV, we are sensitive to the valence region of the polarized

proton, i.e. the region where the Sivers (and the transversity) functions reach their maxima.
Let us comment in details our results.

• We first stress some aspects peculiar to the p↑! → hX process. As in SIDIS processes at leading order accuracy,
only one partonic subprocess, q ! → q !, is active, with a simple 1/t̂2 dependence (a much simpler dynamics
than in the p p → hX case). However, since the lepton plane is not identified (we do not require the detection
of the outgoing lepton), one cannot access, separately, the Sivers and the Collins effects. Nevertheless, in the
backward region (w.r.t. the proton direction) the variable |û| becomes smaller and so does the partonic spin
transfer cross section ∝ M̂0

1 M̂
0
2 [see Eqs. (8) and (9)], entering the Collins contribution to AN [second term

on the r.h.s. of Eq. (17)]. This implies a strong dynamical suppression of the Collins effect (reinforced by the
integration over the azimuthal phases) at largely and moderately negative values of xF , leaving active mainly
the Sivers contribution. Notice that, contrary to what happens in the p p → hX process, no û-channel in the
partonic process is present; moreover the variable t̂ strongly depends on φ, the azimuthal phase of the Sivers
effect [first term on the r.h.s. of Eq. (17)].

• In Fig. 2 we present our estimates, separately, for the Sivers and Collins contributions to AN at HERMES
kinematics. More precisely, we show the Sivers effect at PT = 1.5 GeV (left panel) and at PT = 2.5 GeV
(central panel) and the Collins effect at PT = 2.5 GeV (right panel). The Collins effect at PT = 1.5 GeV (not
shown) is almost negligible in the kinematical region considered. For charged pion production at PT =1.5 GeV
(left panel) the statistical uncertainty bands as resulting from our fit [14] are also shown.

The largest AN values obtained correspond to the x region (of the polarized proton distributions) where the
Sivers functions, for u and d quarks, reach their maxima. It is interesting to note that the sizable value of AN

for π− production (larger than the corresponding Sivers contribution to AUT in SIDIS) is due to the dominance
of the d quark with a small contamination from the u quark. This is related to the fact that the light-cone
momentum fraction z is always bigger than the maximum between |xF | and xT , implying, at moderate and
large |xF |, a dominance of the leading fragmentation functions.

inclusive Hadrons

0 0.1 0.2 0.3 0.4 0.5

U
T

!
s

in
A

-0.04

-0.02

0

0.02

0.04

0.06

0.08  + X+" # $ p±e

8.8% scale uncertainty

HERMES preliminary

0 0.1 0.2 0.3 0.4 0.5

-0.04

-0.02

0

0.02

0.04

0.06

0.08  + X+ K# $ p±e

U
T

!
s
in

A

-0.04

-0.02

0

0.02

0.04

0.06

0.08  + X -" # $ p±e

-0.04

-0.02

0

0.02

0.06

0.08  + X- K# $ p±e

Fx
0.1 0.2 0.3 0.4 0.5

 [
 G

e
V

 ]
% 

T
 p&

0.5

1.0

Fx
0.1 0.2 0.3 0.4 0.5

0.5

1.0

7

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1  0  0.1

A
N

xF

PT=1.5 GeV Sivers effect

!
+

!
-

!
0

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1  0  0.1  0.2  0.3
A

N

xF

PT=2.5 GeV Sivers effect

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1  0  0.1  0.2  0.3

A
N

xF

PT=2.5 GeV Collins effect

FIG. 2: Estimates ofAN vs. xF for the p↑ ! → πX process at HERMES (
√
s # 7 GeV). Left panel: Sivers effect at PT = 1.5 GeV;

central panel: Sivers effect at PT = 2.5 GeV; right panel: Collins effect at PT = 2.5 GeV. The computation has been performed
according to Eqs. (16), (17) and (18) of the text, adopting the Sivers functions of Ref. [14] and the transversity and Collins
functions of Ref. [22], as extracted from SIDIS and e+e− data, the unpolarized PDFs of Ref. [83] and the FFs of Ref. [84]. In
the left panel we also show, for charged pions, the statistical uncertainty bands coming from the extracted Sivers functions [14].

Our results are given for the kinematical configurations of HERMES, COMPASS, JLab at 12 GeV, and a hypo-
thetical ENC future machine operating at an energy

√
s = 50 GeV. For hadron production, the Sivers and Collins

contributions are shown separately. We plot AN as a function of xF at fixed PT values; these should be chosen as the
hard scale of the process, ensuring a large momentum transfer in the hard scattering, say Q2 > 1 GeV2. In collinear
cases, at LO, it might suffice to have PT > 1 GeV; however, with TMD factorization, one has to be more careful, as
PT might be partially generated by intrinsic k⊥. We have checked that a value of PT = 2.5 GeV corresponds to a
safe Q2 > 1 GeV2 region in the whole range of xF , while PT = 1.5 GeV implies a safe Q2 region only for backward
production, xF

<∼ 0. We give predictions for these two values of PT .
Notice also that for positive xF the minimum of x is given, roughly, by xF . This implies that for xF > 0.2 –

0.3 we should employ the parameterizations of the Sivers and transversity functions in a region where they are not
constrained by SIDIS data. For this reason we will give our theoretical estimates of AN only up to xF # 0.2. On the
other hand, for negative xF the minimum of x is controlled by the ratio xT = 2PT /

√
s, implying that at moderate

c.m. energies (i.e.
√
s # 10 – 20 GeV) and PT # 1 – 2 GeV, we are sensitive to the valence region of the polarized

proton, i.e. the region where the Sivers (and the transversity) functions reach their maxima.
Let us comment in details our results.

• We first stress some aspects peculiar to the p↑! → hX process. As in SIDIS processes at leading order accuracy,
only one partonic subprocess, q ! → q !, is active, with a simple 1/t̂2 dependence (a much simpler dynamics
than in the p p → hX case). However, since the lepton plane is not identified (we do not require the detection
of the outgoing lepton), one cannot access, separately, the Sivers and the Collins effects. Nevertheless, in the
backward region (w.r.t. the proton direction) the variable |û| becomes smaller and so does the partonic spin
transfer cross section ∝ M̂0

1 M̂
0
2 [see Eqs. (8) and (9)], entering the Collins contribution to AN [second term

on the r.h.s. of Eq. (17)]. This implies a strong dynamical suppression of the Collins effect (reinforced by the
integration over the azimuthal phases) at largely and moderately negative values of xF , leaving active mainly
the Sivers contribution. Notice that, contrary to what happens in the p p → hX process, no û-channel in the
partonic process is present; moreover the variable t̂ strongly depends on φ, the azimuthal phase of the Sivers
effect [first term on the r.h.s. of Eq. (17)].

• In Fig. 2 we present our estimates, separately, for the Sivers and Collins contributions to AN at HERMES
kinematics. More precisely, we show the Sivers effect at PT = 1.5 GeV (left panel) and at PT = 2.5 GeV
(central panel) and the Collins effect at PT = 2.5 GeV (right panel). The Collins effect at PT = 1.5 GeV (not
shown) is almost negligible in the kinematical region considered. For charged pion production at PT =1.5 GeV
(left panel) the statistical uncertainty bands as resulting from our fit [14] are also shown.

The largest AN values obtained correspond to the x region (of the polarized proton distributions) where the
Sivers functions, for u and d quarks, reach their maxima. It is interesting to note that the sizable value of AN

for π− production (larger than the corresponding Sivers contribution to AUT in SIDIS) is due to the dominance
of the d quark with a small contamination from the u quark. This is related to the fact that the light-cone
momentum fraction z is always bigger than the maximum between |xF | and xT , implying, at moderate and
large |xF |, a dominance of the leading fragmentation functions.

theory

• note different kinematical configuration :

protons moving 
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 Z direction
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B. Large PT jet production

We consider also the most interesting case of SSAs for the inclusive process p↑ ! → jet + X . Although it is a
difficult process to detect experimentally and might require future higher energy and luminosity machines, it would
certainly give the most direct access to the Sivers effect, as the lack of any fragmentation mechanism forbids other
contributions. Even more difficult, the observation of both a jet and a final hadron inside the jet (with a measurement
of its transverse momentum p⊥), would allow a direct detection of the Collins effect [82].
In the case of the p↑ ! → jet +X process, with no observation of a single final particle, Eq. (4) simplifies to:

Ej dσ(p,S)+!→jet+X

d3Pj
=

∑

q,{λ}

∫

dx

16 π2x s
d2k⊥ δ(ŝ+ t̂+ û)

× ρq/p,Sλq ,λ
′
q
f̂q/p,S(x,k⊥)

1

2
M̂λq,λ!

;λq,λ!
M̂∗

λ′
q,λ!

;λ′
q,λ!

, (21)

while Eq. (16) becomes:

Ajet
N =

∑

q,{λ}

∫

dx

16 π2x s
d2k⊥ δ(ŝ+ t̂+ û) [Σ(↑)− Σ(↓)]q!→q!

jet

∑

q,{λ}

∫

dx

16 π2x s
d2k⊥ δ(ŝ+ t̂+ û) [Σ(↑) + Σ(↓)]q!→q!

jet

· (22)

In this case the kinematics is very simple and is shown explicitly in appendix A2. For a generic azimuthal direction
φS of the transverse spin ST , the Sivers function, Eq. (19), can be written as:

∆Nfq/p↑ (x, k⊥) ST · (p̂× k̂⊥) = ∆Nfq/p↑ (x, k⊥)

(

sinφS
kx⊥
k⊥

− cosφS
ky⊥
k⊥

)

= ∆Nfq/p↑ (x, k⊥) sin(φS − φ) , (23)

and the Σ kernels in Eq. (22) are

∑

{λ}

[Σ(↑)− Σ(↓)]q!→q!
jet =

1

2
∆Nfq/p↑(x, k⊥) sin(φS − φ)

[

|M̂0
1 |2 + |M̂0

2 |2
]

(24)

∑

{λ}

[Σ(↑) + Σ(↓)]q!→q!
jet = fq/p(x, k⊥)

[

|M̂0
1 |2 + |M̂0

2 |2
]

. (25)

The elementary amplitudes are the same as given in Eqs. (8) and (9).

III. ESTIMATES FOR AN

We have computed the SSA, AN , as defined in Eq. (12) or (14), for the large PT production of pions and jets in
p↑! → hX and p↑ ! → jet + X processes, according to the expressions given, respectively, in Eqs. (16)-(18) and in
Eqs. (22), (24) (with φS = π/2), and (25).
Analogous results for the case of leptons moving along the Zcm axis, ! p↑ → h (jet)+X , in the same chosen hadronic

frame (that is, keeping fixed the definitions of xF = 2PL/
√
s and of the ↑, ↓ transverse polarization directions) can

be easily obtained using rotational invariance:

A !p↑→h(jet)+X
N (xF ,PT ) = −A p↑!→h(jet)+X

N (−xF ,PT ) . (26)

We have used the Sivers distributions as parameterized and extracted – from SIDIS data – in Ref. [14]; even if
the Sivers functions, being related to final state interactions [72], are expected to be process dependent [23], they
should be the same in SIDIS and the (related) processes considered here, which all originate from the same q ! → q !
elementary interaction and subsequent quark fragmentation. Similarly, we have used the transversity distributions
and Collins functions as parameterized and extracted in Ref. [22]. The unpolarized parton distribution functions
(PDFs) and fragmentation functions (FFs) are taken respectively from Refs. [83] and [84].

electrons moving 

along the positive

 Z direction
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Theory predictions Why AN in ep scattering
 The measurement is equivalent to the existing 
ones in  pp scattering,, but in addition:
✴ It is a cleaner channel to access AN as it involves 
only one quark channel from the proton target. 
✴ It provides a test of the validity of the TMD 
factorization for processes with one large scale (pT).
✴ It provides a link between the large inclusive 
asymmetries from purely hadronic interactions in 
pp collisions, and the large spin asymmetries 
measured in last years from semi-inclusive deep-
inelastic scattering (SIDIS) data, where TMDs play a 
key role.
✴ Data already exist, collected at different facilities 
and HERMES has a lot of them! 

 (120 million charged pion tracks and 10 million charged kaon 
tracks were used in this analysis )

AN is a left-right asymmetry observed in the 
distribution of hadrons detected in inclusive 
measurements at proton-proton collisions. Large 
asymmetry values have been measured several 
times since the 70s at different center-of-mass 
energies √s for several hadron species [1]. 
Interpretation of these data led D.W. Sivers to 
formulate the mechanism carrying his name in the 
early 90s [2]. AN is typically measured as a function of 
the transverse hadron momentum pT and Feynman-
x, defined as xF = 2pL/√s and related to the 
longitudinal hadron momentum.

Two approaches have been proposed to explain 
such asymmetries, one based on the use of 
transverse-momentum-dependent distribution and 
fragmentation functions (TMDs) [3]; the other 
related to high-twist quark-gluon correlations [4]. 
Both approaches provide a complementary picture 
of the spin structure of the proton, and predict that 
AN goes to zero at low transverse hadron 
momentum. More data in this region, and as well at 
moderate-higher pT, are needed. These data can be 
also obtained from lepton-proton (ep) collisions, as 
now done at HERMES.

3 M. Anselmino, M. Boglione, and F. Murgia, Phys. Lett. B362, 164 (1995)
4 J. Qiu and G. F. Sterman, Phys. Rev. D59, 014004314 (1999)

1 U. D’Alesio and F. Murgia, Prog. Part. Nucl. Phys. 61, 394 (2008) 
2 D. W. Sivers, Phys. Rev. D41, 83 (1990)

• Measurement of AN in p p-scattering for different center of mass energies:

1976 2002 1991 2008

4.9 GeV 6.6 GeV 19.4 GeV 62.4 GeV

3

NR - NL

NR + NL
AN = 

• Only two models consistently describing the data:
* TMDs (Transverse Momentum Dependent) distributions
* high-twist correlations

• Interpretation not yet completely satisfactory

• All available models predict AN goes to zero at 
high pT  values.

• BUT: not yet DATA at such kinematic region

• all available data coming from p p scattering
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Motivation:  AN in pp scattering

First measurement of AN in ep scattering
the HERMES CollaborationAlejandro López Ruiz on behalf of Dept. Physics and Astronomy 

University of Gent,  Belgium

The data were taken at the HERA accelerator 
(DESY) with the HERMES experiment using an 
unpolarized lepton beam and a fixed, transversely-
polarized proton target and a forward spectrometer.
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The cross section of the process can be written as  

2. Analysis of selected data 4

2 Analysis of selected data

2.1 Single-spin asymmetries
The cross section for deep-inelastic scattering of two particles using an unpolarized beam
and a transversely polarized target can be generally written as the sum of two parts

σ = σUU + σUT , (1)

where

• σUT refers to the cross section of the interaction where the beam is unpolarized (U)
and the target is transversely polarized (T ); all spin effects are contained in this part,

• σUU is the unpolarized cross section where both the target and the beam are not
spin dependent. For the data set taken with the transversely polarized target, this
is the case when data for both target spin states (up and down) are combined, i.e.
there is no net target polarization.

The spin-dependent part of the cross section, σUT is sensitive to the azimuthal angle
ψ, defined as the angle about the beam direction between the hadron production plane
and the “upwards” target spin direction.

Experimentally, a method to analyze σUT is by measuring the cross-section asymmetry
AUT (ψ), defined as

AUT (ψ) ≡
σUT (ψ)

σUU
. (2)

In inclusive DIS of unpolarized leptons off transversely polarized protons, only three
quantities are defined: �S, the target spin vector; �k , the momentum of the incident beam
lepton; and �p, the momentum of the detected hadron. The spin-dependent part of the
cross section depends then on the form

σUT ∝ �S · (�k × �p), (3)

which is the only possible combination of these three vectors that conserves parity 3.
From this, it follows that

σUT = σUU S⊥ A
sinψ
UT sin(ψ) (4)

where S⊥ is the transverse component of the target spin, and Asin ψUT the amplitude of the
azimuthal modulation. It is worth noting that, as the cross product (�k × �p) results in
a vector perpendicular to the hadron production plane, parity invariance allows AUT (ψ)

3Under parity transformation, the momentum of the target and beam particles changes as �p → −�p, and
the target spin changes as angular momentum: �S ∝ (�r · �p)→ −�r ·−�p = �r · �p

Only σUT depends on the transverse target spin S⊥

The asymmetry was extrated as moments of sinΦ in 
bins of pT and xF. The sinΦ amplitudes do not 
depend on the acceptance of the detector and are 
related to AN as
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π
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a vector perpendicular to the hadron production plane, parity invariance allows AUT (ψ)

3Under parity transformation, the momentum of the target and beam particles changes as �p → −�p, and
the target spin changes as angular momentum: �S ∝ (�r · �p)→ −�r ·−�p = �r · �p

2. Analysis of selected data 4

2 Analysis of selected data

2.1 Single-spin asymmetries
The cross section for deep-inelastic scattering of two particles using an unpolarized beam
and a transversely polarized target can be generally written as the sum of two parts

σ = σUU + σUT , (1)

where

• σUT refers to the cross section of the interaction where the beam is unpolarized (U)
and the target is transversely polarized (T ); all spin effects are contained in this part,
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there is no net target polarization.

The spin-dependent part of the cross section, σUT is sensitive to the azimuthal angle
ψ, defined as the angle about the beam direction between the hadron production plane
and the “upwards” target spin direction.

Experimentally, a method to analyze σUT is by measuring the cross-section asymmetry
AUT (ψ), defined as

AUT (ψ) ≡
σUT (ψ)

σUU
. (2)

In inclusive DIS of unpolarized leptons off transversely polarized protons, only three
quantities are defined: �S, the target spin vector; �k , the momentum of the incident beam
lepton; and �p, the momentum of the detected hadron. The spin-dependent part of the
cross section depends then on the form

AN =
2

π
AsinφUT (3)

which is the only possible combination of these three vectors that conserves parity 3.
From this, it follows that

σUT = σUU S⊥ A
sinφ
UT sin(φ) (4)

where S⊥ is the transverse component of the target spin, and Asin ψUT the amplitude of the
azimuthal modulation. It is worth noting that, as the cross product (�k × �p) results in
a vector perpendicular to the hadron production plane, parity invariance allows AUT (ψ)

3Under parity transformation, the momentum of the target and beam particles changes as �p → −�p, and
the target spin changes as angular momentum: �S ∝ (�r · �p)→ −�r ·−�p = �r · �p

The asymmetry is experimentally accessible via the 
distributions in the azimuthal angle Φ, defined 
between the hadron and the target spin vector. 
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Figure 1: Overview of measured SSAs in inclusive hadron production.

are undefined, like xB, Q2 or φS. A natural choice, an equivalent to the previous set of

“leptonic” variables, is to use instead:

• pT , the transverse momentum of the hadron,

• , xF = 2pL/
√

s, related to the longitudinal momentum pL of the hadron

• φ, the azimuthal angle about the beam direction between the hadron momentum

and the “upwards” target spin direction.

The reader is also reffered to Florian’s thesis[10] for further information on the analysis

that may not have been covered in this report.

The asymmetry was calculated as

AUT (pT , xF , φ) =

N↑

L↑
P

− N↓

L↓
P

N↑

L↑ +
N↓

L↓

, (2.1)

where N↑(↓) are the number of events measured in bins of pT and φ. The complete analysis

was analogously performed in bins of xF and φ.

Given the extense set of data collected (about 120 million tracks), a much finer binning

was chosen in comparison to what other (SI)DIS analyses at Hermes allow. The same

binning was used for kaons and pions making comparisons and interpretations easier. See

Table 1 for details. For the 2D analysis, see section 4.2.

The differential yield for a given target spin direction (↑ upwards or ↓ downwards)

can be expressed as

d3N↑(↓)

dpT dxF dφ
=

�
L↑(↓)

d
3σUU + (−)L↑(↓)

P d
3σUT

�
Ω(pT , xF , φ)

= d
3σUU

�
L↑(↓)

+ (−)

L↑(↓)
P Asin φ

UT (pT , xF ) sin φ
�

Ω(pT , xF , φ). (2.2)

2
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Here, σUU is the unpolarized cross section, L↑(↓)
is the total luminosity in the ↑ (↓)

polarization state, L↑(↓)
P =

�
L↑(↓)

(t) P (t) dt is the integrated luminosity weighted by the

magnitude P of the target polarization, and Ω is the detector acceptance efficiency. The

sin φ azimuthal dependence derivates from the integration of the spin-dependent part of

the cross section over all leptonic variables [11]; Asin φ
UT refers to its amplitude.

With the use of Eq. (2.2), it can be approximated, for small differences of the two

average target polarizations �P ↑(↓)� = L↑(↓)
P /L↑(↓)

, as

AUT (pT , xF , φ) � Asin φ
UT sin φ +

1

2

�P ↓� − �P ↑�
�P ↑��P ↓� . (2.3)

Variable Bins Bin borders

pT 10 [0.0, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 1.0, 1.2, 3.0] GeV

xF 10 [-0.01, 0.1, 0.13, 0.17, 0.2, 0.23, 0.27, 0.3, 0.37, 0.43, 1]

φ 20 [0.0, 0.27, 0.54, 0.81, 1.08, 1.35, 2.02, 2.29, 2.56, 2.83,
3.10, 3.37, 3.64, 3.91, 4.18, 4.45, 5.17, 5.44, 5.71, 5.98, 6.29] rad

Table 1: Binning in the kinematic variables pT and xF . For the azimuthal angle φ, the

binning was carefully selected to avoid having bins with no (or very low) statistics due

to the gap in the acceptance around the beam pipe.

As shown in Table 2, �P ↑� and �P ↓� are the same for all data taking periods.

Year �P ↑� �P ↓� �∆P � ∆Apol
UT

2002 0.783 0.783 0.041 5.24%

2003 0.795 0.795 0.033 4.15%

2004 0.737 0.737 0.056 7.53%

2005 0.705 0.705 0.065 9.24%

all 0.713 0.713 0.063 8.81%

Table 2: Average target polarizations for the data sets used in this analysis. The last two

column contain the average uncertainty on the measurement of the target polarization,

and the relative uncertainty which is transferred to the asymmetries.

The relation between the sinφ amplitude Asin φ
UT and the left-right asymmetry AN can

be easily obtained, in the case of a detector with full 2π-coverage, as

AN =

� π

0 dφσUT sin φ� π

0 dφσUU
=

2
π · Asin φ

UT . (2.4)
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Figure 1: Overview of measured SSAs in inclusive hadron production.

are undefined, like xB, Q2 or φS. A natural choice, an equivalent to the previous set of

“leptonic” variables, is to use instead:

• pT , the transverse momentum of the hadron,

• , xF = 2pL/
√

s, related to the longitudinal momentum pL of the hadron

• φ, the azimuthal angle about the beam direction between the hadron momentum

and the “upwards” target spin direction.

The reader is also reffered to Florian’s thesis[10] for further information on the analysis

that may not have been covered in this report.

The asymmetry was calculated as

AUT (pT , xF , φ) =

N↑

L↑
P

− N↓

L↓
P

N↑

L↑ +
N↓

L↓

, (2.1)

where N↑(↓) are the number of events measured in bins of pT and φ. The complete analysis

was analogously performed in bins of xF and φ.

Given the extense set of data collected (about 120 million tracks), a much finer binning

was chosen in comparison to what other (SI)DIS analyses at Hermes allow. The same

binning was used for kaons and pions making comparisons and interpretations easier. See

Table 1 for details. For the 2D analysis, see section 4.2.

The differential yield for a given target spin direction (↑ upwards or ↓ downwards)

can be expressed as

d3N↑(↓)

dpT dxF dφ
=

�
L↑(↓)

d
3σUU + (−)L↑(↓)

P d
3σUT

�
Ω(pT , xF , φ)

= d
3σUU

�
L↑(↓)

+ (−)

L↑(↓)
P Asin φ

UT (pT , xF ) sin φ
�

Ω(pT , xF , φ). (2.2)
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Here, σUU is the unpolarized cross section, L↑(↓)
is the total luminosity in the ↑ (↓)

polarization state, L↑(↓)
P =

�
L↑(↓)

(t) P (t) dt is the integrated luminosity weighted by the

magnitude P of the target polarization, and Ω is the detector acceptance efficiency. The

sin φ azimuthal dependence derivates from the integration of the spin-dependent part of

the cross section over all leptonic variables [11]; Asin φ
UT refers to its amplitude.

With the use of Eq. (2.2), it can be approximated, for small differences of the two

average target polarizations �P ↑(↓)� = L↑(↓)
P /L↑(↓)

, as

AUT (pT , xF , φ) � Asin φ
UT sin φ +

1

2

�P ↓� − �P ↑�
�P ↑��P ↓� . (2.3)
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3.10, 3.37, 3.64, 3.91, 4.18, 4.45, 5.17, 5.44, 5.71, 5.98, 6.29] rad

Table 1: Binning in the kinematic variables pT and xF . For the azimuthal angle φ, the

binning was carefully selected to avoid having bins with no (or very low) statistics due

to the gap in the acceptance around the beam pipe.

As shown in Table 2, �P ↑� and �P ↓� are the same for all data taking periods.

Year �P ↑� �P ↓� �∆P � ∆Apol
UT

2002 0.783 0.783 0.041 5.24%
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2005 0.705 0.705 0.065 9.24%

all 0.713 0.713 0.063 8.81%

Table 2: Average target polarizations for the data sets used in this analysis. The last two

column contain the average uncertainty on the measurement of the target polarization,

and the relative uncertainty which is transferred to the asymmetries.
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Figure 1: Overview of measured SSAs in inclusive hadron production.

are undefined, like xB, Q2 or φS. A natural choice, an equivalent to the previous set of

“leptonic” variables, is to use instead:

• pT , the transverse momentum of the hadron,

• , xF = 2pL/
√

s, related to the longitudinal momentum pL of the hadron

• φ, the azimuthal angle about the beam direction between the hadron momentum

and the “upwards” target spin direction.

The reader is also reffered to Florian’s thesis[10] for further information on the analysis

that may not have been covered in this report.

The asymmetry was calculated as

AUT (pT , xF , φ) =

N↑

L↑
P

− N↓

L↓
P

N↑

L↑ +
N↓

L↓

, (2.1)

where N↑(↓) are the number of events measured in bins of pT and φ. The complete analysis

was analogously performed in bins of xF and φ.

Given the extense set of data collected (about 120 million tracks), a much finer binning

was chosen in comparison to what other (SI)DIS analyses at Hermes allow. The same

binning was used for kaons and pions making comparisons and interpretations easier. See

Table 1 for details. For the 2D analysis, see section 4.2.

The differential yield for a given target spin direction (↑ upwards or ↓ downwards)

can be expressed as
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Figure 1: Overview of measured SSAs in inclusive hadron production.

are undefined, like xB, Q2 or φS. A natural choice, an equivalent to the previous set of

“leptonic” variables, is to use instead:

• pT , the transverse momentum of the hadron,

• , xF = 2pL/
√

s, related to the longitudinal momentum pL of the hadron

• φ, the azimuthal angle about the beam direction between the hadron momentum

and the “upwards” target spin direction.

The reader is also reffered to Florian’s thesis[10] for further information on the analysis

that may not have been covered in this report.

The asymmetry was calculated as

AUT (pT , xF , φ) =

N↑

L↑
P

− N↓

L↓
P

N↑

L↑ +
N↓

L↓

, (2.1)

where N↑(↓) are the number of events measured in bins of pT and φ. The complete analysis

was analogously performed in bins of xF and φ.

Given the extense set of data collected (about 120 million tracks), a much finer binning

was chosen in comparison to what other (SI)DIS analyses at Hermes allow. The same

binning was used for kaons and pions making comparisons and interpretations easier. See

Table 1 for details. For the 2D analysis, see section 4.2.

The differential yield for a given target spin direction (↑ upwards or ↓ downwards)

can be expressed as
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Here, σUU is the unpolarized cross section, L↑(↓)
is the total luminosity in the ↑ (↓)

polarization state, L↑(↓)
P =
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(t) P (t) dt is the integrated luminosity weighted by the

magnitude P of the target polarization, and Ω is the detector acceptance efficiency. The

sin φ azimuthal dependence derivates from the integration of the spin-dependent part of

the cross section over all leptonic variables [11]; Asin φ
UT refers to its amplitude.

With the use of Eq. (2.2), it can be approximated, for small differences of the two

average target polarizations �P ↑(↓)� = L↑(↓)
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binning was carefully selected to avoid having bins with no (or very low) statistics due

to the gap in the acceptance around the beam pipe.
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Figure 1: Overview of measured SSAs in inclusive hadron production.

are undefined, like xB, Q2 or φS. A natural choice, an equivalent to the previous set of

“leptonic” variables, is to use instead:

• pT , the transverse momentum of the hadron,

• , xF = 2pL/
√

s, related to the longitudinal momentum pL of the hadron

• φ, the azimuthal angle about the beam direction between the hadron momentum

and the “upwards” target spin direction.

The reader is also reffered to Florian’s thesis[10] for further information on the analysis

that may not have been covered in this report.
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Given the extense set of data collected (about 120 million tracks), a much finer binning
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Here, σUU is the unpolarized cross section, L↑(↓)
is the total luminosity in the ↑ (↓)

polarization state, L↑(↓)
P =

�
L↑(↓)

(t) P (t) dt is the integrated luminosity weighted by the

magnitude P of the target polarization, and Ω is the detector acceptance efficiency. The

sin φ azimuthal dependence derivates from the integration of the spin-dependent part of

the cross section over all leptonic variables [11]; Asin φ
UT refers to its amplitude.

With the use of Eq. (2.2), it can be approximated, for small differences of the two

average target polarizations �P ↑(↓)� = L↑(↓)
P /L↑(↓)

, as

AUT (pT , xF , φ) � Asin φ
UT sin φ +

1

2

�P ↓� − �P ↑�
�P ↑��P ↓� . (2.3)

Variable Bins Bin borders
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Table 1: Binning in the kinematic variables pT and xF . For the azimuthal angle φ, the

binning was carefully selected to avoid having bins with no (or very low) statistics due

to the gap in the acceptance around the beam pipe.

As shown in Table 2, �P ↑� and �P ↓� are the same for all data taking periods.
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2005 0.705 0.705 0.065 9.24%

all 0.713 0.713 0.063 8.81%

Table 2: Average target polarizations for the data sets used in this analysis. The last two

column contain the average uncertainty on the measurement of the target polarization,

and the relative uncertainty which is transferred to the asymmetries.
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Figure 1: Overview of measured SSAs in inclusive hadron production.

are undefined, like xB, Q2 or φS. A natural choice, an equivalent to the previous set of

“leptonic” variables, is to use instead:

• pT , the transverse momentum of the hadron,

• , xF = 2pL/
√

s, related to the longitudinal momentum pL of the hadron

• φ, the azimuthal angle about the beam direction between the hadron momentum

and the “upwards” target spin direction.

The reader is also reffered to Florian’s thesis[10] for further information on the analysis

that may not have been covered in this report.
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where N↑(↓) are the number of events measured in bins of pT and φ. The complete analysis

was analogously performed in bins of xF and φ.

Given the extense set of data collected (about 120 million tracks), a much finer binning

was chosen in comparison to what other (SI)DIS analyses at Hermes allow. The same

binning was used for kaons and pions making comparisons and interpretations easier. See

Table 1 for details. For the 2D analysis, see section 4.2.
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Here, σUU is the unpolarized cross section, L↑(↓)
is the total luminosity in the ↑ (↓)

polarization state, L↑(↓)
P =

�
L↑(↓)

(t) P (t) dt is the integrated luminosity weighted by the

magnitude P of the target polarization, and Ω is the detector acceptance efficiency. The

sin φ azimuthal dependence derivates from the integration of the spin-dependent part of

the cross section over all leptonic variables [11]; Asin φ
UT refers to its amplitude.

With the use of Eq. (2.2), it can be approximated, for small differences of the two

average target polarizations �P ↑(↓)� = L↑(↓)
P /L↑(↓)

, as

AUT (pT , xF , φ) � Asin φ
UT sin φ +

1

2

�P ↓� − �P ↑�
�P ↑��P ↓� . (2.3)
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Table 1: Binning in the kinematic variables pT and xF . For the azimuthal angle φ, the

binning was carefully selected to avoid having bins with no (or very low) statistics due

to the gap in the acceptance around the beam pipe.

As shown in Table 2, �P ↑� and �P ↓� are the same for all data taking periods.

Year �P ↑� �P ↓� �∆P � ∆Apol
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Table 2: Average target polarizations for the data sets used in this analysis. The last two
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and the relative uncertainty which is transferred to the asymmetries.
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binning was carefully selected to avoid having bins with no (or very low) statistics due

to the gap in the acceptance around the beam pipe.

As shown in Table 2, �P ↑� and �P ↓� are the same for all data taking periods.

Year �P ↑� �P ↓� �∆P � ∆Apol
UT

2002 0.783 0.783 0.041 5.24%

2003 0.795 0.795 0.033 4.15%

2004 0.737 0.737 0.056 7.53%

2005 0.705 0.705 0.065 9.24%

all 0.713 0.713 0.063 8.81%

Table 2: Average target polarizations for the data sets used in this analysis. The last two

column contain the average uncertainty on the measurement of the target polarization,

and the relative uncertainty which is transferred to the asymmetries.

The relation between the sinφ amplitude Asin φ
UT and the left-right asymmetry AN can

be easily obtained, in the case of a detector with full 2π-coverage, as

AN =

� π

0 dφσUT sin φ� π

0 dφσUU
=

2
π · Asin φ

UT . (2.4)
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Experimental method

Pions and kaons asymmetries as a function of xF. The 
smaller amplitudes measured for negative hadrons in 
comparison to pp scattering can be understood given the 
u-quark dominance in ep scattering.

AN was also extracted as a function of pT 
for different bins of xF. Positive mesons 
show a significant positive asymmetry, 
while for negative mesons, this is close to 
zero. This is in agreement with an 
asymmetry dominated by the Sivers 
mechanism. Further studies, not shown 
here, indicate that a simulation of the 
p roce s s ba sed on the p re sen t 
understanding  of  TMDs (including e.g. 
the Sivers and Collins terms) manages to 
reproduce the measured inclusive 
asymmetries to a very good extent. The 
region of pT between 1.5 and 2 GeV was 
also recently investigated, showing a 
significant rise of the asymmetries, 
particulary for positive pions. This is the 
region where the TMDs are correctly 
defined, while the low-pT corresponds to 
the regime of quasi-real photoproduction.
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