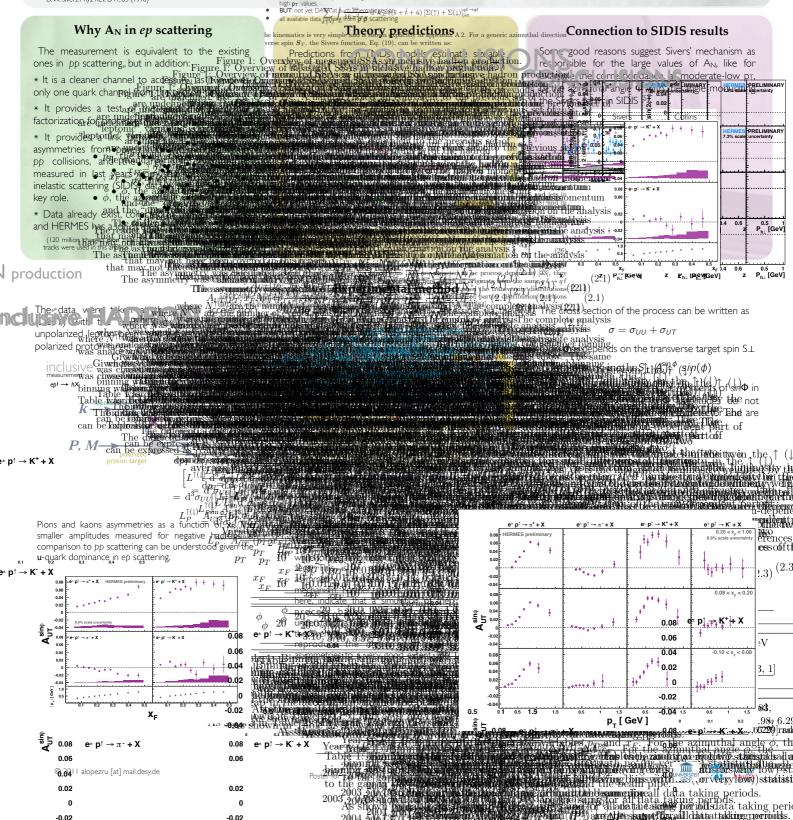
First measurement of A_N in *ep* scattering

Dept. Physics and Astronomy University of Gent, Belgium Alejandro López Ruiz on behalf of the HERMES Collaboration

A_N is a left-right asymmetry observed in the distribution of hadrons detected in inclusive measurements at proton-proton collisions. Large asymmetry values have been measured several times since the 70s at different center-of-mass energies \sqrt{s} for several hadron species ^[1]. Interpretation of these data led D.W. Sivers to formulate the mechanism carrying his name in the early 90s $^{\mbox{[2]}}$ A_N is typically measured as a function of the transverse hadron momentum \mathbf{p}_{T} and Feynmanx, defined as $x_F = 2p_L/\sqrt{s}$ and related to the longitudinal hadron momentum.


¹ U. D'Alesio and F. Murgia, Prog. Part. Nucl. Phys. 61, 394 (2008) ² D.W. Sivers, Phys. Rev. D41, 83 (1990)

Motivation: A_N in pp scattering 62.4 GeV 04 06 1976 2002 1991 2008

Two approaches have been proposed to explain such asymmetries, one based on the use of transverse-momentum-dependent distribution and fragmentation functions (TMDs) [3]; the other related to high-twist quark-gluon correlations [4]. Both approaches provide a complementary picture of the spin structure of the proton, and predict that A_N goes to zero at low transverse hadron momentum. More data in this region, and as well at moderate-higher p_T, are needed. These data can be also obtained from lepton-proton (ep) collisions, as now done at HERMES.

³ M. Anselmino, M. Boglione, and F. Murgia, Phys. Lett. B362, 164 (1995) ⁴ J. Qiu and G. F. Sterman, Phys. Rev. D59, 014004314 (1999)

Time

