Multiplicities of charged pions and kaons from semi-inclusive deep-inelastic scattering on the proton and the deuteron

Multiplicities instead of cross section: no luminosity uncertainty

 $d^4N^h(Q^2, x, z, p_T)$ $dx dQ^2$ $M^h(Q^2, x, z, p_T) \equiv$ $dx dQ^2 dz dp_T$ $\overline{d^2 N^{DIS}(Q^2, x)}$

 $\frac{dM^{h}(Q^{2}, x, z)}{dz} \approx \frac{\sum_{q} e_{q}^{2} f_{1}^{q}(Q^{2}, x) D_{q}^{h}(Q^{2}, z)}{\sum_{q} e_{q}^{2} f_{1}^{q}(Q^{2}, x)}$

Opens access to

 Fragmentation functions Disentangle q and anti-q contributions Parton distribution functions

Additionally, through the p_{\perp} dependence • Fragmentation k_{\perp}

Intrinsic quark p₁

 $\frac{d^{5}\sigma^{h}}{dxdQ^{2}dzd\vec{p_{T}}} \propto \sum_{q} e_{q}^{2} \int d^{2}k_{\perp} d^{2}\vec{p_{\perp}} \delta^{2}(\vec{p_{T}} - \vec{p_{\perp}} - z\vec{k_{\perp}}) f_{1}^{q}(Q^{2}, x, k_{\perp}) D_{q}^{h}(Q^{2}, z, p_{\perp})$

Quark Helicity Distributions in the Nucleon for up, down, and strange Quarks from Semi-inclusive **Deep-inelastic Scattering**

Helicity conservation in polarized DIS: select specific quark spin orientation Hadron tagging: select specific quark flavor

$$A_{1}^{h}(x,Q^{2}) \stackrel{LO}{\sim} \frac{\sum_{q} e_{q}^{2} \Delta q(x,Q^{2}) \int dz D_{q}^{h}(z,Q^{2})}{\sum_{q} e_{q}^{2} q(x,Q^{2}) \int dz D_{q}^{h}(z,Q^{2})} \sim \sum_{q} \frac{e_{q}^{2} q(x) \int dz D_{q}^{h}(z)}{\sum_{q'} e_{q'}^{2} q' \int dz D_{q'}^{h}(z)} \frac{\Delta q(x)}{q(x)} \sim P_{q}^{h} \frac{\Delta q(x)}{q(x)} = \frac{\sum_{q} e_{q}^{2} Q(x,Q^{2})}{\sum_{q} e_{q}^{2} Q(x,Q^{2})} = \frac{\sum_{q} e_{q}^{2} Q(x,Q^{2})}{\sum_{q} Q(x,Q^{2})} = \frac{\sum_{q} e_{q}^{2} Q(x,Q^{2}$$

Purity formalism:

Matrix inversion brings back from hadron asymmetries to quark spin flavor distributions.

Charge difference asymmetries

High statistics

3D analysis (in x, z, p_T and Q^2) For identified and charge-separated High statistics data require sophisticated analysis: Corrections for trigger inefficiencies Charge-symmetric background correction **RICH** unfolding Multidimensional unfolding for radiative effects limited acceptance and detector smearing

LO Interpretation Good agreement with CTEQ6+DSS for π^+ and K+ CTEQ6+Kretzer performs well for pions

Proton-deuteron multiplicity asymmetry

Reflects different valence quark content Improved precision by cancellations in the systematic uncertainty

Cross section contains Distribution Functions and Fragmentation Functions:

 $\sigma^{eN \to ehX} = \sum_{a} DF^{N \to q}(x) \otimes \sigma^{eq \to eq} \otimes FF^{q \to h}(z)$

3D analysis (in x, z, p_T)

Multidimensional unfolding

for radiative effects, limited

cos azimuthal corrections

acceptance and detector smearing

RICH unfolding

 $Q^2 < 1 \text{ GeV}^2$ • $Q^2 > 1 \text{ GeV}^2$

Charge-symmetric background correction

• $Q^2 > 1 \text{ GeV}^2$

Longitudinally polarized 27.6 GeV

 $A_1^{h^+ - h^-} = \frac{\left(d\sigma_{h^+}^{\Leftarrow} - d\sigma_{h^-}^{\triangleq}\right) - \left(d\sigma_{h^+}^{\Rightarrow} - d\sigma_{h^-}^{\Rightarrow}\right)}{\left(d\sigma_{h^+}^{\Leftarrow} - d\sigma_{h^-}^{\triangleq}\right) + \left(d\sigma_{h^+}^{\Rightarrow} - d\sigma_{h^-}^{\Rightarrow}\right)}$

Assumptions

Charge conjugation symmetry of fragmentation functions:

 $D_a^{h^+} = D_{\bar{a}}^{h^-}$ Under leading order, leading twist, current fragmentation assumptions:

Evolved to $Q^2=2.5GeV^2$ For $u_v(x)+d_v(x)$ CTEQ6 LO used Using LO DNS parameterization

Sea very small at large x: with inclusive asymmetry determined much better

$\overset{0.8}{\vdash} \mathbf{X}(\Delta \mathbf{u}_{v} + \Delta \mathbf{d}_{v})$	HERMES PRELIMINARY from purity method
F	• from π and K charge difference asymmetries
0.6	• from inclusive g ^d
F	$ DNS LO, = 2.5 GeV^2$
0.4	L
	- •
	1

Forward spectrometer

<u>Tracking</u>: Drift Vertex Chambers, Front Chambers, Magnet

LO Interpretation: Good agreement with LO model calculations for positive hadrons Bigger discrepancy for negative hadrons

Measurement of the Spin Asymmetry in the Photoproduction of Pairs of High-pT Hadrons at HERMES

Large p_T hadron pairs come from photon gluon fusion processes:

they carry information of the gluon spin

Method I:

Method I

g(x)

Factorize

Assumes

 $A^{sig}_{II} \approx \langle \hat{a} \rangle (p_T)$

 $A_{||}^{MC} = A_{||}^{meas}$

Measured asymmetry is an incoherent superposition of different hard and soft subprocess asymmetries: $A_{||}^{meas}(p_T) = \sum_{i} f_i A_{||}^i = f_{sig} A_{||}^{sig} + f_{bg} A_{||}^{bg} \quad f_i = \frac{\sigma_i}{\sigma_{tot}}$

Background: all other sub-processes \rightarrow MC

electron/positron beam at HERA

I_e<50mA, P_b=0.55 lifetime=12-14h transversely polarized et in storage ring polarization build-up by emission of synchrotron radiation (Sokolov-Ternov effect) Spin rotators around HERMES IP

Longitudinally polarized pure dilution factor=1 H and D internal gas targets Thickness =10¹⁴-10¹⁵ nucl/cm²

Chambers, Back Chambers Particle Identification: Čerenkov (RICH) Detector, Transition Radiation Detector, Preshower, Calorimeter Luminosity Monitor (Bhabha/Møller scattering)

Measurement with high accuracy Very clean lepton-hadron separation

very good pion-kaon

Integral over sum of valence distributions compatible with $\Delta\Sigma$ Sea contribution to nucleon spin small

Measurement of Parton Distributions of Strange Quarks in the Nucleon from Charged-Kaon Production in Deep-Inelastic Scattering on the Deuteron

- Strange quarks carry no isospin, thus the same in proton and neutron
- · Use isoscalar probe and target to extract strangequark distributions $\Delta S = \Delta s + \Delta \bar{s}$
- Only need inclusive asymmetries and K++K⁻ asymmetries, as well as K⁺+K⁻ multiplicities on D Strange-quark fragmentation function either directly from data or from parameterizations

RICH detector enables separation between 2-15 GeV

High pt event selection.

Main contribution from PGF process. Extraction of asymmetries from events with different topology for consistency of results. CSB correction for positrons. Trigger inefficiency estimation.

Dominative beam-target polarization systematic uncertainty.

 Intensive MC estimation of process-fractions contributing to ΔG such as PGF, VMD, pQCD processes.

• Using in MC CTEQ5L PDFs gaussian distribution for intrinsic and fragmentation transverse momenta.

 ΔG $+0.127 \\ -0.105 (sys - model)$ $= 0.071 \pm 0.034(stat) \pm 0.010(sys - exp)$

HERA symposium 2012 celebrating 20 Years of DIS at HERA