

Recent Results from HERMES

S.Belostotski

Petersburg Nuclear Physics Institute

(for HERMES collaboration)

DSPIN-07 Dubna, September 3-7, 2007

HERMES spectrometer and accumulated data set

- >Inclusive Deep Inelastic Scattering (DIS) and quark contribution to the nucleon spin $\Delta\Sigma$
- Semi-inclusive DIS and Δu(x), Δd(x) and Δs(x) –quark helicity distributions in the nucleon
- ➢ Gluon contribution to the nucleon spin ∆G from high PT hadron production

HERA polarized positron beam

HERMES SPECTROMETER

HERMES PID <>> CALO+TRD+RICH+Pre

hadron/lepton separation

pion/kaon/proton separation

 $\varepsilon ff.(lepton) > 98\%$ (a) $\frac{hadr.}{lept.}$ $sup.f. \simeq 10^4$

with hadron cont. < 0.5%

Summary of HERMES data-taking with polarized targets

1994 HERMES test RUN				
1995-2000 HERMES RUN I	Longitu	dinal po	larization	
	year	type	target polar. %	
Beam pol. =51%	1995	³ He	46	
	1996	Н	76	
Lumi H,D pol=259 pb-1	1997	Н	85	
	1998	D	86	
lumiunnal = 502 nh 1	1999	D	83	
Luini unpoi – 595 pb-1	2000	D	84.5	
(H,D, ³ He, ⁴ He, ¹⁴ N, ²⁰ Ne and ⁸⁴ Kr)				
2001-2002 HERA lumi upgrade	Transv	verse po	larization	
	vears	tvp	e polar.%	
2002-2007 HERMES RUN II	2002-2	005 H	78	
Beam pol. =36%	2006-2	2006-2007 unpol (RD)		
Lumi unpol ~ 530 pb-1				

Phys. Rev. D 2007

For polarized nucleon

$$\boldsymbol{g}_{1}(\boldsymbol{x},\boldsymbol{Q}^{2}) = \frac{1}{2} \sum_{q,\bar{q}} e_{q}^{2} [\boldsymbol{q}^{+}(\boldsymbol{x},\boldsymbol{Q}^{2}) - \boldsymbol{q}^{-}(\boldsymbol{x},\boldsymbol{Q}^{2})] = \frac{1}{2} \sum_{q,\bar{q}} e_{q}^{2} \Delta \boldsymbol{q}(\boldsymbol{x},\boldsymbol{Q}^{2})$$
$$\boldsymbol{F}_{1}(\boldsymbol{x},\boldsymbol{Q}^{2}) = \frac{1}{2} \sum_{q,\bar{q}} e_{q}^{2} [\boldsymbol{q}^{+}(\boldsymbol{x},\boldsymbol{Q}^{2}) + \boldsymbol{q}^{-}(\boldsymbol{x},\boldsymbol{Q}^{2})] = \frac{1}{2} \sum_{q,\bar{q}} e_{q}^{2} \boldsymbol{q}(\boldsymbol{x},\boldsymbol{Q}^{2})$$

Integrals of spin-dependent structure functions

$$\Gamma_1^{\mathbf{p},\mathbf{n}}(\mathbf{Q}^2) = \int_0^1 d\mathbf{x} \mathbf{g}_1^{\mathbf{p},\mathbf{n}}(\mathbf{x},\mathbf{Q}^2) = \frac{1}{36}(4\mathbf{a}_0 \pm 3\mathbf{a}_3 + \mathbf{a}_8)$$

$$\mathbf{a}_{0} = (\Delta \mathbf{u} + \Delta \overline{\mathbf{u}}) + (\Delta \mathbf{d} + \Delta \overline{\mathbf{d}}) + (\Delta \mathbf{s} + \Delta \overline{\mathbf{s}}) \equiv \Delta \Sigma$$
$$\mathbf{a}_{3} = (\Delta \mathbf{u} + \Delta \overline{\mathbf{u}}) - (\Delta \mathbf{d} + \Delta \overline{\mathbf{d}}) = \frac{1}{6}(\Gamma_{p} - \Gamma_{n}) \Leftarrow \mathbf{from DIS}$$
$$\mathbf{a}_{8} = (\Delta \mathbf{u} + \Delta \overline{\mathbf{u}}) + (\Delta \mathbf{d} + \Delta \overline{\mathbf{d}}) - 2(\Delta \mathbf{s} + \Delta \overline{\mathbf{s}})$$

$a_0 = \Delta \Sigma$ cannot be extracted from inclusive DIS experiments only

Due to SU(3) flavor symmetry additional equations come from hyperon ß-decay

> $\mathbf{a}_3 = \mathbf{F} + \mathbf{D} = \mathbf{g}_A / \mathbf{g}_v = 1.269 \pm 0.003$ $\mathbf{a}_8 = 3\mathbf{F} - \mathbf{D} = 0.586 \pm 0.031$

Evaluation of \mathbf{a}_3 , **BJSR**

$$\mathbf{a}_{3} = (\Delta \mathbf{u} + \Delta \overline{\mathbf{u}}) - (\Delta \mathbf{d} + \Delta \overline{\mathbf{d}})$$

$$\mathbf{a}_{3} \rightarrow \int_{0.021}^{0.9} g_{1}^{P}(\mathbf{x}) d\mathbf{x} - \int_{0.021}^{0.9} g_{1}^{n}(\mathbf{x}) d\mathbf{x} = 0.148 \pm 0.014$$

$$\mathbf{b}_{1} = 0.002$$

$$\mathbf{b}_{1} = 0.002$$

$$\mathbf{b}_{1} = 0.002$$

$$\mathbf{b}_{2} = 0.182 \pm 0.002$$

$$\mathbf{b}_{2} = 0.182 \pm 0.002$$

$$\mathbf{b}_{2} = 0.182 \pm 0.002$$

$$\mathbf{b}_{2} = 0.146 \pm 0.016$$

$$\Rightarrow$$
 xmin = 0.02 is not enough for $\int_{0.02}$... saturation

ΔS -content in nucleon

$$\frac{(\Delta s + \Delta \overline{s})}{3} = \frac{1}{3}(a_0 - a_8) \approx 3\Gamma_1^d - \frac{5a_8}{12}$$

$$\Rightarrow -0.085 \pm 0.013 \text{(theo.)} \pm 0.008 \text{(exp)}$$

DIS (saturated)
 from hyperon
 decay

Δu,Δd-content in nucleon

Assuming BJSR validity

 $(\Delta u + \Delta \overline{u}) = 0.842 \pm 0.004$ (theo.) ± 0.008 (exp)

 $(\Delta d + \Delta \overline{d}) = -0.427 \pm 0.004$ (theo.) ± 0.008 (exp)

Phys. Rev. D 2005

Quark helicity distributions from semi-inclusive DIS

Measured asymmetries

proton target

Measured asymmetries

deuteron target

quark polarizations

Extracted using purity calculations in the frame of LUND fragmentation model.

- LUND MC tuned by fit to unpolarized pion / kaon multiplicity distributions
- Constrained by

$$> \left(\begin{array}{c} \Delta \overline{s} \equiv 0 \text{ and} \\ \frac{\Delta s}{s} = \frac{\Delta \overline{u}}{\overline{u}} = \frac{\Delta \overline{d}}{\overline{d}} \equiv 0 \text{ at } x > 0.3 \end{array} \right)$$

quark helicity distributions.

Integrals of $\Delta q(x)$ in explored x-range

ΔG from HERMES hadron high PT data

ΔG is poorly known till now. In principle , it can be accessed by investigating NLO structure function g1: E155, SMC →pQCD fit to NLO g1 /J.Blumlein,M.Hirai,D.de Florian,Leader et al/

Unfortunately, the results obtained are very uncertain:

$$\Delta G(\boldsymbol{x}, \boldsymbol{Q}^2) = \int_0^1 \Delta g(\boldsymbol{x}, \boldsymbol{Q}^2) d\boldsymbol{x} \approx (0.5 \, to \, 1) \pm 1$$

 Δg may be also accessed in polarized pp collisions, e.g. A_{LL} in $\vec{p}\vec{p} \Rightarrow \pi^0 X$ is sensitive to $\frac{\Delta g}{g}$

PHENIIX&STAR new results are expected

In polarized charged lepton scattering (NLO), access to ΔG is possible via PGF mechanism

PGF dominates in the case of CHARM PRODUCTION

low bgr experiment, but usual problem is lack of statistics

Measured high PT hadron asymmetries

 $\vec{e} + \vec{p}, \vec{d} \Rightarrow h^{\pm}(h^{\mp}) + (e) + X$ asymmetry A_{LL} measured

Most of data collected from d-target in "untaged (e)" variant, i.e., scattered positron not detected, PT is defined in respect to e-beam direction

**Extraction of
$$\Delta G/G$$** $A_{LL}^{signal} = A_{LL}^{meas} - A_{LL,BGR}^{MC}$ $(R_{subpr}^{i} weighted)$
Method I, factorization
 $A_{LL}^{signal} = R^{PGF} \cdot \langle \alpha_{LL}(s,t) \frac{\Delta f_q^{\gamma}(x_q)}{f_q^{\gamma}(x_q)} \frac{\Delta g(x)}{g(x)} \rangle \approx \frac{\Delta g}{g} \cdot R^{PGF} \cdot \langle \alpha_{LL}(s,t) \frac{\Delta f_q^{\gamma}(x_q)}{f_q^{\gamma}(x_q)} \rangle$

Method II, $\Delta g(x)/g(x)$ parameters fitted to data $\frac{\Delta g}{g}(x) = x(1+p_1(1-x)^2) \text{ or } x(1+p_1(1-x)^2+p_2(1-x)^3)$

Method I: $\frac{\Delta g}{g} = 0.078 \pm 0.034 \pm 0.011 \text{ at } \langle x \rangle = 0.204$

Method II:

$$\frac{\Delta g}{g} = 0.071 \pm 0.034 \pm 0.010 \quad at \quad \langle x \rangle = 0.222$$

Results

uncertainty due to model-dependence $\approx \pm 0.11$, $Q_0^2 = 1.35 GeV^2$

ΔG final result compilation

Summary

- > Using well -saturated Γ_d and under SU(3) f.sym. assumption it is found
 - at $Q^2 = 5 GeV^2$
 - $\Delta \Sigma = 0.330 \pm 0.025(exp.) \pm 0.011(theo.) \pm 0.028(evol.)$
 - $(\Delta s + \Delta \overline{s}) = -0.085 \pm 0.013$ (theo.) ± 0.008 (exp)
- Quark polarizations and helicity distributions are extracted from SIDIS data for 5 quark flavors (of 6) for the first time. ΔS(x) is compatible with 0.

talk M.Varanda

> From analyis of high PT hadron production, $\Delta G/G$ is estimated to be $0.078 \pm 0.034 \pm 0.011$ with theor. uncertainty of ~0.1.

> other hermes topics...

Transverse spin effects at HERMES

Phys. Rev D 2007 Phys. Lett. B 2005 Phys.Rev. Lett. 2005

HERMES measured transverse spin effects in semi-inclusive $\pi^{\pm}, \pi^{0}, K^{+}, K^{-}$ production related to

- \checkmark longitudinal beam polarization $\Rightarrow A_{LU}(\Phi)$
- ✓ longitudinal target polarization $\Rightarrow A_{UL}(\Phi)$

 \checkmark transverse target polarization $\Rightarrow A_{UT}(\Phi, \Phi_s)$

$$\frac{access\ to}{\delta q(x)=q\uparrow(x)-q}\downarrow(x)$$

Collins FF, Sivers DF

Deep Virtual Compton Scattering DVCs, Hard exclusive meson production

GPD, access to quark orbital moments J_q

Vector Meson (VM) production at HERMES

Exclusive VM production provides access to GPDs: both unpolarized H, \tilde{H} and polarized E, \tilde{E}

> First POLARIZED data for Φ -meson production \rightarrow gluon exchange

talk of A. Borissov

Self-analyzing polarized Λ –decay gives a unique opportunity to measure (in addition to DSA and SSA) new polarization observables related to

polarization of the produced Λ hyperon

HERMES has measured:

 In semi-inclusive DIS spin-transfer from polarized beam beam

 $D_{LL'}^{\Lambda} at Q^2 > 0.8 GeV^2$

 ✓ In quasi-real photoproduction with Λ inclusively detected

- •Transverse Λ polarization
- •Spin-trasfer from long. polarized target

$$\frac{P_n^{\Lambda} \quad at \quad Q^2 \approx 0}{K_{LL}^{\Lambda} \quad at \quad Q^2 \approx 0} \longrightarrow \frac{talk \text{ of }}{D. \text{ Veretennikov}}$$

HERMES Recoil Detector

Design and performance, first results

talk I.Vilardi

THANK YOU VERY MUCH FOR ATTENTION

Backup Slides

The HERMES experiment from 1994 to 2007

A second generation experiment designed to study the spin structure of the nucleon at HERA

Alberta Argonne **Cal Tech** Colorado DESY. Ham. **DESY**, Zeuthen Liverpool Erlangen Ferrara Florida Int. Frascati

Freiburg Gent Illinois JINR. Dubna Kentucky Marburg MIT Moscow MPI, Heidelberg Yerevan

Munich N. Mex. St. NIKHEF Pennsylvania Rome St. Petersburg Tokyo TRIUMF Wisconsin

Bari Beijing Hefei Giessen Glasgow Michigan **Protvino** Regensburg Uni. Amsterdam Warsaw

NIM A540 2005

HERMES POLARIZED TARGET

Opt.Pump.	Atomic Beam Sourc	e (ABS)	
Longitudinally polarized		Transversely polarized	
1995	1996-1997 1998-2000	2001-2006	
He3	H D	Н	
B= 3 :	50 mT	B=297 mT	
	target cell		
125 μm , <mark>25K</mark>	wall=75µm l=400mm s=29.8x9.8	s=21.0x8.9 T~70-100K	
3.3×10^{14}	$\approx 2 \times 10^{14}$	<i>lim.</i> $\approx 10^{15}$ atom / cm ²	
$P_T = 40\% \pm 5\%$	(frac.) $85\% \pm 5\%$ (frac.)	78% ± 4%(frac.)	

Phys. Rev. D 2005 Quark helicity distributions from semi-inclusive DIS

$$\vec{e} + \vec{p}, \vec{d} \Rightarrow \underline{e' + h} + X$$
 at $Q^2 > 1GeV$
 \angle semi-inclusive case

SIDIS kinematics

$$Q^2$$
, $x = \frac{Q^2}{2M_p \nu}$, $\nu = E_e - E'_{e'}$

$$z = \frac{E^{h}}{v} hadron fractional energy$$

$$A_{1}^{h}(\mathbf{x},\mathbf{Q}^{2},\mathbf{z}) = \frac{\sum_{q} e_{q}^{2} \Delta q(\mathbf{x},\mathbf{Q}^{2}) \mathbf{D}_{q}^{h}(\mathbf{Q}^{2},\mathbf{z})}{\sum_{q'} e_{q'}^{2} q(\mathbf{x},\mathbf{Q}^{2}) \mathbf{D}_{q'}^{h}(\mathbf{Q}^{2},\mathbf{z})} = \sum_{q} P_{q}^{h}(\mathbf{x},\mathbf{Q}^{2},\mathbf{z}) \cdot \frac{\Delta q(\mathbf{x},\mathbf{Q}^{2})}{q(\mathbf{x},\mathbf{Q}^{2})}$$
FF q to hadron FF q to hadron fractional q-contribution

$$\sum_{\mathbf{q}} P_{\mathbf{q}}^{\mathbf{h}}(\mathbf{x}, \mathbf{Q}^2, \mathbf{z}) = 1$$

Lund MC tuned to experimental HERMES π^+, π^-, K^+, K^- multiplicities

Comparison with SMC

	HERMES	SMC
Δu_{v}	$0.603 \pm 0.071 \pm 0.040$	$0.614 \pm 0.082 \pm 0.068$
Δd_{v}	$-0.172\pm 0.068\pm 0.045$	$-0.334 \pm 0.112 \pm 0.089$
$\Delta \overline{u}$	$-0.002 \pm 0.036 \pm 0.023$	$0.015 \pm 0.034 \pm 0.024$

 $Q_0^2 = 2.5 \text{ GeV}^2$ integrated over HERMES x-range

SMC constrained $\Rightarrow \Delta \overline{u}(x) = \Delta \overline{d}(x) = \Delta \overline{s}(x) = \Delta \overline{s}(x)$

Contributions from various subprocesses

 $R_i(p_T)$ fraction of *i*-subprocess \leftarrow **PYTHIA**

SSA in semi-inclusive hadron production

 $\vec{e} + \vec{p}, \vec{d} \Rightarrow e' + H + X$

Azimuthal asymmetry around virtual photon direction is measured related to:

✓ longitudinal beam polarization

Under study is

- \checkmark longitudinal target polarization
- ✓ transverse target polarization

 $\Rightarrow A_{\mu}$

Motivations

Helicity DFTransversity DF $\Delta q(x) = \vec{q}(x) \cdot \vec{q}(x)$ $\delta q(x) = q \uparrow (x) \cdot q \downarrow (x)$

Transversity DF is practically unknown till now. SSA measured on transversely polarized target gives access to

Transversely polarized target and Collins FF $sigma ec S_{ot}$ Y $ar{k}'$ \boldsymbol{x} $\phi_{\mathcal{S}}$ P_h \boldsymbol{z} ወ Correlation between spin of $q \uparrow fragmenting$ to H and $P_{H^{\perp}}$ resulted in Collins $FF = H_1^{\perp}(z, k_T^2)$ Access to transversity DF

$$A_{UT}^{h} \propto \sin(\phi + \phi_{S}) \sum_{q} e_{q}^{2} h_{1T}^{q}(x, P_{T}^{2}) \otimes H_{1}^{\perp q}(z, k_{T}^{2})$$
$$= \sin(\phi + \phi_{S}) \langle \sin(\phi + \phi_{S}) \rangle,$$
$$\langle \sin(\phi - \phi_{S}) \rangle \quad Sivers \quad DF \ corr. \ quark \ spin \ with$$

 P_{T}

Very recent results, Collins FF

Very recent results, Sivers DF

Transverse effects related to longitudinally polarized beam and/or target

Measured asymmetries

/Phys.Lett.B 648 (2007) 164/

saturation of integrals

Deutron Integral saturated at x<0.05</p>

> NS no saturation

HERMES VS CLAS

Ζ

HERMES high PT experiment, semi-inclusive, PT in respect to virt. photon direction

Longitudinal spin-transfer to Λ- hyperon

$$D_{LL'}^{A} = 0.11 \pm 0.10 \pm 0.03$$
$$Q^{2} > 0,8 GeV^{2}, x_{F} > 0,$$
$$\langle z \rangle = 0.45$$

Compatible with $\Delta u=0$ nCQM $\Delta u=-0,09$ SU(3) $\Delta u=-0.02$ lattice-QCD

Longitudinal spin-transfer to Λ- hyperon

Phys Rev. D 2006

$$P_{L'}^{A} = P_{b}D(y)D_{LL'}^{A}$$

$$D_{LL'}^{A}(z) = \sum_{q} \tilde{P}_{q}(z) \cdot D_{LL'q}^{A}(z)$$

$$\tilde{P}_{q}(z) = \int \tilde{P}_{q}(x,z)dx$$

$$D_{LL'q}^{A}(z) = \frac{FF_{q}^{A\uparrow}(z) - FF_{q}^{A\downarrow}(z)}{FF_{q}^{A\uparrow}(z) + FF_{q}^{A\downarrow}(z)}$$
Partial spin - transfer

Due to strong u-dominance

$$D_{LL'}^{\Lambda} \approx \frac{\Delta u^{\Lambda}}{u^{\Lambda}}$$